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We study the dynamics of excitable integrate-and-fire neurons in a small-world network. At low
densities p of directed random connections, a localized transient stimulus results either in self-
sustained persistent activity or in a brief transient followed by failure. Averages over the quenched
ensemble reveal that the probability of failure changes from O to 1 over a narrow range in p; this failure
transition can be described analytically through an extension of an existing mean-field result.
Exceedingly long transients emerge at higher densities p; their activity patterns are disordered, in
contrast to the mostly periodic persistent patterns observed at low p, The times at which such patterns
die out follow a stretched-exponential distribution, which depends sensitively on the propagation

velocity of the excitation.
DOI: 10.1103/PhysRevLett.92.198101

Recent research in complex networks has provided
increasing evidence for their relevance to a variety of
physical. biological, and social phenomena [1-3]. Two
distinct types of topology have been particularly useful
in providing insights into the implications of complex
connectivity: scale-free networks [3], characterized by
the existence of a small number of hubs with high
coordination number, and small-world networks [l],
characterized by the presence of shortcuts that link
two randomly chosen sites regardless of the distance
between them.

So far, most work on complex networks has focused on
their topological and geometrical properties; less atten-
tion has been given to the properties of dynamical sys-
tems defined on such networks. The interplay between the
intrinsic dynamics of the constituent elements and their
complex pattern of connectivity strongly affects the col-
lective dynamics of the resulting system. For instance.
the addition of shortcuts induces a finite-temperature
phase transition even in the one-dimensional Ising model
[4], and the introduction of unidirectional shortcuts can
change the second-order phase transition in the two-
dimensional Ising model into a first-order one [5]. In a
system of coupled oscillatory elements, the introduction
of shortcuts enhances synchronization [6], while the in-
troduction of hubs eliminates the threshold for epidemic
propagation [7].

The coexistence of shortcuts and regular local connec-
tions characteristic of small-world networks (SWNs)
mimics a salient feature of the circuitry in the cortex
[8—13], where experimental observations of excitatory
traveling waves [11] provide evidence of some degree of
local connectivity, while it is also recognized that long-
range excitatory connections are present [10,12]. Our goal
is to explore the influence of this complex connectivity on
the dynamics of neuronal circuits; to this purpose, we
choose a minimal model. The underlying network is
modeled as a SWN with unidirectional shortcuts that
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PACS numbers: 87.18.5n, 82.40.Bj, 89.75.Hc

reflect the nonreciprocal character of synaptic connec-
tions, and the excitable neurons are modeled as leaky
integrate-and-fire units. We find that even this simple
model exhibits a rich repertoire of distinct dynamical
behaviors as a function of the density p of added short-
cuts: a low p regime characterized by persistent periodic
activity that is bistable with the quiescent state, a tran-
sition to failure with increasing p. followed by a reemer-
gence of long-lasting disordered activity. We note that a
SWN with unidirectional shortcuts has been considered
in a different regime by Lago-Ferndndez et al [14.15] to
address the possibility of rapid synchronization among
conductance-based neurons of the Hodgkin-Huxley type.

The model considered here consists of a one-dimen-
sional array of N integrate-and-fire neurons (IFNs) in
which a SWN topology is created through the addition
of a density p of unidirectional long-range couplings. The
membrane potential of the IFNs is determined by
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A neuron fires whenever its voltage exceeds |; the voltage
is then reset to 0. The external current is chosen to satisfy
1., < 1: in this regime the IFNs are not oscillatory, but
excitable. The last term models input currents due to
presynaptic firing as a delayed impulse: if w;; is nonzero,
then neuron i receives a pulse input of amplitude gy,
with a delay 7p after neuron j has fired its mth spike at
time 15’"). The synaptic conductance is chosen to satisfy
Iext + &syn > 1. so that a single input suffices to sustain
firing activity. The local connections are modeled here as
nearest-neighbor couplings (w;;+; = 1) that define an
underlying regular lattice. The long-range connections
result from randomly adding rather than rerouting [1] a
fixed fraction pN of unidirectional couplings w;; = 1 to
generate a SWN topology.

At p = 0, any excitation sufficient to cause a neuron to
fire will generate two pulses that propagate through the
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FIG. I. Raster plot (top) and instantaneous firing rate (bot-
tom) for a system with N = 1000, I.,, = 0.85, gy, = 0.2. 7, =
10, 7, = 1, p = 0.1. Same parameter values are used in sub-
sequent figures unless noted otherwise.

regular lattice in opposite directions with velocity v =
1/7p, and either exit the system or annihilate each other,
depending on boundary conditions. No persistent activity
results in either case. However. self-sustained activity
may arise for nonzero p, as shown in Fig. |. Persistence
relies on the reinjection of activity via a shortcut into a
previously active domain that has by then recovered; this
reinjection can occur only if the shortcuts are unidirec-
tional. For a fixed value of p, any particular network
realization has a different connectivity graph that may
or may not sustain persistent activity. We typically aver-
age over 2000 realizations to calculate the probability
of persistent activity; the complementary probability of
Jailure to sustain activity is shown in Fig. 2 (inset) as a
function of the density p of random connections for four
different system sizes. In this regime, the probability of
failure is an increasing function of p that crosses over
from O to | with increasing steepness as the size N of the
system increases.

Failure to sustain activity is a simple consequence of
the intrinsic dynamics of the neurons. Pulses travel out-
wards from an initial activity seed and spawn new pulses
at a rate that increases with p. A currently inactive neuron
can fire again only if enough time has elapsed from its
preceding firing to allow for a recovery to V=1 — gy,
A single input will be able to elicit a spike only if the
elapsed time exceeds T, with

I
Tln) = 1 ( ext ) 2
K e fog + n8syn — ! @

If activity recurs to a given site too rapidly. the neuron
will fail to produce a spike, and the pulse of activity will
die out. A critical density p,, for the transition from self-
sustained activity to failure can be estimated from

Ta(per) = T¢, 3)
where T,(p) is the time needed for the activity to spread
198101-2
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FIG. 2 (color online). Inset: Failure rates for 7, = 1.0 and
different system sizes N. Main: Failure rates normalized by
Per(N) [cf. (3) and (4)].

across the whole network. At a fixed velocity for pulse
propagation, this time corresponds to the largest distance
across the network. This distance has been calculated for
bidirectional shortcuts using a mean-field approach [16];
when extended to the case of unidirectional shortcuts it
results in
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An implicit expression for p., and its dependence on the
system size N and the propagation velocity v follows from
combining Eqgs. (3) and (4); for large N, p.(N) = InN.
Failure rate curves as a function of [p — p(N)}/p..(N),
shown in Fig. 2, cross at the theoretically predicted value.
This observation, together with the increased steepness of
these curves with increasing ¥, indicates that a well-
defined transition to failure occurs in the thermodynamic
limit.

This well-defined transition to failure occurs only for
sufficiently fast waves, i.e., for short delay 7. For larger
7p the dynamics of the system become quite more com-
plex, and the fraction of realizations that fail before a
fixed time (7,,x = 2000 in Fig. 3) becomes a nonmono-
tonic function of p. While at low p the firing patterns
are highly regular (cf. Fig. 1) and all failures occur within
one or two cycles of the initial activity, for higher p the
patterns are more disordered (cf. Fig. 4) and the activity
can persist for a very long time before failure.

0.4 0.6
Density p

FIG. 3. Failure rates after f,,,, = 2000 for 7, = 0.6, 0.8, 1.0,
1.2, 1.4, 1.6, 1.8 (left to right): N = 1000.
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FIG. 4 (color online). Raster plot (top) and instantaneous
firing rate (bottom) of neurons with ISI > T;e“ (black) and
ISl<T;,” [gray (red online)] for 7, =1.5 and p= 10.
Dotted line is the total firing rate.

Consequently, the distribution of failure times, shown
in Fig. 5, exhibits an increasingly long tail for longer
delay times.

To understand the persistence of activity beyond p,,., it
is important to recognize that the result for the critical
density p.(N) hinges on the assumption that each neuron
receives but a single excitatory input during each cycle of
network activity. Its recovery time is therefore given by
Tg . which sets a lower bound for the interspike interval
(ISI). While this assumption is well satisfied for small p,
it does not hold for p = O(1). In fact, the likelihood that a
neuron has n incoming shortcuts follows a multinomial
distribution such that the fraction of neurons receiving
two incoming connections grows from about 0.05% at
p = 0.1 to about 30% at p = 1. Neurons that receive n
inputs can have a recovery time as short as T,(Q'". Figure 4
reveals that such neurons, with ISIs lower than T;”. playa
crucial role in maintaining network activity in the regime
p =~ 1. While neurons with ISIs greater than T}?” (shown
black in Fig. 4) can go through silent epochs with near-
zero activity, neurons with shorter ISIs [gray (red online)
in Fig. 4] may fire 2 or 3 times during a network cycle and
carry over the network activity across these silent epochs.
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FIG. § Failure-time distribution. Inset:

online).
Cumulative distribution of failure times at p =1 for 1.5 =
7p = 1.7. Main: Failure rates at 5, 10, 20. 40, and 100 multiples
of T}‘,” = 28.3 (bottom to top). Symbols are averages over 2000
realizations,
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The persistence of activity beyond p,, depends sensi-
tively on 7p; this reflects the fact that persistence at
higher densities p is due to chains or trees of neurons
that bridge the silent epochs due to their multiple inputs.
Since activity propagates with a fixed speed, a chain of
multiple-input neurons of given length can bridge a time
interval proportional to 7. Thus, as 7 increases, ever
shorter chains can contribute to bridging a silent epoch of
given duration; the likelihood for failure will decrease
accordingly. This picture is, of course, overly simplistic:
whether a topological chain can be utilized as a dynami-
cal bridge over a given silent epoch depends on the
amount and timing of the inputs it receives, which in
turn depend on the recent history of the entire network.
Simulations reveal that the identity of the neurons that
form the “bridging” dynamical chains varies from cycle
to cycle in an irregular way. This implies that the effec-
tive utilization of a dynamical chain over one cycle does
not guarantee its availability on the next cycie. Therefore,
even systems that persist for long times may still have a
finite probability of failing.

The cumulative failure distribution function F(),
shown in Fig. 5 for various values of 75, exhibits a long
tail and is well fit with stretched exponentials: F(r) =
foltp) — Ce™®® with B =~ 0.4 (dotted lines). Even
though the fits are based on runs up to ¢ = 300000
for 7, = 1.65 and 7, = 1.7, they do not provide a
value of fo(7p) accurate enough for establishing whether
true persistent activity exists for a small fraction of
the network realizations [0.97 < fo(rp = 1.65) < 1].
Strikingly, the dependence of F(r) on the delay time
exhibits a high degree of structure, suggestive of “‘reso-
nances’ at values of 7, for which some chains and trees
can be optimally utilized.

One of the salient features of the emergent dynamics of
the model is persistent self-sustained activity at low den-
sities p of shortcuts. In this regime, the network is, in
fact, bistable between ““‘off” and “on” states, and can be
switched between them with sufficiently large stimuli,
as illustrated in Fig. 6. The synchronous stimulation of
a sufficiently large number of neurons while the network
is in the on state increases the level of activity and
effectively pushes the network to the right of the failure
transition (cf. Fig 2). causing a transition into the

off state.
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FIG. 6 (color online). Raster plot for p=0.10 and k = 5.
About 10 adjacent neurons are stimulated synchronously at
1 = 250; about 20% of the neurons are activated at + = 750.
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To address the fact that real neuronal systems are noisy,
the simulation shown in Fig. 6 includes Gaussian fluctua-
tions in the membrane potential; their amplitude is chosen
so as to cause the neurons to spike irregularly at a low
rate. To keep the noisy spiking of a single neuron from
generating atraveling pulse and initiating the on state, we
adjust the synaptic conductance so that several adjacent
neurons must fire in rapid succession in order to propagate
a pulse of excitation. The network topology is modified
accordingly: we extend the local coupling to include up to
2k neighbors (w;;+; = 1 for j = 1,..., k) and model long-
range connections via a population of intermediate ex-
citatory neurons that both receive input from and project
to multiple adjacent neurons. Under these conditions,
spontaneous activity is highly unlikely to initiate travel-
ing pulses. However, a sufficiently large stimulus, syn-
chronous across several neurons, can again turn the state
of elevated activity on and off (cf. Fig. 6); bistability is
thus robust with respect to noise.

Network bistability has been hypothesized to be the
neural correlate underlying the type of short-term mem-
ory known as working memory in the prefrontal cortex of
monkeys and humans. Much more realistic and physi-
ologically plausible models of cortical layers have been
studied within the context of working memory (e.g., [17]).
Yet, not much attention has been given to heterogeneities
in network topology or to long-range excitatory connec-
tions. The work presented here suggests that closer atten-
tion be given to the role of connectivity as an additional
factor that contributes to the generation of the persistent,
active state associated with working memory.

In conclusion, we have investigated the effect of
incorporating random unidirectional shortcuts to a one-
dimensional network of locally coupled integrate-and-
fire neurons. We find that even a very low density of
shortcuts sutfices to generate persistent activity from a
local stimulus through the reinjection of activity into
previously excited domains. As the density of shortcuts
is increased, the substantial decrease in the effective
system size characteristic of small-world networks causes
a crossover into a regime characterized by failure to
sustain activity for essentially all network configurations.
For sufficiently slow propagation velocities of the activity
and sufficiently high shortcut densities, an intriguing
second crossover occurs into a regime in which the activ-
ity still fails but only after often exceedingly long and
strongly chaotic transients.

The complex dynamical phenomena we find in this
extremely simple model are based on a robust mecha-
nism: propagating pulses of activity that are sustained by
branching and reinjection. We therefore expect that more
realistic models of neuronal networks, which may include
multiple ion channels and continuous synaptic currents as
well as inhibitory coupling, will show qualitatively the
same behavior upon the addition of shortcuts if they
originally support propagating pulses of activity [18]
that annihilate upon collision. Preliminary computations
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show that the failure transition persists if the length of the
shortcuts is limited by L, > Tg)/fp [19]; this network
is not truly a SWN. If the SWN is obtained by rerouting
rather than adding connections, the transition is less
pronounced [19]. Recently, similar networks have been
used to simulate epileptic activity in hippocampus [20]
and bursting in the pre-Botzinger complex [21]. The
phenomena reported here should also be accessible in
excitable chemical systems [22], where shortcuts could
be implemented using video feedback.
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FGO02-92ER14303), by NSF Grant No. DMS-9804673,
and by the NSF-IGERT program Dynamics of Complex
Systems in Science and Engineering (DGE-9987577). as
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We study the dynamical states of a small-world network of recurrently coupled excitable neurons,
through both numerical and analytical methods. The dynamics of this system depend mostly on
both the number of long-range connections or “shortcuts”, and the delay associated with neuronal
interactions. We find that persistent activity emerges at low density of shortcuts, and that the system
undergoes a transition to failure as their density reaches a critical value. The state of persistent
activity below this transition consists of multiple stable periodic attractors, whose number increases
at least as fast as the number of neurons in the network. At large shorteut density and for long
enough delays the network dynamics exhibit exceedingly long chaotic transients, whose failure
times follow a stretched exponential distribution. We show that this functional form arises for the
ensemble-averaged activity if the failure time for each individual network realization is exponen-
tially distributed, © 2007 Americun Institute of Physics. [DOL: 10.1063/1.2743611]

Many systems in nature can be described as a network of
interconnected nodes. Networks in a growing list of sys-
tems, from social and ecological webs to the neural
anatomy of simple organisms, have been shown to exhibit
complex topological features that distinguish them from
both ordered lattices and purely random networks. Be-
yond the investigation of the structural and geometrical
properties of such networks, a new class of question
arises when dynamical degrees of freedom are placed at
their nodes. As the investigation of such dynamical com-
plex networks proceeds, it has become increasingly clear
that the network architecture can significantly influence
the dynamics of the system. An understanding of emer-
gent dynamics on complex networks requires investigat-
ing the interplay between the intrinsic dynamics of the
node elements and the connectivity of the network in
which they are embedded. In order to address some of
these questions in a specific scenario of relevance to the
dynamical states of neural ensembles, we study here the
collective behavior of excitable model neurons in a net-
work with small-world topology. The small-world net-
work has local lattice order, but includes a number of
randomly placed connections that may provide connec-
tivity shortcuts. This topology bears a schematic resem-
blance to the connectivity of the cerebral cortex, in which
neurons are most strongly coupled to nearby cells within
50-100 gem, but also make projections to cells millime-
ters away. We find that the dynamics of this small-world
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network of excitable neurons depend mostly on both the
density of shortcuts and the delay assoclated with neu-
ronal projections. In the regime of low shortcut density,
the system exhibits persistent activity in the form of
propagating waves, which annihllate upon collision and
are spawned anew via the reinjection of activity through
shorticut connections. As the density of shortcuts reaches
a critical value, the system undergoes a transition to fail-
ure. The critical shortcut density results from matching
the time associated with a recurrent path through the
network to an intrinsic recovery time of the individual
neurons. Furthermore, if the delay associated with neu-
ronal interactions is sufficiently long, activity re-emerges
above the critical density of shortcuts. The activity in this
regime exhibits long, chaotic transients composed of
noisy, large-amplitude population bursts. A numerical in-
vestigation of the interplay between network topology
and interaction delays in this regime reveals a mechanism
that underlies the observed stretched-exponential distri-
bution of failure times for the chaotic network activity.

I. INTRODUCTION

It has been widely recognized that the connectivity of a
network of active elements has a profound impact on its
function. Substantial effort has therefore been devoted to the
characterization of network conn::ctivity,'2 leading to the
identification of various measures that are significant in de-

© 2007 American Institute of Physics
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termining the geometrical properties of the system. Particu-
larly relevant among them are the average and maximal
length of the minimal paths that connect two arbitrary nodes
in the network, the clustering coetficient, which characterizes
the propensity of all neighbors of a given node to be con-
nected to each other, and the distribution for the degree, de-
fined as the number of links that emanate from a node.

A large number of networks with complex topology fall
into the class of small-world networks, characterized by
short average path length and high clustering coefficient. A
simple realization of such a small-world network consists of
a regular lattice supplemented by a number of randomly
placed connections that tend to provide connectivity short-
cuts. This topology schematically resembles the connectivity
of the cerebral cortex, in which neurons are most strongly
coupled to nearby cells within 50—100 um. but also project
to distant cells, which can be millimeters away. Small-world
properties of neuronal networks have been found in a com-
prehensive morphological characterization of in vitro two-
dimensional networks.? and in a 1:1 network model of the rat
dentate gyrus that incorporates known data about cell types,
cell-specific connectivity, and axonal branch length.*

The dynamics of elements coupled through the connec-
tivity of a complex network has been studied in detail for the
case of oscillatory elements. The emphasis has been in de-
termining the role of network topology in the ability to
achieve synchronization in a system of coupled oscillators.
The existence of long-range connections, which reduce the
effective size of the network, has been found to substantially
enhance synchronizabilily.s‘6 At the same time, the heteroge-
neity of the degree distribution found in many complex net-
works limits the ability of the oscillators to synchronize.
Stable synchronization emerges from a balance between
these two competing aspects of complex network topology.7

Excitable elements are the components of another impor-
tant class of dynamical systems, whose emergent behavior is
not characterized by synchronization. Locally coupled net-
works of excitable elements exhibit traveling waves (e.g..
Refs. 8-10). If these waves annihilate upon collision, as is
typically the case, persistent activity usually requires either
an external drive or spontaneous excitation by noise. In mod-
els for neural systems driven by noise,!'™" networks with
nonlocal connections between their elements exhibit a ten-
dency towards relatively ordered oscillations in the popula-
tion activity. The spatial structure of such noise-induced
waves becomes less coherent with an increase in the fraction
of nonlocal connections.'* The combination of local connec-
tivity with a small number of nonlocal connections allows a
time-periodic localized external input to entrain the whole
system much faster than in a purely local network; at the
same time, the oscillations are much more coherent than in a
truly random network.!>1® Oscillatory activity at the popula-
tion level has also been observed in small-world networks of
binary McCulloch-Pitts neurons connected through both ex-
citatory and inhibitory synapses.l7

The dynamics of networks of excitable elements depend
very strongly on both the range of the coupling and on the
length of the refractory period relative to the time scales
associated with propagation. In Ref. 18, the authors consider
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both scale free and random networks of three-state excitable
neurons, and find that short refractory periods enable the
propagation of sustained activity through the activation of
short loops. These short loops are frequently found in many
types of complex and random networks. In the noiseless
case, they can only be activated if the initial conditions cap-
ture the broken symmetry associated with a choice of direc-
tion for the propagation of aclivity.18 A related modet of
three-state excitable elements on a small-world network has
been proposed to study the propagation of infectious dis-
eases. In this model. the introduction of nonlocal connections
was found to induce a transition to a state with coherent
population oscillations.'?

Most studies of the dynamics of complex networks have
assumed that the interaction between node elements is bidi-
rectional. This is a very reasonable assumption in the context
of epidemic models.'? and it would also apply to ensembles
of neurons connected via gap junctions.'? In the absence of
noise, activity that is initiated through the excitation of indi-
vidual neurons in an otherwise quiescent state results in
wave fronts that propagate symmetrically in both available
directions; if both local and nonlocal connections are bidi-
rectional, all wave fronts are generated as symmetric pairs
that annihilate upon collision. In such a system, persistent
activity can only arise from initial conditions that suitably
break the symmetry between the two possible directions for
the propagation of activity.

In the cortical neural ensembles that motivate this work.
the coupling between neurons is predominantly not bidirec-
tional: most connections involve chemical synapses that
transmit information from the presynaptic axon to the
postsynaptic dendrite. In this scenario, it is more appropriate
to consider directed networks with unidirectional connec-
tions. In previous work,2? we have investigated networks in
which the local connections are bidirectional, based on the
assumption that the probability for reciprocal axo-dendritic
connections is quite high for neurons in close proximity,
while the nonlocal connections that provide shortcuts are
unidirectional. This network is a modification of the by now
classical small-world network,” in that the added nonlocal
connections are directed. We found that just a few unidirec-
tional shortcuts suffice for sustaining persistent activity. even
when activity arises from localized excitations that do not
break the symmetry between the two possible directions of
propagation. However, as the density of shortcuts is in-
creased, an increasing number of network configurations
support only a brief burst of population activity after which
the activity dies out. When the speed associated with the
propagation of activity is low, this failure of network activity
was found to be delayed and to occur only after many cycles
of chaotic population bursts. The simplicity of this model
allowed for an analytic description of the failure transition
and for detailed numerical analysis.

The properties of this simple model* provide important
insight into the phenomena found in simulations of more
elaborate models motivated by specific biological systems.
In Ref. 22, the connection between the topology of a neural
network and its tendency towards epileptic seizures has been
studied and related to the degree of recurrent connectivity in
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different parts of the hippocampus. The origin of bursting
behavior was addressed in Ref. 23. The common view on
bursting behavior is that it arises when fast spiking drives a
slow process, typically associated with slow kinetics, that in
turn can shut off the spiking activity. However, no such slow
kinetics are needed if the network displays small-world
connectivity.“ Both the seizing activity described in Ref. 22
and the bursting activity described in Ref. 23 find a common
interpretation in the mechanisms that underlie the failure
transition found in the simple model analyzed in our earlier
work.2® A rapid spread of activity followed by persistent os-
cillations has also been observed in recent chemical experi-
ments based on the Belousov-Zhabotinsky reaction; in this
system. unidirectional shortcuts were implemented through
the photosensitive properties of the reaction. 2%

Here we build on our previous results, and present a
detailed characterization of the persistent states and the de-
pendence of their properties on the density of shortcuts; we
also investigate the long chaotic transients and provide an
explanation for the stretched exponential that characterizes
their eventual failure. In Sec. II we define the model: a net-
work of excitable integrate-and-fire neurons coupled via ex-
citatory pulses in a small-world topology with unidirectional
shorteuts. In Sec. III we discuss the persistent states and the
crossover from persistent activity to failure for the case of
rapidly propagating waves. In Sec. IV we analyze the ex-
ceedingly long chaotic transients in the regime of slowly
propagating waves. In the concluding Sec. V we discuss our
results in light of other work on neural networks with small-
world topology."'n'23

Il. NEURAL MODEL AND NETWORK CONNECTIVITY

We consider a one-dimensional network: a ring of N
identical integrate-and-fire neurons. The state of the ith neu-
ron is described by its membrane potential V;, which is dy-
namically controlled by the spiking activity of the neurons
that project onto it,

av, <

— =~ Vit Rl + gun 2 Wil = 1= ). (1

di e
In order to fully specify the dynamics of integrate-and-fire
neurons, this set of N equations needs to be supplemented
with a condition for spiking whenever the membrane poten-
tial reaches a specified threshold, and with a reset condition
for the membrane potential after the emission of a spike.

V(r)=V,, whenever V(") =V, 2)

In Eq. (1). 7 is the membrane time constant, &uyn 18 the
synaptic strength measuring the change in membrane poten-
tial due to each incoming spike. w;;=1 or O indicates the
presence or absence of a synaptic connection from neuron j
to neuron /, 1; is the time at which neuron j fires a spike, I,
is an external current, and R is the membrane resistance. The
effective delay 7p in the neuronal interaction includes both
the time for the spike or action potential to propagate along
the axon and the time needed for initiating the triggered ac-
tion potential. When this latter time dominates over the ax-
onal delay. the dependence of 7, on the physical distance

Chaos 17, 026110 (2007)

between the presynaptic and the postsynaptic neurons can be
neglected. Postsynaptic currents due to synaptic activation
are considered instantaneous and are therefore modeled as
delta functions. The process of spike emission is described in
Eq. (2): whenever the membrane potential of a neuron
reaches the threshold value V,, a spike is emitted and the
membrane potential is reset to the value V... Without loss of
generality. we write these two equations in terms of dimen-
sionless quantities by measuring V; and g,,,, with respect to
V... setting V,..=0 and V,;=1, and rescaling time by 7. (In
Ref. 20, we used 7=10.) Also. we replace R/, by the steady-
state voltage V.,; this is the asymptotic value that V; would
reach in the absence of synaptic input. We restrict the model
to the case of excitable rather than spontaneously oscillating
neurons by setting V. <V, =1, and consider only initial con-
ditions such that at most a few neurons are triggered to spike
while the rest of the network is in a quiescent state. In the
absence of noise, this initial condition implies that neurons
can only fire at times that are integer multiples of 7. Since
the dynamical evolution of the membrane potentials can be
integrated exactly between subsequent spikes, the time step
for the numerical computations is taken to be Ar= 7.

Cortical neurons often receive not only local input from
nearby neurons but also input from some distant neurons
through long-range projections. We mimic this heteroge-
neous connectivity through an extremely simplified network
architecture: each neuron is bidirectionally connected to its
2k nearest neighbors, i.e.. w;=1 for [i-j| <k, j#i, and uni-
directionally connected to pN randomly chosen neurons. The
parameter p thus indicates the density of additional unidirec-
tional connections, as a fraction of the total number N of
neurons.

The dynamics that arise from Eqgs. (1) and (2) in the case
of purely local connectivity (p=0) and in the absence of
noise depend only on the interplay between the strength g,
of the synapses, the number 2k of local connections per neu-
ron, and the delay 7. The dependence on gy, and 75, is most
easily illustrated for first-nearest-neighbor connectivity, k
=1. In this case, if the presynaptic input is weak enough to
satisfy g+ Ve <Vyy=1, this presynaptic input is insufficient
to cause a spike and the activity is not propagated. In con-
trast, if the presynaptic input is strong enough to satisfy
8yt V> V=1, it results in a propagating wave of speed
1/7p. After spike emission, the voltage is reset to V=0,
and the neuron is only ready to fire again after it has recov-
ered to the extent that an input of magnitude g.,, is sufficient
to trigger another spike. This recovery time is given by

TR=ln( (1)

)
Vetggn—1/"
Note that Ty is not the intrinsic refractory period of the neu-
ron, since this integrate-and-fire neuron can fire at arbitrarily
large frequencies for sufficiently strong input g,

Due to the bidirectionality of the local connections, the
firing of each neuron not only triggers a spike in the neuron
ahead of it in the direction of wave propagation, but also
gives an input to the neuron behind it, which thus receives an
input at a time 27y, after its own firing. If Tg>27p, this input
is not sufficient to trigger a new spike, and the activity

Downloaded 05 Oct 2007 to 130.207.50.192. Redistribution subject to AIP license or copyright, see hitp:/chaos.aip.org/chaos/copyright.jsp



026110-4 Riecke et al.

—
(%
T
1

o AT T

index
o588
S5

Rate

Sth = A NO—~NWH WL
|

[=)

IRASA A

Pl

20

J T

A\
o

T

AN

time

FIG. 1. Dynamics in a regular network of 50 neurons with first-nearest-
neighbor coupling. Parameters are V. =0.85 and mp=0.1. (a) A weak synap-
tic coupling g,,=0.2 results in a propagating wave. The two wave fronts
mect and annibilate at time 2.5, Top: Raster plot showing spike times lor
each neuron. Middle: Population firing rate. Bottom: Membrane potential of
neuron number 20. (b) A strong synaptic coupling g.,=1.0 results in u wave
that entrains all neurons in its path. The tinal state of the network consists of
two synchronous groups of neurons firing out of phase with each other. Top,
middie. and bottom panels as in (a). Note that the maximum possible tiring
rate is 1/rp=10.

propagates away from the site of initiation as a wave to
which each neuron contributes exactly one spike, see Fig.
1(a). However. if Tp=<27,, the wave front entrains all the
neurons in its wake, eventually leading to synchronized ac-
tivity of the whole network. In the absence of autapses, i.e..
for w;=0, the network breaks up into two synchronous
groups of neurons that fire out of phase with one another. see
Fig. 1(b). In the general case. a neuron receives inputs from
k neighbors as the wave approaches; the input coming from a
neuron at a distance n is discounted by the factor e=-V7. A
propagating wave can thus be sustained if g\'\,,,e"DELle""D
+V.>V,=1

For simplicity. we will focus on the case of first-nearest-
neighbor coupling in the regime in which waves of excitation
propagate but do not entrain activity in their wake. This
choice implies k=1 and constrains the allowable values of
Ve and g,.,; we use V.=0.85 and g,,,,=0.2 unless otherwise
noted. In this regime, the collision of two waves leads to
their mutual annihilation and. after having fired in a propa-

2 3 4 5
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FIG. 2. Examples of network dynamics for 75=0.1 and for dilferent values
of the density p of shorteuts. The values p=0.01, 0.05, 0.10, 0.15, 0.20, 0.25
correspond o panels (a)=(f), respectively. Each panel shows both spiking
activity and population firing rate. Note different temporal scale on panel (f).

gating wave. a neuron can be triggered to fire by a single
input of size g,,, after a time

T}'= ln(—-—>—v""‘"“"%). @)

Vet Esyn ™ 1
This calculation includes the input received from the neuron
ahead in the wave. at a time 27p after spiking.

The model specified by these assumptions together with
Eqgs. (1) and (2) is used here as a simple model for the gen-
eration and propagation of waves of activity in cortical tis-
sue. As discussed in the following sections, the incorporation
of random connections qualitatively alters the dynamics of
the network and sustains a rich variety of spatiotemporal
patterns.

Ili. THE ORDERED REGIME: ATTRACTORS
AND FAILURE

The dynamics of the model depend on several param-
eters. Once the input current V,=0.85 and the synaptic
strength £,,,=0.2 have been fixed. the dynamics arising from
Eqs. (1) and (2) are determined by the remaining two param-
eters: the fraction p of randomly placed shortcuts and the
delay 7p associated with the neural interaction.

The dynamics for p #0 differ qualitatively from those
for p=0. The presence of shortcuts allows the waves of ex-
citation to be reinjected into portions of the network which
have been previously excited. This process of reinjection
may lead to persistent network activity. as shown in Fig. 2
for several values of the density p. As the waves spread
outward from the initial site of activation, they encounter
shortcut connections that inject activity elsewhere in the net-
work. As for the p=0 case shown in Fig. I(a), wave fronts
that meet annihilate. After some time, the activity settles into
a stable pattern in which the rates of wave generation and
annihilation are balanced.

When averaged over time and across network configura-
tions at a fixed value of the shortcut density p, the firing rate
of these persistent states increases rapidly with p, and satu-
rates around p~ 0.1 [Fig. 3(a)]. This saturation is a conse-
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FIG. 3. Population firing rate. averaged over 1000 configurations for p
< 0.2 and over S000 configurations for p>0.2. The maximal value of the
firing rate. l/T‘R”. is indicated in both panels by a dashed horizontal line. (a)
Firing rate as a function of the density of shortcuts p for different values of
the delay 7p for a network of size N=1000. Bars give the standard deviation
of the firing rate across contigurations for Tp=0.1. {(b) Firing rate as a func-
tion of the density of shortcuts p for different values of the system size N
with 7p=0.1.

quence of the neuron’s finite recovery period 'I‘R” of Eq. (4);
its inverse is the maximal firing rate. indicated as a dashed
line in both panels of Fig. 3. As shown in this figure, the
firing rate comes very close to this maximal value. As the
system size is increased, saturation is reached at smaller val-
ues of p [Fig. 3(b)].

The firing rate is essentially the inverse of the time be-
tween successive waves passing through a specific node in
the ring of neurons. Thus. one may expect that decreasing the
wave speed by increasing 7p would reduce the mean firing
rate. However, this is not the case. As shown in Fig. 3(a), the
firing rate is quite insensitive to wave speed. The reason for
this effect is illustrated in Fig. 4. The two panels show the
spatiotemporal pattern of activity for the same network con-
figuration and the same initial activation. but for different
delay times 7p. At the larger delay time, additional waves are
excited through the shortcuts. An example of the appearance
of such a new wave can be seen at 1=3807p. a time indicated
by a circle in both panels of Fig. 4. At this time, a new wave
is spawned by neuron 1071 for 75=0.1 but not for 7,
=0.05. These additional waves increase the firing rate in a
manner that may even overcompensate for the reduced wave
speed. as demonstrated by the higher density of waves for
7p=0.1 at times beyond r=8007p.

Only a few shortcuts are present for low p. and many
pathways leading to persistent activity consist only of large
closed loops. which result in low firing rates. As p increases,
the typical loop size decreases. and network configurations
with only large loops and correspondingly low firing rates
become increasingly unlikely. This effect is illustrated in the
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FIG. 4. Dynamnics in a network of ¥=2000 neurons with a density of short-
cuts p=0.1. The same network configuration and the same initial activation
is used in both panels. The only difference is in the delay time: 7,=0.05 for
the top panel and 7,=0.10 tor the bottom panel. Note that more waves travel
through the system when the delay is longer. Circles indicate a new wave
spawned tor 7p=0.10 but not for rp=0.05.

probability density function for the firing rate, shown in Fig.
5. As p increases, the distribution is shifted towards larger
firing rates and it narrows substantially, reflecting a satura-
tion close to the maximal firing rate set by the recovery time
'I‘R”. This maximal firing rate is marked by a dashed vertical
line in Fig. 5.

For small values of p, the state of persistent activity
settles into a periodic pattern whose oscillations increase in
amplitude with increasing p. This effect is clearly illustrated
in panels (a)—(e) of Fig. 2. A quantitative description of this
effect is shown in Fig. 6, in which the standard deviation of
the firing rate, averaged over a large number of network
configurations that exhibit persistent activity for a given
value of p, is used to characterize the amplitude of the oscil-
lations. An additional feature of this regime, also apparent
from panels (a)—(e) of Fig. 2. is that the time for these oscil-
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FIG. 5. (Color) Probabilily distribution of firing rates for several values of
p. for networks of N=2000 ncurons with 7,=0.1. As p increases, the dis-
tributions narrow in width as they shift towards the maximal firing rate
1/T4. indicated by a dashed vertical line.
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lations to become established after the excitation of a single
neuron decreases with increasing p. This property is in
agreement with the results of Refs. 15 and 16, which found
that, when excited through a small cluster of driven oscilla-
tory neurons, small-world networks of either Hodgkin-
Huxley or FitzHugh-Nagumo neurons are entrained much
more quickly than regular networks (with no shortcuts) of
the same types of neurons.

For larger values of p, the activity patterns can be quite
complicated. In this regime, as in the small p regime, all
neurons get excited during an oscillation cycle of network
activity. However. in this regime not all neurons and not all
connections between them are necessary for the persistence
of activity, as illustrated in Fig. 7. The full raster plot of
network activity shown in the top panel depicts the spikes
from all neurons (black dots). This plot also identifies the
spikes from those neurons that are essential for sustainability
(red dots). These neurons provide a pathway for
recurrence,”® and they are found as follows. At an arbitrary
time once the steady state has been reached, all neurons that
fire at that time step are labeled. A backwards search is then
performed for preceding ancestors of these labeled neurons,
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FIG. 7. Spiking activity in a network of N=1000 neurons with a density of
shortcuts p=0.1 is shown in the top panel for 75=0.1. The activily of neu-
rons that are part of the backbone pathway is indicated in red. The middle
panel shows the spiking uctivity within the backbone. The cnlargement
shown in the bottom panel displays periodic activity, with a period tonger
than the recovery time 7}”:2,4‘)4 (delimited by dashed vertical lines). See
text for details.
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i.e.. those presynaptic neurons that fired one delay 1, ago
and triggered the activity of the labeled neurons. These one-
step ancestors are labeled in turn, and the process is iterated
backwards in time until 1=0 is reached. The pattern of la-
beled neurons quickly converges to a small subset, as shown
in the middle panel of Fig. 7. Only the neurons in this re-
duced subset contribute to the persistence of the pattern: the
remaining neurons could be cut out of the network without
destroying the persistent activity. The pattern of activity
along this backbone, shown in the bottom panel of Fig. 7. is
periodic in time. The period is only slightly longer than the
recovery time 7 indicated by the dashed vertical lines
(note the expanded time scale in this panel). Such backbone
pathways have also been identified in an experimental study
of the excitable Belousov-Zhabotinsky reaction;>> in this
photosensitive system, unidirectional shortcuts were imple-
mented through local optical excitation.

A striking feature of this regime is that a network con-
figuration capable of sustaining persistent activity displays
an extraordinarily large number of different attractors. To
assess the number of coexisting attractors we focus on the
regime of low shortcut density, where all solutions are peri-
odic. Each solution can be characterized by its period, its
mean firing rate, and the standard deviation of the firing rate.
A labeling of attractors based only on these three measures is
likely to underestimate the total number of attractors: how-
ever. it suffices to find a large number of them, as shown in
Fig. B. This figure illustrates attractor multiplicity for a ran-
domly chosen network configuration of N=1000 neurons
with p=0.05 and 75=0.1. Each of the 471 distinct stable
patterns of persistent activity identified in Fig. 8(a) arises
from an initial condition in which only one neuron is acti-
vated. As shown in Fig. 8(b). which shows the number of
initial conditions that lead to a solution with a given period.
many of these stable patterns have the same period (note the
logarithmic scale). In contrast, the standard deviation of the
firing rate [Fig. 8(c)] shows great variability, reflecting dif-
ferent temporal evolutions of the firing rate within a period.

A large number of attractors is typical for these net-
works. Figure 9 shows the number of attractors as a function
of network size; black circles represent data points obtained
as averages over 20 different network configurations of a
fixed size. Most attractors have quite small basins of attrac-
tions: within the restricted set of initial conditions in which
only a single neuron is excited. most attractors can be
reached from only one such initial condition (red squares).
The overall number of attractors increases roughly linearly
with system size for large values of N, as does the number of
attractors with different periods (blue diamonds), but the lat-
ter is about an order of magnitude smaller than the total
number of attractors. The identification of attractors requires
that networks achieve a steady state of persistent activity, but
since the duration of the transients grows with system size.
the computation time grows faster than N>. This precludes us
from simulating significantly larger system sizes than shown
in Fig. 9; such data would be necessary to reliably estimate
scaling relations between network size and number of attrac-
tors. (For N=4000 the computation takes over 2 weeks on a
desktop PC.) Preliminary computations with more general
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FIG. 8. Large number of attractors for a specific network configuration, with
N=1000 ncurons, p=0.05, and 7p=0.1. (a) The mean firing rate, its standard
deviation. and the period of all 471 distinct attractors evoked by initial
conditions in which only one neuron is activated. (b) Number of initial
conditions that lead to an attractor with a given period: many attractors,
although distinet, have the same period (note the logarithmic vertical scale).
(¢) Number of initial conditions that lead to an attractor with a given stan-
dard deviation of the firing rate.

initial conditions reveal many more attractors than those
shown in Fig. 8. Thus, while the restricted initial conditions
that give rise to Fig, 9 suggest an almost linear increase in
the number of attractors with system size, the full number of
attractors may grow substantially faster.

At this point, the origin for this exceedingly large num-
ber of different attractors is not clear. In all-to-all coupled
oscillator systems, factorially large numbers of attractors are
due to the permutation symmetry associated with the global
coupling.27 The small-world networks investigated here do
not possess such symmetry. In this case, the large number of
attractors found for a specific network configuration is likely
to be due to a combination of geometrical and dynamical
causes: the coexistence of many backbones that can indepen-
dently support sustained activity, and the variability in mem-
brane potentials that can result in distinct but not too differ-
ent firing patterns. While we find transitions between
different attractors in the presence of finite-amplitude
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monds: note ditferent vertical scale on the right) as a function of network
size N.

noise,”® we have not investigated whether this system exhib-
its the extreme noise sensitivity found in the case of all-to-all
coupled oscillators, where it is due to the crowding of large
numbers of attractors.”’

As the density p of shortcuts increases, the distance trav-
eled by the waves before encountering the entrance to a
shortcut decreases. Consequently, waves of excitation spread
throughout the network more rapidly. as shown in the pro-
gression of spatiotemporal patterns of Figs. 2(a)-2(e) for in-
creasing values of p. If p becomes too large, activity spreads
too fast and it quickly dies away. as shown in Fig. 2(f). Since
the shortcuts are randomly placed, different network configu-
rations will exhibit different dynamics. Thus, while the over-
all likelihood of persistent activity decreases with increasing
p. the actual network dynamics depend on the particular net-
work configuration.

The mechanism that leads to the extinction of network
activity is easily elucidated.®® Once a neuron has emitted a
spike, its membrane potential is reset to a fixed value, chosen
here to be V,,=0. While the membrane potential of the neu-
ron recovers towards its resting value V., activity spreads
through the network. eventually finding its way back. Once
this occurs, the neuron receives synaptic input equal to gy,
This input will be sufficient to trigger a spike only if this
neuron has recovered sufficiently. It is therefore clear that as
the number of shortcuts is increased and activity spreads
more rapidly. the network is less likely to sustain persistent
activity. Whether or not this mechanism of premature return
will lead to the extinction of activity in a given network
depends on its particular configuration. Many different net-
work configurations for a given value of p have been simu-
lated in order to measure the fraction that fail to sustain
persistent activity. This probability of failure is shown as a
function of p for different values of the system size N in the
left inset of Fig. 10. In agreement with our intuitive argu-
ment, the probability that a network drawn at random fails to
sustain activity increases with increasing p. In fact, there is a
sharp crossover from a low p regime characterized by the
ability to sustain persistent activity into a large p regime in
which activity will always fail. The transition between these
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values of the system size N. The density of shorteuts is scaled by p ltom
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Eq. (7).

two regimes occurs at higher values of p as the system size N
increases.

As discussed in Ref. 20 this transition can be captured in
a mean-field approximation in which the return time is as-
sumed to be identical for all neurons. In this approximation,
the maximum return time 7, needed for the activity to
traverse the entire network can be expressed as a function of
only p and N. Setting this time to be equal to the recovery
time yields an upper bound for the critical density of short-
cuts at which a transition from persistent activity to failure
oceurs,

Ty(pe) = T(Rl) (5)

An approximate form for T, is easily derived. Assume an
initial condition in which a single neuron fires at time 1=0.
Given a density p of shortcuts, the entrance to a shortcut will
be typically encountered after 1/p neurons have fired, which
occurs after a time 7/2p; the factor of 2 is due to the two
wave fronts that emerge from the initially activated neuron
and propagate in opposite directions. Due to the activity in-
jected through the shortcut, four wave fronts are now propa-
gating through the system; 2/p neurons will fire during the
subsequent time interval of duration 7,/2p, at the end of
which a new shortcut entrance will typically be found and
two more wave fronts will be generated. The process is iter-
ated, with 2¥~!/p neurons firing during the kth cycle. It takes
n cycles to ensure that all neurons have fired, with n such
that

n=1

> 2 =pN. (6)
k=0

which leads to a total time

Tup) = n 2 = iy e ) @

2p 2pIn2
This is a purely geometric result for the time it takes for
activity to traverse the entire extent of the network; this time
is related trivially to the largest distance in the network. The
geometric mean-field properties of small-world networks
have been analyzed by Newmann. Moore, and Watts.® who
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used a continuum limit to calculate the fraction of a small-
world network that is covered by starting at a single point
and extending outwards a distance r in both directions; this is
equivalent to following the spread of waves of activation
during a time r7; for the neural network considered here.
The calculation in Ref. 28 takes into account two effects that
were omitted from their earlier calculation® and from our
derivation, Eq. (7). First, as the network is covered, a short-
cut might lead to a part of the network that has already been
traced over; this contribution should not be counted. In the
neural scenario, this is equivalent to an attempt at injecting
activity into a neuron that has already fired but not yet re-
covered to the point where it can fire again. Such a shortcut
does not contribute to sustained activity. Second, when two
covering fronts meet, they stop and no longer contribute. In
the neural network. this corresponds to activity wave fronts
that meet and annihilate. The incorporation of these two ad-
ditional mechanisms leads to a two-component model that
correctly describes both the covered fraction of the network
and the number of fronts.”® The result. when applied to the
neural network of Eq. (1), yields

4 ANPTp) |
\/(I+I)N)tanh[\/(l+lw) v ]-1. (8)

The identification TA(pcr)sz” then yields the mean-field es-
timate p(\_‘:mr) for the density at the failure transition,

The main panel in Fig. 10 shows the failure rates as a
function of shorteut density, with p rescaled by the critical
density pi?‘m that follows from Eq. (8). All rescaled curves
intersect at a common value of p, which defines the transi-
tion point at p.. The mean-field theory yields an upper
bound. pc,<pg:1m. It is interesting to note that a similar
rescaling using the estimate for p,, that results from Eq. (7)
also produces a family of rescaled curves that intersect at a
common value of p, as shown in the right inset of Fig. 10.
While piler'r) overestimates the true p, at which the rescaled
curves cross, the estimate based on Eq. (7) underestimates
the true p.. In an earlier report™ we incorrectly used Ty
instead of Y‘R” as the recovery time in Eq. (8). The corre-
sponding rescaled curves intersected at zero. We cannot tell
whether this agreement with the true p. was just a coinci-
dence or the consequence of a subtle cancellation between
factors leading to overestimation or underestimation. In any
case, it is worth emphasizing that all three methods, although
only approximate, succeed in rescaling the curves in the left
inset of Fig. 10 so0 as to obtain a unique crossing. This is due
to the fact that these phenomenological approaches result in
estimations for the critical density p.. with very similar de-
pendencies on system size N; these estimates seem to pro-
vide a good approximation to the true dependence on system
size.

The failure transition occurs at the value of p for which
the geometrical quantity T,(p) equals 7‘,‘,'). This recovery
time is thus the central quantity that determines persistence
or failure for a given shortcut configuration. It is worth point-
ing out that this recovery time is not the same as the absolute
refractory period T,. During the refractory period, neurons
are inhibited from receiving synaptic input, while the mem-
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FIG. 11. Dependence of failure probubility on shorteut density for different
values of the refractory period 7,. Shown are averages over 500 network
configurations. with N=1000, 7p=0.1. and Tp=2.83.

brane potential still relaxes towards its resting value. While
T, is an intrinsic property of individual neurons, f,;‘ depends
strongly on the strength of the synaptic coupling. The curves
in Fig. 11 show the fraction of network configurations that
fail to sustain persistent activity for different values of the
refractory period 7. For T,.<27p, the input that neurons in
the wake of a propagating wave receive at a time 27, after
their own firing is unaffected, and the relevant recovery time
is T‘R” [cf. Eq. (4)]. The corresponding curves are as those for
T,=0. shown in Fig. 10. The input received at 27y, after firing
is suppressed for 7,> 27p. In this low p regime. the persis-
tent states do not depend on neurons receiving additional
inputs before the one that triggers a spike, and the failure
transition is controlled by Ty [cf. Eq. (3)]. The failure tran-
sition is thus independent of 7, as long as 27, <7, <Tp. It is
only for 7,> T that the refractory period suppresses relevant
input to the neurons and affects the failure transition. This is
illustrated in Fig. 11, where the refractory period 7, is seen to
have little effect on persistent activity when it takes values
between 275=0.20 and Tx=2.83.

In our analysis of persistent activity and transition to
failure, we have also considered the possibility of an upper
bound in the length of allowed shortcuts. We summarize our
results without showing the corresponding numerical data:
the behavior of the system is qualitatively unchanged as long
as this upper bound exceeds a threshold value; below thresh-
old, the network is essentially only locally coupled and the
tailure probability rapidly approaches one. Other modifica-
tions to the distribution of shortcut lengths might include
allowing for a nonuniform distribution. It is unclear how a
nonuniform distribution of shortcut lengths would affect the
dynamics. However. it has been shown that one-dimensional
networks maintain a small-world structure if the distribution
of shortcut lengths is power-law with power <23 We as-
sume that the regime we have discussed in this section will
also be present in such a scenario.

IV. THE DISORDERED REGIME: CHAOTIC
TRANSIENTS IN SLOW WAVES

For small values of the density of shortcuts p, a small-
world network of integrate-and-fire neurons is quite likely to
sustain persistent activity. As discussed in the preceding sec-
tion, the spatiotemporal pattern of network activity in this
regime is highly regular and most often periodic, despite the
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FIG. 12, Dependence of failure probability on shorteut density for different
values of the delay 7,=0.06,0.08.0.10,0.12.0.14,0.16. Shown are averages
over 2000 network conligurations for N=1000. Note the nonmonotonic
character of the curves for large enough delay. In the large p regime. failure
probability is estimated within a finite time 7" = 100.

complex. heterogeneous topology of the network itself. As p
increases, a transition takes place: more and more network
configurations exhibit activity which peaks and then shuts
down. Interestingly. for large enough 7p there is an addi-
tional change in network dynamics as p increases. As shown
in Fig. 12 for 7,=0.16 and 0.18, the failure probability ini-
tially increases with p. as for low values of 75, but it then
turns downwards again as p increases further. To understand
this reentrant phenomenon, we first analyze the spatiotempo-
ral dynamics characteristic of this seemingly persistent activ-
ity at large p.

Examples of network dynamics for slow waves (7
=0.16) are shown in Fig. 13. For values of p below or near
the theoretical transition to failure [Figs. 13(a)~13(c)], the
activity is similar to that shown for fast waves (75=0.10) in
Fig. 2. However. in the reentrant regime [Fig. 13(d)]. the
activity is chaotic [cf. Fig. 15(a) below] and the population
firing rate exhibits irregular peaks that reflect near-
synchronous activity involving a large traction of the net-
work.

A detailed, quantitative analysis for 7,=0.18 shows that
the change in behavior occurs already before the maximum
of the failure probability curve. For fast waves, correspond-
ing to small 75, the amplitude of the oscillations in the popu-
lation activity, as measured by the standard deviation of the
firing rate, was found to increase monotonically with p (cf.
Fig. 6). However, for slow waves, corresponding to large 7p.
this amplitude of oscillations is nonmonotonic and decreases
over the range 0.4<p=<0.6 (Fig. 14). It is instructive to
compute the spectral entropy of the population firing rate,

S=-2 P(w)h P(w), ©9)

which measures the number of significant peaks in the power
spectrum P(w). The spectral entropy exhibits a significant
increase over the same range 0.4< p=<0.6 [Fig. 15(b)], indi-
cating an increase in the complexity of the dynamics. The
variability of the spectral entropy across network configura-
tions with the same density of shortcuts exhibits a broad
maximum in the same range of p values. and reaches very
small nonzero values (about 0.06) in the strongly chaotic
regime. The detailed evolution towards chaotic dynamics,
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FIG. 13. Examples of network dynamics for 7p=0.16
and for different values of the density p of shortcuts.

The values p=0.01, 0.2, 0.4, and 1.0 correspond tv pan-
¢ls (a)—(d), respectively. Each panel shows both spiking
activity and population firing rate. The reentrant activity
in (1) is noisy and exhibits synchronized population
bursts.

%ﬂ 120 140
Time

which depends on the specific configuration of shortcuts. is
not investigated in further detail in this work.

What underlies the emergence of reentrant activity with
increasing p? The answer lies in the interplay between net-
work topology and the delay 7p. The mean-field model that
provides a description of the failure transition, Eq. (5). is
based on the assumption that the maximal firing frequency of
each neuron is limited by the recovery time 7?' However, a
small-world network constructed by adding shortcuts allows
tor neurons to recejve more than one incoming shortcut. The
probability of such configurations is small at low p; in this
regime. the fraction of neurons with two incoming shortcuts
is given by ‘\'2~pZ/2,26 which is indeed negligibly small for
p<l. (We assume that the number of neurons with more
than two shortcut inputs can be ignored and we compute the
most likely rather than the expected value of the number of
neurons with two shortcut inputs.) Mean-field results that
ignore such configurations describe the failure transition pro-
vided it occurs at p,<1. However. as p approaches I, i.e.,
for |p—1]<1, the fraction of neurons with two incoming
shortcuts becomes s,=1-12/2+(p~-1)/2, which is nearly
0.3 for p=1. In this regime, a significant fraction of neurons
is likely to receive several synaptic inputs during one cycle
of network activity. Such neurons would not be constrained
by the recovery time 7% but would rather be primed to fire

Firing Rate

) EL S P S U
02 04 06 08 1
Density of Short-Cuts p

FIG. 4. Average population activity (mean firing rate) and amplitude of its
oscillations (standard deviation ot the firtng rate) as a function of the short-
cut density p. Note the nonmonotonic behavior of these curves. Data ob-
tained as an average over those configurations (out of 200) for which the
activity persists for at least 15 000 steps for 75=0.18 and N=1000.
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earlier, potentially allowing the activity to persist where it
otherwise would fail. A neuron that has received n inputs at
times f,, r=1.,....n. since its last firing has a recovery time
T(R" ) given by

Ve -g.wnE"r:Ie‘—r), (10)

V.+ Eyn ™ 1

T ty) = ln(

Note that Eq. (10) reduces to Eq. (3) for n=0 and to Eq. (4)
for n=1 (with t;=27p). In general, 7‘,;” depends on the spe-
cific firing times of the n neurons that provide inputs through
shorteuts; these times depend in turn on the details of activity
propagation in each specific network configuration. How-
ever, since integrate-and-fire neurons become increasingly
sensitive to their input as time passes after their firing. the
value of 7% in Eq. (10) is bounded below by Ty . which

R.min”

100 : .
» — p=1.0 S=74[
L 10 — p=0.25=4.6)
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(b) Density of Short-Cuts p

FIG. 15. Temporal complexity of activity patterns, (a) Representative power
spectra for p=0.2 (§=4.0) and p=1.0 (S=7.4). (b) Spectral entropy S (mean
and standard deviation across 200 configurations) for 7p=0.18 and N
= 1000, over 15 000 time steps.
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FIG. 16. Distribution of interspike intervals (ISI) for 7,=0.16 and different
values of the shorteut density p. For low p. all allowed ISI are above the
recovery period 7‘,(” (dashed vertical line). For p= 0.6, multiple inputs result
in ISI betow 74",

occurs when all r inputs coincide at T . itself. This lower

R ! R.min
bound is given by
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For small enough p. the interspike intervals (ISI) of al-
most all neurons in almost all network configurations are
bounded below by T‘R”; this property has allowed us to cal-
culate the time for activity to spread throughout the whole
network using a purely geometric approach. For higher val-
ues of p, there may be a subset of neurons with shorter
allowable ISI. However, many neurons will still receive only
one input per cycle, and the frequency of their spiking activ-
ity should reflect this fact. The distribution function for the
ISI shown in Fig. 16 supports this argument. Fast spiking
activity with lS]<’I*R” occurs appreciably only for p=0.6,
and becomes both more common and faster with increasing
shortcut density. Our earlier analysism showed that the spikes
with ISI>7{R” occur in population bursts, with no such
spikes in between bursts. In the absence of other spikes, the
activity would die out during these intervals between bursts.
However, the fast spiking neurons that receive multiple in-
puts via multiple incoming shortcuts are primed to carry over
the activity during the intervals between bursts; their fast
spiking sustains activity during the time needed for the slow
spiking neurons to recover.

Long delays 75, contribute in several ways to bridging
the periods of low activity between bursts. For larger 7p, the
failure transition is shifted towards larger shortcut densities,
thus significantly enhancing the number of neurons that re-
ceive multiple shortcut inputs. At the same time, in order to
bridge the time between the return time 74 and the recovery
time T(R” of the slow spiking neurons, fewer fast spiking
neurons are needed if the delay is longer. Moreover, the ex-
ponential recovery of integrate-and-fire neurons towards
their resting potential implies that later inputs have a stronger
impact on the recovery period than earlier ones [cf. Egs. (10)
and (11)]. With increasing 73, all inputs are shifted to later
times relative to the most recent spike of the postsynaptic
neuron; this shift significantly reduces the recovery time.
However. an increased delay 7, is not necessary to establish
a regime of prolonged activity. As shown in Fig. 17 for fixed
delay 7p=1.4. increasing the system size from N=1000 to
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FIG. 17. Failure probability as a function of shorteut density p for 7p
=0.14 and diffcrent values of system size N. Shown are averages over 400
configurations: failure probability is estimated within a finite time T7=28.
Note the prevalence of prolonged activity in larger systems.

N=16 000 shifts the failure transition to sufficiently large p
that the number of neurons with multiple inputs is sufficient
to bridge the gap between bursts of slow spiking activity,
even for this shorter delay.

For low values of p, the spatiotemporal dynamics are
most often periodic. In those cases the dynamics can truly be
called persistent. For p= 1. the chaotic nature of the dynam-
ics precludes such a clear assessment; in fact, failure is pos-
sible even after very long times. In this regime, prolonged
activity relies on bridging the quiescent period between
bursts of slow spiking activity through fast spiking neurons
that receive multiple shortcut inputs; it is necessary that these
shortcuts are actually activated at suitable times during the
quiescent part of the cycle. Thus, while in one cycle the
activity during the burst may have excited such a pathway,
the different activity pattern in the next burst may fail to do
s0; the activity could then die out. Indeed, we find that the
prolonged activity characteristic of large shortcut densities
eventually fails for essentially all configurations. Examples
of such long-lived transients are shown in Fig. 18, where
population firing rates are shown for a fixed network con-
figuration of shortcuts at increasing values of 7p.

The value of 7 has a strong influence on the duration of
the transient. As shown in Fig. 18, the overall trend is for the
lifetime of the transient activity to increase with increasing
delay (note the change in temporal scale from panel to
panel). However. the actual dependence on 7p is more subtle,
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FIG. 18. Population firing rate for four values of the delay 7p, with p=1.
The same network configuration and the same initial activation is used in ail
four panels. Failure tends to occur later as 7p increases; nole the change in
temporal scale from panel to panel.
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FIG. 19. (a) Failure rates for different values of the final time T°=5T.
10Tg. 20Tg. 40Ty, and 100T,. Shown are averages over 2000 conligurations
with A=1000 and p=1. (b) Enlarged view of the data within the box in (a)
for T"= 100T illustrates the fine structure in the failure rate. Shown are four
runs based on averages over 8000 conligurations each: the black line is the
average over the four runs.

as shown in Fig. 19. The fraction of network configurations
for which the prolonged activity fails before a specified time
T is reached exhibits a surprising degree of structure in its
dependence on 7. Most surprising is the finding that an
increase in 7p does not always decrease the probability of
failure. but can in fact enhance it. These changes can occur
over very small intervals in 7p, as shown in the expanded
window of Fig. 19(b). This fine structure is reminiscent of
resonances, although these are more like antiresonances; the
values of 75 within these windows are in some sense optimal
for escaping from prolonged activity. While details of the
mechanism underlying this structure are not yet understood,
it is clear that the dependence on 7p reflects the significance
of the ratio 7/ Tg. This effect is illustrated in Fig. 20, which
shows the dependence of the failure probability on 75 for
two network sizes: N=500 and N=1000. While the probabil-
ity of failure is higher overall for the smaller network. the
location of the “resonant” windows in 7, does not show
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FIG. 20. Failure rates averaged over 8000 network configurations with &
=500 and p=1. Data are shown for both g4,=0.200 (circles) and gy,
=0.202 (squares). Data for N=1000 (cf. Fig. 19) shown for comparison.
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FIG. 21. (Color) Complementary failure fraction 1-F as a function of time
tor different values of the delay 7. Note the logarithmic scale on the ver-
tical axis. Inset: Failure fraction F for the same data: the vertical scale is
now linear.

much dependence on system size. However, even a small
reduction in recovery time from T3=2.83 to Tx=2.79. due to
an increase in synaptic strength from g,,,=0.200 to g,
=0.202, results in a significant shift of the “resonant” win-
dows towards lower values of 7p.

To assess whether any significant fraction of the network
configurations sustains truly persistent activity, we consider
the failure fraction F as a function of the final time 7, so as
to extrapolate to T —x. The complementary fraction
1-F(T") of network configurations that sustain persistent
activity up to a time 7" is shown for different values of the
delay 7, in Fig. 21. As anticipated from the nonmonotonicity
in Fig. 19, the fraction of failing network configurations is
largest for 7,=0.167; a very rapid drop in failure rate occurs
from 75=0.17 to 7,=0.18. When considered as a function of
time for fixed 7p, the behavior of the curves in Fig. 21 indi-
cates that the decay is not exponential.

To obtain an approximate analytic form for the failure
fraction F(T"), let us consider a specific network configura-
tion for a given value of p. The duration of the activity until
failure will then depend on the initial condition. In this nu-
merical experiment we choose a specific network configura-
tion and consider 2000 different initial conditions; to reduce
the computational effort these simulations are done for a
smaller system with N=200. The initial conditions are ran-
dom and given by V;=Vy+§. i=1...N. with V,=0.85 and §;
drawn from a uniform distribution in the interval [-0.5.
+0.5]. A failure time is determined for the activity triggered
by each initial condition. The resulting distribution of failure
times exhibits exponential behavior of the form Be™7 for
large times; this allows the extraction of a characteristic fail-
ure time T associated with this network configuration. An
exponential distribution of failure times suggests that the
chaotic dynamics effectively lead to a fixed probability for
the activity to die out after each population burst.

The characteristic failure time 7 is then computed for
many network configurations of the same size and same
shortcut density, leading to a distribution p(7T) of character-
istic failure times. as illustrated in Fig. 22. The large-T be-
havior of this distribution is well fit by an exponential decay.
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FIG. 22. Distribution of characteristic failure times 7, from 50 000 network
configurations with N=200, p=1. and 7,=0.16. Nole the logarithmic scale
on the vertical axis.

lim p(T) = e~T, (12)
T—x
The distribution p(T) of characteristic failure times deter-
mines the average number of failures expected to have oc-
curred by time T”,

ATY= f dTp((1 - ™. (13)
0
Inserting the asymptotic behavior identified in Eq. (12) into
Eq. (13) and assuming that the prefactor B8 does not depend
on the characteristic failure time 7 yields the expected failure
rate for large 1.

Fty=1-28vatK,(2\ ar). (14)

where K| (x) is the first-order modified Bessel function of the
second kind. The asymptotic expansion of this Bessel func-
tion for large arguments leads to

Ft) ~ 1 = By m(an) Hean'™, (15)

which displays stretched exponential behavior. The analytic
result of Eq. (14) provides a good fit to the time dependence
of the failure probability, as shown in Fig. 23. For 7,=0.18,
the fit with @=0.67X 1075 and 8=0.91 is good over essen-
tially the whole time range. For 7,=0.165 (inset). the fit is
not quite as good: the curvature of the analytic function
seems to be smaller than that of the data. A fit to the 7,
=0.165 data for ¢>3400 yields a=0.12X 107 and 8=0.64.
This fit (blue dotted line) underestimates the data for long
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FIG. 23. (Color) Complementary failure fraction 1 —F as a function of time
for p=1 and 7=0.18 (inset for 7p=0.165). Dashed rcd and dotied blue lines
are fits 10 Eq. (14). Note the logarithmic scale on the vertical axis.
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times. A fit with @=0.10X 10" and $=0.54 (red dashed
line) reduces the underestimation at long times, but is not as
good for smaller times. In any case, the analytic results of
Eqgs. (14) and (15) indicate the existence of very long tran-
sients of prolonged activity. This activity will always even-
tually fail; F(t)— 1 as 1— <.

V. CONCLUSION

In this paper we have used a minimal model to study the
influence of network topology on the dynamics of coupled
excitable elements. The network consists of a ring of locally
connected elements; the connectivity is enhanced through
random shortcuts that connect arbitrarily distant elements.
Since our goal is to capture gross features of cortical connec-
tivity, we assume that these shortcuts provide only unidirec-
tional connections. This is in contrast to the bidirectional
shortcuts that are appropriate for modeling epidemic
propagalion'g or regular diffusive processes.

The dynamics of the system exhibit three distinct re-
gimes, depending on the density of shortcuts and the speed
of the waves that propagate through the network. For low but
nonzero density of shortcuts, activity persists for essentially
all network configurations when triggered by the initial ex-
citation of a single neuron. This activity is predominantly
periodic, and the mean firing rate of these persistent states
shows only little dependence on the wave speed or the den-
sity of shortcuts once p 2 0.05. This firing rate is quite close
to the maximal firing rate allowed by the recovery period of
the neurons.

The recovery period is not to be confused with an abso-
lute. intrinsic refractory period; rather, it is the time from one
spike until the membrane potential has recovered to a value
such that a single synaptic input of specified strength will
suffice to trigger a new spike. This recovery period can be
much longer than the absolute refractory period; this phe-
nomenon has been observed in neurons that exhibit a slow
after-hyperpolarization that underlies the slow oscillations
(<1 Hz) observed in vivo in cat® and in cortical slices of
ferret.>2 There, the recovery period induced by after-
hyperpolarization can last as long as a few seconds. Of rel-
evance to the dynamics investigated here is the time associ-
ated with the propagation speed of such slow oscillations
over the whole network: specifically. the dependence of this
propagation time on network connectivity. This dependence
has been studied in cortical models®** that do not incorpo-
rate shortcuts but use other mechanisms to control and vary
network connectivity: either a variable spatial width of the
Gaussian distribution that controls the probability that two
neurons are connected.™ or a trimodal probability distribu-
tion that captures a type of patchy connectivity in the
cortex.®® As expected, the speed of activity propagation was
found to increase with increased connectivity: it was conjec-
tured that this connectivity dependence underlies the large
difference in propagation times observed for slow waves in
olfactory cortex and neocortex.>

For low density of shortcuts, the persistent activity trig-
gered by a localized excitation is periodic. However, the
overall dynamical behavior of the system can be quite com-
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plex due to the coexistence of a large number of stable solu-
tions for a given network configuration. Whether the number
of attractors grows as fast with system size as it does for
globally coupled oscillator networks is not known at this
point. In the case of global coupling, the permutation sym-
metry Jeads to a factorial growth of the number of attractors
and to attractor crowding:”’ however, this permutation sym-
metry is broken in the small-world topology. So far as we
have been able to investigate the dynamics of increasingly
large networks, we have not been able to reach saturation of
the number of attractors evoked through ditferent initial con-
ditions. The mechanism underlying this large number of at-
tractors is not yet apparent; however, it is clear that noise
will induce switching between these different attractors.”®

As the density of shortcuts is increased. the number of
network configurations that can sustain persistent activity de-
creases. until persistent activity is essentially no longer pos-
sible. For fast waves, the transients after a localized excita-
tion consist of a single population burst followed by activity
extinction. For slow waves, the crossover to complete failure
occurs at larger shortcut densities than for fast waves. In
addition, slow waves can exhibit exceedingly long transients
that comprise thousands of population bursts. This activity
eventually fails; the failure times for ditferent network con-
figurations at a fixed density of shortcuts follow an exponen-
tial distribution, which leads to a stretched exponential dis-
tribution for the expected probability of failure as a function
of time. The mechanism responsible for these long transients
is crucially dependent on the existence of pathways that
bridge the quiescent periods between population bursts.
These pathways are supported by the topology of the small-
world network: this mechanism is thus expected to differ
from the one relevant for dilute random networks of pulse-
coupled oscillators.”®

Another quantity of interest is the fraction of network
configurations that has already failed by a specified time T".
This quantity exhibits an overall decreasing trend with de-
creasing wave speed, or increasing recovery time 7p. In ad-
dition to this decreasing trend, this quantity exhibits an intri-
cate fine structure that includes sharp. resonance-like
increases of the failure fraction with decreasing wave speeds.
A naive argument supports the decreasing trend, but not the
sharp resonances; a decrease in wave speed is likely to allow
for additional shorter loops to contribute to the activity, and
thus enhance the chances for persistence. However, the exis-
tence of sharp increases in failure probability indicates that
the activation of one such loop can block the propagation of
activity through previously active loops, and thus induce fail-
ure. While it is clear that such a switching between loops can
occur with increasing 7p, the mechanism that underlies these
increased failures is not yet fully understood.

The crossover to failure, which can be understood in
detail based on an analytic mean-field result for the effective
size of these idealized small-world networks, provides the
basis for understanding a number of recent studies of related
but more complex neural network models #2223

In Ref. 22, the connection between network connectivity
and epilepsy in the hippocampus was investigated by consid-
ering small-world networks of three different types of neu-
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rons: noisy and leaky integrate-and-fire neurons, stochastic
Hodgkin-Huxley cells, and Poisson spike-train cells. As pa-
rameters such as synaptic strength, number of synapses per
neuron, and proportion of local versus shortcut connections,
were varied, the network displayed dynamical behaviors de-
scribed as “normal,” “seizing.,” and “bursting.” For low
shortcut density, noise-driven activity was found to remain at
a low level; this pattern of activity was associated with nor-
mal behavior. With increasing shortcut density, the level of
activity triggered by a noise-driven event strongly increased,
due to the recruitment of a vastly larger number of neurons.
This pattern of activity was likened to seizing behavior. Ac-
cording to our analysis, this regime corresponds to patterns
of connectivity that support persistent activity. Yet further
increases in the shortcut density were found to induce burst-
ing dynamics, characterized by irregular bursts involving a
large fraction of all neurons, separated by quiescent periods.
This pattern of activity corresponds in our analysis to net-
work configurations associated with failure, for which each
noise-triggered event leads to a population burst that brings
essentially all neurons into their recovery period.

In Ref. 23, the role of network connectivity in sustaining
population bursting activity was investigated by considering
a small-world network of Morris-Lecar neurons. Activity
was initiated through a localized set of pacemaker neurons. It
was found that in the presence of shortcuts, network activity
builds up over several driven cycles into bursts that involve a
large fraction of neurons firing within a small time window.
Both the time needed to build up such bursts and the time
between them were found to decrease with increasing short-
cut density. The appearance of repeated bursts is related to
the failing configurations discussed here. As expected from
our analysis, bursting behavior was supplanted by persistent
activity when the wave speed was reduced (cf. increasing 7p
in Fig. 12). The slow buildup towards bursting activity ob-
served in Ref. 23 appears to be specific to the Morris-Lecar
neurons used in their model.

In Ref. 4, a 1:20 functional model of the rat dentate
gyrus was constructed to investigate the functional conse-
quences of two types of changes in network architecture that
take place concurrently during epileptogenesis: loss of hillar
mossy cells and sprouting of granular cell axons. The re-
moval of mossy cells resulted in a massive reduction in the
total number of connections, but this effect was to some
extent compensated by an increase in local connectivity due
to spatially restricted sprouting of granular cell axons. Sur-
prisingly, as long as mossy cells were not almost fully elimi-
nated, they continued to provide intermediate and long-range
connections onto granule cells, thus preserving the short net-
work diameter characteristic of small-world connectivity.
The hyperexcitability that arises from these structural
changes corresponds in our analysis to the sustained propa-
gation of fast waves in the presence of a small density of
shortcuts.
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Neurobiology of Disease
Epilepsy in Small-World Networks

Theoden I. Netoff,"* Robert Clewley,** Scott Arno,'* Tara Keck,'? and John A. White!-
'Department of Biomedical Engineering, 2Department of Mathematics and *Center for BioDynamics and Center for Memory and Brain, Boston University,
Boston, Massachusetts 02215

In hippocampal slice models of epilepsy, two behaviors are seen: short bursts of electrical activity lasting 100 msec and seizure-like
electrical activity lasting seconds. The bursts originate from the CA3 region, where there is a high degree of recurrent excitatory connec-
tions. Seizures originate from the CA1, where there are fewer recurrent connections. In attempting to explain this behavior, we simulated
model networks of excitatory neurons using several types of model neurons. The model neurons were connected in a ring containing
predominantly local connections and some long-distance random connections, resulting in a small-world network connectivity pattern.
By changing parameters such as the synaptic strengths, number of synapses per neuron, proportion of local versus long-distance
connections, we induced “normal,” “seizing,” and “bursting” behaviors. Based on these simulations, we made a simple mathematical
description of these networks under well-defined assumptions. This mathematical description explains how specific changes in the
topology or synaptic strength in the model cause transitions from normal to seizing and then to bursting. These behaviors appear to be

general properties of excitatory networks.

Key words: epilepsy; networks; small-world networks; seizures; computational modeling; interictal burst

Introduction

Epilepsy is characterized by two electrographic behaviors: inter-
ictal bursts of activity that last ~100 msec and “seizures” that last
from seconds to minutes (Steriade, 2003). In slice models of ep-
ilepsy, bursts and seizures can be elicited in different regions of
the hippocampus bathed in 4-aminopyridine (4-AP). Bursts
originate in region CA3 of hippocampus (Chesnut and Swann,
1988), whereas seizures originate in region CAl (Netoff and
Schiff, 2002). 4-AP increases excitability and effective synaptic
strength (Perreault and Avoli, 1989); however, epileptiform be-
havior can be induced in slices through a variety of methods
(Traub and Miles, 1991), suggesting that the cause of these be-
haviors is a general property of the network.

Traditionally, epilepsy is viewed as a disease of “hypersyn-
chronous” neuronal activity (Penfield and Jasper, 1954; Steriade,
2003). Evidence from hippocampal slices shows that bursts in
CA3 are caused by neuronal activity that is synchronous on a fine
time scale (<10 msec); however, neuronal activity during slice
seizures in CAl is not synchronous (Netoff and Schiff, 2002; Van
Drongelen et al., 2003). The most notable difference between the
hippocampal regions is that CA3 has more recurrent synaptic
connections than CAl. Staley et al. (1998) hypothesized that
bursts originate in region CA3 because the network activates
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quickly, via recurrent excitation, depleting the primary glutamate
stores of the neurons and thus shutting down the network.

Our goal in this study was to use computational models to
explore how epileptiform behaviors relate to the connectivity of
the underlying networks. Our operating hypothesis for CA3
bursts is similar to that of Staley et al. (1998), except that our
models rely on generally defined neuronal “refractoriness” to
terminate burst activity. Refractoriness may arise via a number of
mechanisms, including synaptic depletion, inhibition, or
voltage-dependent properties in postsynaptic cells. [n the CAl,
which has less recurrent excitation, the activity spreads slower.
Thus, an excitable pool of CA1 neurons is always available, lead-
ing to sustainable seizure-like activity. To test these hypotheses,
we simulated networks intended to mimic regions CA3 and CAl.
We used “small-world” network topologies, in which the major-
ity of connections between cells are “local,” but a few cells have
“long-distance” connections (Watts and Strogatz, 1998; Watts,
1999). Small-world networks were used because they are simple,
flexible, and reminiscent of the connectivity patterns of networks
in the brain. As connectivity in the networks was changed, we
observed activity resembling epileptiform behaviors seen in slice
models. Networks with large numbers of long-distance connec-
tions were more prone to generating self-terminating bursts. Ad-
ditionally, our results suggest that the greater level of intercon-
nectivity in CA3 may be responsible for its tendency to burst
rather than seize. Results were independent of the specific neu-
ronal model (Poisson, integrate-and-fire, Hodgkin-Huxley) used
in the simulations. We derived a reduced mathematical descrip-
tion of the networks that helped us to describe the conditions
under which networks transition from “normal” to “seizing” to
“bursting.” Although this model provides only a heuristic de-
scription of the slice behavior, it demonstrates how epileptiform
behaviors may depend on specific physical parameters.
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Materials and Methods

Structure of the network and connectivity. We generated simple network
models of excitatory neurons in hippocampus. To keep the number of
tree parameters manageable, to more easily constrain activity to spread in
a controlled manner, and to eliminate the effects ot boundary conditions,
we restricted our analyses to one-dimensional “rings” of neurons. Be-
cause organization of the synaptic connections within cortical regions is
neither a lattice of nearest-neighbor connections nor completely ran-
domly connected (Mountcastle, 1997; Gonzalez-Burgos et al., 2000; Mc-
Cormick and Contreras, 2001), we used a simple method to construct
networks that lie between these two extremes. We began with a model in
which each neuron is connected to a specific number k of its nearest
neighbors and then randomly disconnected a proportion p of the synap-
tic connections and reconnected these synapses to a randomly chosen
postsynaptic cell. This method of network construction leads to small-
world networks (Watts and Strogatz, 1998; Watts, 1999), in which most
connections made by a given presynaptic neuron are local, but an impor-
tant few can spread activity over long distances. An illustration of net-
works with varying amount of long-distance connections is given in
Figure 1. In the network in Figure la, each “node” represents a neuron.
The ring of neurons is connected in a perfect “lattice” (p = 0), with each
cell connected ta its four nearest neighbors. Figure 1, b and ¢, represents
networks increasing values of p. These are small-world networks because
they include a preponderance of local, regular connections but a small
number of long-distance connections, which greatly reduce the number
of synaptic steps required to connect any pair of neurons in the network.

The anatomy of our small-world networks is characterized by three
free parameters: network size (N), the number of synaptic connections
per neuron (k), and the proportion of randomly made long-distance
connections {p). For most simulations, we used N = 3000, approxi-
mately corresponding to the smallest population size within which epi-
leptiform activity is seen in the hippocampus (Fox et al., 2001). In some
simulations, we used N = 24,000 to examine the generality of our results.
We examined many values of k but focused our attention on networks
with 1% total connectivity (k = 30 for N = 3000) to represent region CAl
and networks with 3% total conuectivity (k = 90 for N = 3000) to
represent region CA3. Both k values are overestimated as follows: excita-
tory to excitatory coupling in region CA3 is closer to 2% (MacVicar and
Dudek, 1980) and for region CAl, it is <<1%. Because the numbers of
local versus long-distance connectionsare unknown in hippocampus, we
treated p (the proportion of random connections in the network) as an
explicit free parameter that we varied from 0 to 1. p is a particularly
important parameter for these models, because it controls the rate at
which local “waves” of activity give rise to new waves at distant locations
in the network.

Model neurons and synapses. We ran simulations using three ditferent
types of model neurons: noisy and leaky integrate-and-fire neurons, sto-
chastic Hodgkin-Huxley cells (Chow und White, 1996), and a Poisson
spike-train cel) model that is equivalent to the other models in terms of

9 i W
LY

Figure 1. Small-world network. a, Networks of neurons are generated in which all cells are
only coupled to their nearest neighbors (4 in this case). b, To generate small-world networks,
small numbers of connections are broken and rewired to make long-distance connections at
random locations. Long-distance connections reduce the number of synapses between any pair
of neurons in the network. ¢, As more long-distance connections are added, the network loses
the property that most connections are local, and the network looks much more random. We
find a range of normal and epileptiform behaviors in the smalt-world network regimen, where
few connections are necessary o connect any pair of the neurons, but local connections still
predominate.
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first-order interspike interval statistics. The integrate-and-tire model is a
regular leaky integrate-and-fire model with a stochastic component,
given by

dv
= Vi = VLt &

where V indicates the membrane potential, V)., is the resting potential of
the neuron, I, is the synaptic input (described in a subsequent para-
graph), and £ is the stochastic component (white noise of suficient vari-
ance to generate spontaneous activity at a target rate). The neuron fires
when V reaches a threshold, resulting from noise or when a synaptic
current is injected into postsynaptic neurons. The neuron is then reset to
zero, and all synaptic inputs are blocked for an absolute “refractory™
period of time 7, {see below for additional information on
refractoriness).

The stochastic Hodgkin-Huxley model is a conductance-based model,
which is described in detail by Chow and White (1996). Parameters were
as in the original 1952 study, except that sodium channels were modeled
as discrete, stochustic elements. The Langevin method was used to de-
scribe the eftects of channel noise (Chow and White, 1996). In this
model, membrane noise causes the membrane potential fo fluctuate and
occasionally causes the neuron to fire spontaneously. The number of
sodium channels was “tuned” to 3375 to match a target average sponta-
neous firing rate (see below).

Synaptic currents for the integrate-and-fire and stochastic Hodgkin—
Huxley models were calculated using a double exponential function
lyn = Ale ™™~ ¢ 771 (V. — V), where A is the synaptic amplitude,
tis the time since synaptic input occurred, 7, and 7 are the slow and fast
decay rates, respectively, and V,, is the reversal potential of the synapse
(Bower and Beeman, 1995).

To construct the Poisson model, we used Matlab { MathWorks, Natick,
MA) to select spike times from a Poisson process. Synaptic inputs for this
model were simulated in the following way: in response to the arrival ofa
presynaptic spike, the postsynaptic cell has a probability of immediately
firing, where the probability for a single synaptic input was set to 2.5%.
We set the probability of firing atter two or more simultaneous synaptic
inputs to 1. If the cell does not immediately fire in response to an input,
then it uses the spike time previously drawn from the Poisson
distribution.

All models were adjusted to have an absolute refractory period, 7,
(after spiking), 10 times longer than the synaptic delay, 7,,. This allows the
active population to travel 10 steps before the neurons recover. For the
Poisson madel, the synaptic delay was set at 3.7 msec and a refractory
time of 36 msec, whereas in the integrate-and-fire model, the synaptic
delay was 2.8 msec and the refractory time was 28 msec. The Hodgkin-
Huxley model had a synaptic delay dependent on the distance between
the neurons with a 1 msec delay between the local cells and up to 5 msec
for long-distance connections. An absolute refractory time was 36 msec
and was set to behave qualitatively similarly to the other models. The one
exception is the network simulation with 24,000 neurons where the re-
fractory time was 28 msec and the synaptic delay was 2 msec, which was
necessary to allow enough time for the entire network to be activated
before the first cells recovered. The refractory period can be generated by
many mechanisms, either presynaptic or postsynaptic, and we leave this
undetermined. The important factor is that the refractory time is on the
order of the time it takes activity to spread throughout the network in the
bursting regimen; otherwise, the activity will re-enter and a clean transi-
tion to bursting will not occur. We also matched all models so that they
had an approximately exponential interspike interval distribution and
firing probability of 0.0315 spikes/sec. In most simulations, synaptic ef-
ficacies were set in all models such that single inputs caused postsynaptic
action potentials 2.5% of the time, and two simultaneous inputs led to
postsynaptic firing with probability of firing approximately equal to one
(assumed to be exactly one in our later theoretical analysis). For the
24,000 cell simulations (see Fig. 3), we compensated for the eightfold
increase in network size with a 20-fold decrease in synaptic weight. As
successtully predicted by our reduced theoretical model, this change kept
the same overall rate of wave generation, leading to results (see Fig. 3).
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Figure 2.  Burstingand seizing behaviors as the number of long-distance connections are changed. @, The ring contains ¥ neurans, each of which are connected to k, mostly local neighbors {left).

To visualize the activity of this large network, we color coded each point according to the state of the neuron and pulled every kth point in the ring toward the center to make a spoke. Therefore, a
neuron in the center of a spoke is connected to all the neurons in the spoke, assuming that all synaptic connections are local. A neuron at the end of the spoke is connected to half of the neurons on
the spoke and half of the neurons on the opposite end of the next spoke. This results in a plot of the ring that resembles a slinky. b, An illustrative tempora snapshot of network activity, with ¥ =
3000, k = 30synapses per neuron (i.e., 1% network connectivity),and p = 0.1. Light gray dots represent excitable neurons, black dots are firing neurans, and dark gray dots are refractory neurons.
The wave front size stabilizes to approximately half the size of the local neighborhood k and is followed by a refractory tail. This tail is determined by how many steps the wave front can travel before
the neurons begin to recover. ¢, Successive frames from a movie of seizing activity, with ¥ = 3000, k = 30,and p = 0.1 (i.e., that 10% of synapses have been rewired). The frame rate s 250 Hz,
corresponding to approximately two synaptic time delays; therefore, the active waves appear twice as large (in space) as their actual size. Spontaneous background activity generates a cascade of
activity, which stabilizes into two traveling waves (frames 5-25). These traveling waves generate other waves in the network through the long-distance connections (e.g., frames 26, 31, 34).
Eventually, waves start to meet and annihilate each other (e.g., frames 4, 33, 43). This network attains equilibium when the new waves are generated at the same rate that the waves annihilate
each other. d, Still frames from a movie of bursting activity (¥ = 3000; k = 90; p = 0.1). Inthis network, the number of long-distance connections causes waves to generate new waves faster than
the wavesannihilate each other. This resultsin all of the neurons firing in the network, all of the neurons becoming refractory, and the activity in the network shutting off. Movies of network activity
<an be seen at: http://www.bu.edu/ndl/people/netoff/SWN/INeurosciSupplement.html.

connections, existing waves frequently give rise to new waves
in distant locations, and network activity transitions to sus-

Results

Basic properties of propagating activity

In all three types of networks (Poisson, integrate-and-fire, and
stochastic Hodgkin-Huxley), we observed qualitatively simi-
lar behaviors. Networks are quiescent at first, but eventually a
spontaneous action potential in one neuron initiates activity
in two neurons with common local postsynaptic targets. Be-
cause convergence of two simultaneous inputs fires postsyn-
aptic cells in these networks with probability near one, this
event generates two waves that travel in opposite directions
around the ring. With few long-distance connections, a small
number of waves sweeps across the network. This results in a
small, stable amount of activity. With more long-distance

tained high activity, which we liken to seizures. Figure 2¢illus-
trates still frames from a movie of an ongoing seizure (see Fig.
2, a and b, for an explanation of the display methoed). With a
large enough number of long-distance connections (Fig. 2d),
we observed bursts in which the majority of the network fired
synchronously and then became refractory. Movies of seizures
and bursts can be seen at http://www.bu.edu/ndl/people/net-
off/SWN/JNeurosciSupplement.html. As we show, transition
points between normal, bursting, and seizing vary according
to the number of long-distance connections, network size,
synaptic strength, and number of synapses per neuron.
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Dependence on model parameters
Figure 3 illustrates how network activity
depends on the proportion of long-
distance connections (p), which controls
the spread from local activity to distant
portions of the network. Each neuron is
coupled, predominantly locally, to 1%
(Fig. 3, left panels) (approximately corre-
sponding to connectivity in region CAl)
or 3% (right panels) (approximately cor-
responding to region CA3) of the rest of
the network. The top six panels (Fig. 3a~f)
show traces of population activity versus
time for specific cases. Normal activity is
characterized by a low sustained popula-
tion firing rate. Seizing activity is charac-
terized by significantly higher, sustained
firing rates with some evidence of coher-
ence. Bursting activity is characterized by
network activity that rises and falls rapidly
and coherently.

The middle set of panels in Figure 3 show
time-averaged population firing rates as a
function of p, the proportion of long-
distance connections. a—f in Figure 3 corre-
spond to the examples from the top six
traces. For the CA]1 model, the slope of the
population firing rate versus p becomes
steep at approximately p = 0.01. We define
this point as the transition from normal fir-
ing to seizing in the network. Population os-
cillations, with a period close to the neuronal
refractory period, are seen in parts of the
seizing region (Fig. 2b,e). For the CA3
model, the transition to seizingoccursat p =
4 % 10 "*, As more long-distance connec-
tions are added to the network, coherent
bursting begins. Interestingly, the onset of
bursting, which occurs at p = 0.01 for the
CA3 model and p = 0.2 for the CA1 model,
leads to a marked decrease in population
activity. The period of the bursting is erratic,
because after a burst, there is no residual
activity in the network, implying that the
next burst is triggered only at the rate of the
random spontaneous background activity.
These results suggest that the observed
phenomena are independent of the individ-
ual neuron models used in the network
(Poisson,  integrate-and-fire,  stochastic
Hodgkin-Huxley).

The integrate-and-fire network was also scaled up eightfold,
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Figure 3.  Transition from normal — seizing — bursting behavior as a function of the number of long-distance connections
(p). The left column shows the results from the CA1moded with N = 3000and k = 30, whereas the right column shows the results
froma (A3 model with ¥ = 3000and k = 90. At the top are three examples of data (taken from a Poisson-simulated network) for
normal, seizing, and bursting, showing the count of neurons that fired in a 10 msec time bin. Middle panels illustrate the total
population activity for Poisson (Poiss), noisy leaky integrate-and-fire (F}, and stochastic Hodgkin—Huxley (HH) simulations with
the examples from above indicated by a—f. Vertical bars indicate boundaries between normal, seizing, and bursting as identified
by eye from the time traces of population activity from the Poisson model. Simulations of IF network with 24,000 neurons and
reduced synaptic strength are displayed as well (IF-24K). These networks show qualitative behaviors similar to the 3000 neurons.
The bottom panels illustrate the normalized clustering coefficients and mean path length between neuronsin the network as the
proportion of long-distance connectionsin the network (p) is increased. The left side of these graphs indicates a network topology
in which the ring of neurons has only local connections; the right side indicates a nearly randomly connected network.

tering coefficient (CC) and mean path length (<<PL>) plotted

to 24,000 neurons, while decreasing synaptic strength 20-fold to
balance the excitation in the network. (The formula for deter-
mining this decrease in synaptic strength came from our reduced
model, which is discussed below.) This manipulation results in
very similar transitions from normal to seizing to bursting behav-
ior (Fig. 3, filled diamonds), indicating that these results do not
depend on network size. Very similar results (data not shown)
were also seen in 24,000 member Poisson-process networks with
downsized synapses, further indicating that these results depend
critically on connectivity but not on other details.

The bottom two panels in Figure 3 show the normalized clus-

versus p. The clustering coefficient is a measure of how likely it is
that two interconnected neurons both make connections to the
same neighbor. In particular, it is the average probability that the
number of abserved overlap in neighbors would occur by chance
if the network had been connected randomly. Mean path length is
the average number of “degrees of separation” between two ran-
domly chosen neurons. It is calculated by averaging the measured
distance between all pairs in the network. Both measures decrease
with increasing proportion of long-distance connections p, but
an intermediate value of p corresponds to the so-called small-
world regimen where the clustering coefficient is high and the
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mean path length is low. The regimen of seizing activity in the
CA1 model corresponds with this small-world regimen. The be-
ginning of the bursting regimen corresponds with the drop in
clustering coefficient, which signals the transition of the network
from a small world to a random graph. As indicated by compar-
ing the right and left columns in Figure 3, having a larger number
of connections leads to bursting at lower values of p.

Scaling relationships and the reduced model of

propagating activity

Propagating activity in simulated networks has a number of ste-
reotypical characteristics that allow us to represent it accurately
using a reduced model. First, because the time needed for supra-
threshold inputs to activate the model neurons is small compared
with the synaptic delay time, the synaptic delay sets the amount of
time required for wave fronts to propagate from one group of
active neurons to another. Consequently, the network evolves in
approximately discrete time steps, corresponding to the synaptic
delay. Second, assuming a nearly regular lattice (i.e., that the
number of long-distance connections is small relative to N), the
wave frontsize, @, is just less than half the neighborhood size: & =
k/2 — 1. The division by 2 comes from the fact that the wave
spreads in both directions (unless one set of cells is refractory);
subtracting 1 from the total removes the neuron that only re-
ceives a single synaptic input from the active neurons. Third,
following each wave is a wake of refractory neurons, approxi-
mately the size ®R = « X 7,/7,, where 7, denotes the refractory
time of each neuron, and 7, denotes the synaptic delay. This
equation defines the number of time steps that a neuron remains
refractory, which we have denoted R. Finally, knowing the num-
ber of waves, their size, and their wake size, it is straightforward to
calculate the characteristics of propagation and the probability of
emergence of a new wave per time step, as well as the probability
per unit time that two waves will collide and thus annihilate.
Thus, we should be able to construct a discrete time, birth-and-
death process describing activity in the ring network.

Let w; denote the number of active waves at time step i. We
define the number of new waves that will begin spontaneously in
one time step to be $; = s¢;p.. Here, s is the probability that any
given neuron will fire in that time, which we set at s = 0.0315 X
7, where 0.0315 is the spontaneous spike rate per second. ¢; is the
number of excitable neurons present in the network at time /. p,
is the probability that two or more neurons fire in response to the
firing of the same presynaptic neuron. The dependent variable p,
can be calculated from the binomial theorem using synaptic
strength p, (which we define as the probability that tiring of a
single presynaptic cell induces an action potential in a given
postsynaptic cell) and the number of synapses per neuron k: p, =
1= (1= p)¥—kp,(1 — p)*~L In our reduced model, if two
such neurons in a neighborhood fire, we will assume that a trav-
eling wave will be initiated with probability of exactly one (the
relative frequency of such an event was observed to be ~1 in the
simulations), with wave front size exactly equal to a. This as-
sumption holds true for our 3000 cell simulations but not for the
24,000 cell simulations. Interestingly, behavior of the network is
not sensitive to violations of this assumption (Fig. 3).

Once a wave has been initiated, it can start new waves of
activity in other regions of the network through long-distance
connections. The rate at which new waves are generated depends
on the current number of waves, w;, which determines the num-
ber of active neurons, aw;. These active neurons have awkplong-
distance connections on average. The probability that synapses at
the end of these connections starta wave at a postsynaptic neuron
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is p\p,ei/N, where ¢; is the number of excitable cells (see below).
The approximate symmetry in the connectivity of the ring (be-
cause p is assumed to be much less than 1) means that a new wave
will propagate in two directions as two separate wave fronts. This
isreflected in the formula for the new wave rate by multiplying by
a factor of two. This approximation is valid, provided that the
network is far from being saturated with activity (i.e., when the
network size N is much larger than the number of active and
refractory neurons) and the resulting wave fronts develop into
full waves with refractory wakes, an assumption that is true as
long as the waves emerge in a region of nonrefractory cells. The
number of excitable cells, ¢, is the total number of neurons minus
the number that are active or refractory:

R
e, =N~ aw, — QE Wi,

=1

The last term in this equation for e;accounts for the recent history
of activity, by summing that past activity up to the refractory
time. This sum gives the total number of refractory neurons at
time 1. Initially, we will further simplify this equation by assuming
that the number of refractory cells is simply proportional to the
number of active waves: ¢; = N — aw,(1 + R). This approxima-
tion is also valid only when the network activity is far from satu-
ration. According to this model, the number of new waves born at
time step i is approximated by n; = (2awkp)(pp,ei/N) + S,
This function, a quadratic function of w;, is plotted in the top
panels of Figure 4 (dashed lines) for three different values of p, the
proportion of long-distance connections.

The average number of wave collisions per time step depends
on how many waves are present in the network. The more waves
in the network, the more likely collisions will occur. The expected
number of dying waves in a time step can be approximated by the
time it takes the currently active waves, evenly distributed around
the ring, to collide. We estimate the death rate to be d, = 2aw/e;.
In this equation, the term 2a reflects the fact that two wave fronts
propagate through an excitable region toward each other ata rate
of 2a neurons per time step; the term w; reflects the fact that
evenly distributed waves grow, on average, closer as their number
grows; and the term ¢; reflects the fact that the average distance
between two waves is proportional to the number of remaining
excitable cells. As for e, the approximation in d; is most valid
when the network activity is far from saturation. The death rated,
is plotted (solid lines) in the top panels in Figure 4. Its value
increases without bound as the number of active and refractory
neurons approaches N, when the denominator approaches zero
(at the point where the network reaches saturation). The net
growth in the number of waves at time i is n; — d,, and thus the
wave birth—death process can be written as a one-dimensional
map, wi; = fw;) = w, + n; = d,, in which we have defined the
function f{w;) for notational convenience. This one-dimensional
map is only valid under the assumption that the number of re-
fractory cells is directly proportional to the current number of
active wave (see above) (Table 1).

Activity in the network reaches an equilibrium state when new
waves are generated at the same rate that they annihilate each
other, i.e., when there is a steady state number of waves w* that
solves the equation f{w*) = w*. A stable equilibrium corresponds
to the slope of the function fw;) at the equilibrium between 1 and
—1; otherwise, it is unstable and the new wave rate is faster than
the dying wave rate. The strength of attraction of this equilibrium
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affects the spread of the distribution in the
number of neurons firing at any given
time in a stochastic network.

The equilibrium level of activity and its
stability depend on the parameters in the
new wave rate 1;and dying waverated,. As O
we vary parameters such as the proportion &
of long-distance connections (p), we can
investigate how changes in the equilib-
rium cause the network to switch from
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p=0.01

p=0.05

normal to seizing to bursting. In the bot-
tom panels in Figure 4, we plot the num-
ber of waves on the next time step w;,
versus the number of waves on this time
step w; (solid line) as well as the line of
identity (y = x; dotted line). In these
plots, equilibrium points f{w*) are indi-
cated by intersections of the solid and dot-
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ted lines. Stability of equilibrium points is
given by the slope of f{w*). At low long-
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distance connectivity (p = 0.001), both n; W,

and d; are small, resulting in a weakly at-
tracting equilibrium (with a slope just less
than one). As indicated by the fact that
w;,, ~ w, waves are rarely born or die,
implying that the network is dominated by
the low rate of spontaneous wave genera-
tion. As more long-distance connections
are introduced (p = 0.01), the rate of
emergence of new waves increases. This
trend increases the number of waves that
we expect to see at the equilibrium and
also makes the equilibrium more strongly
attracting (the slope at the equilibrium
point is near zero). As even more long-
distance connections are introduced (p = 0.05), the slope of fat
the equilibrium point is less than — 1, implying that the equilib-
rium is unstable. [This is known as a “flip bifurcation,” or some-
times as a “pitchfork bifurcation” for maps (Baker and Gollub,
1996).] At this point in the full network model, new waves are
generated rapidly, giving rise to a burst (i.e., a large, synchronous
increase in the amount of activity). The burst (when w; > 6)
would lead to a system that is dominated by wave death on sub-
sequent time steps. Then, almost the entire network will become
refractory, implying that the system will be quiescent until
enough cells have returned to the excitable state and the network
can burst again. This detail of bursting behavior is not captured
by our reduced model, which was derived under the assumption
that the number of active and refractory cells at any given time is
small compared with the network size N. Instead, as pisincreased
above a critical point at ~0.05, the reduced system continues to
oscillate between increasingly higher and lower states (around
the unstable equilibrium) until the state fluctuates chaotically
with a very large amplitude. This describes a well-understood
“period-doubling route to chaos” for discrete-time maps such as
that described by f (which resembles the classic “logistic” map)
(Baker and Gollub, 1996). The amplitudes are large enough that
the activity of a full network model would reach saturation at this
point and therefore enter our “bursting” regimen. Because the
large-umplitude chaotic behavior is reached for p values very
close to that which first caused the equilibrium to become unsta-
ble, the onset of instability is a reasonable indicator for the onset
of bursting in the full network model. Results from this reduced
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The birth- death process (1-dimensional map) model of wave generation and annihilation. The top panels show how
many new waves are generated (n;; dashed lines) and annihilated (d; solid lines) per time step as functions of the number of
currently active waves, with k = 90. The y-intercept of the dashed lines indicates the spontaneous background rate of wave
generation. An equilibrium point exists where the new wave rate is equal to the dying wave rate (indicated by the amows). The
bottom panels map the number of waves on one time step to the average number expected on the next time step (solid lines).
Equilibria occur when the number of waves on the next time step is equal to that on the current time step [i.e., at the intersection
of the solid line of fiw;) and the dotted line of Identity (also indicated by arrows)]. For p = 0.0001, the equilibrium point atw, ~
1.82is only weakly attracting (the slope of the solid line is approximately + 1), and the number of waves changes only slightly at
each time step. For p = 0.01, the system has a strongly attracting equilibrium (where the slope of the solid line is approximately
zer0), corresponding to ongoing seizures characterized by an average of 3.87 existing simultaneous waves. For p = 0.05, the
equilibrium is unstable, and the dynamics has entered a chaotic regimen. The onset of chaos indicates that the entire network will
repeatedly fire brief synchronous bursts.

model and those from simulations are compared in Figure 5
(discussed below).

For both CAl and CA3 network simulations, the transition
from normal activity to seizures corresponds to an increase in the
percentage of active cells and the onset of a sustained oscillation
in the population activity. Because analysis of the one-
dimensional map does not provide us with an explicit condition
for this transition, we used the full refractory dynamics in the
definition of ¢, making the map (1 + R)-dimensional, where R is
the length of the refractory period. In a similar way to the one-
dimensional map, the (1 + R)-dimensional map can be analyzed
to predict qualitative changes in the dynamics. For few long-
distance connections, both maps exhibit the same equilibria and
stability properties. As more long-distance connections are
added, the (1 + R)-dimensional map exhibits oscillations not
present in the one-dimensional map, after a “Hopf bifurcation
for maps” occurs as p is increased (Agarwal et al., 2000). These
small-amplitude oscillations resemble those in the full network
simulations during seizures (data not shown) and also have a
period approximately equal to the refractory time of the neurons.
The transition to oscillation occurs at a value of p that can be
computed analytically and compared with results from compu-
tational simulations (see below), Numerical implementations of
the two maps both transition to bursting for similar values of
model parameters. However, the (1 + R)-dimensional map does
not provide an explicit analytic condition for the burst onset. This
is because the transition occurs in the full map when the oscilla-
tions grow so large that the activity saturates. The saturation of
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Tahle 1. Principal definitions, symbols, and default parameter values used in equations

Symbol Identification Definition/values used
N Number of neurons in network 3000 (24,000 in some network simulations)
k Number of synapses per neuron 30 (for CA1), 90 (for (A3)
s Spontaneous firing rate of a single neuron per time step of 0.0315 X 7,
size T4
T Absolute refractory time of neuron 28 msec (), 36 msec (Poiss, HH)
Ty Synaptic time delay 2.8 msec (IF), 3.7 msec (Poiss), 1-5 msec (HH)
P Proportion of long-distance connections generated by Varied from 1.0 X 1075 00.4
breaking a synapse and rewiring it to a randomly cho-
sen postsynaptic cell
A Synaptic strength (i.e., probability that postsynaptic neu- 0.025
ron will fire given that a particular presynaptic neuron
fired)
P Probability that two postsynaptic neurons fire given the pp=1—(1=p) =kp,(1 —p} "
p ptic neuron fired (dependent on kand p,)
o Approximate number of neurons in wave front K21
R Number of time steps that a neuron remains refractory R= 7474710
W; Number of waves present in network at time / Wigy = flw)
[ Number of excitable neurons in the network at time i X
e=N—ow,—a Zw_.ore,=N—
=1
aw,(1 + R) (for one-dimensional map}
n Number of new waves generated at time /resulting from = Qaw, kp)ppre;/N) + 5,
long-distance connections
d Number of waves that die in time step i resulting from d,=2aw,/g;
wave collision
S Spontaneous wave generation resulting from spontane- §=sep;
ous cellular activity
w* Number of waves in network where new wave rate and fw*}=w"
dying wave rate are equal {equilibrium point)
ffw,) Function describing number of waves on next time step fw)=w,+m—4

given number of waves on time step /
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Figure 5. Change in network behavior as a function of number of synaptic connections per neuron and proportion of long-

distance connections using the reduced model (for network size of 3000 neurons). The left panel shows curves delineating the
normal, seizing, tingr asthenumber of perneuron, and the proportion of long-distance connections are
changed. The solid black curve is calculated from analysls of the one-dimensional map and the dotted black curve from the (1 +
R)-dimensional map. Tick marks indicate the boundaries of normal, seizing, and bursting behavior in network simulations from
Figure 3. Horizontal lines indicate specific parameter choices for the CA3 and the CA1 models. Points labeled a—f correspond to the
conditions simulated in Figure 3a—/. These plots imply that the CA3 network will transition from normal to bursting at a much
smaller proportion of long-distance connections or smaller synaptic strength than the CA1. The right panel illustrates the bound-
aries between the behavioral regimens as the number of synapses per neuron and the synaptic strength are varied (with the
proportion of long-distance connections fixed at p == 0.01), The curves were calculated in asimilarway tothat n the left panel. The
tick mark in the line for the CA3 indicates the boundary between bursting and seizing observed in the integrate-and-fire model,
where the population firing rate as a function of synaptic strength are plotted in the inset. The results of the simulations correlate
well with the analyses of the reduced map models, No clear transition from seizing to bursting was seen in the full CA1 model, as
predicted by the one-dimensional map model.
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activity breaks the assurption of the der-
ivation of the map and is not a precisely
definable transition. Thus, it cannot be
captured by an analytical expression in-
volving a local change in stability. In con-
trast, the one-dimensional map represents
an “averaged” view of the full dynamics
(through its simplified treatment of the re-
fractory wake), for which transition to
bursting occurs while the low-activity as-
sumption still holds.

Figure 5a shows the boundaries of the
different behavior regimens predicted by
both of the analytical models as the num-
ber of synapses per neuron (k) and pro-
portion of long-distance connections (p)
is varied. The seizing-bursting border
(solid black lines) was calculated from the
simplified one-dimensional map. The
normal-seizing border (dotted Dblack
lines) was derived from the (I + R)-
dimensional map. The two horizontal
gray lines in each panel correspond to the
CAl and CA3 models from Figure 3. a—fin
Figure 5a correspond to the examples
from Figure 3, again as the proportion of
long-distance connections p is changed
over several orders of magnitude. Vertical
tick marks in Figure 5a correspond to the
borders between the normal, bursting,
and seizing regimens for the simulated
CA1 and CA3 models from Figure 3. Pre-
dicted transitions from simplified maps
occur near the transition points observed
in simulations for a wide range of param-
eter values.

In the brain and in slice models, epi-
lepsy is probably not caused by an increase
in long-distance connections but rather a
change in the synaptic strength resulting
from drugs or changes in the ionic con-
centrations of the fluid bathing the slice.
Using our reduced map models, we can
explore the effects of changing the synap-
tic efficacy p, (Fig. 5b), which we define as
the probability that a single postsynaptic
input gives rise to a postsynaptic spike on
the next time step. We look for the regi-
men transitions as p, is varied, keeping pat
0.01 (the same value used for panels 2 and
e in Fig. 3). The transitions predicted by
the models are plotted in Figure 5b. The
total network activity measured from the
network simulations is plotted in the in-
sets and shows a drop in activity coincid-
ing with the burst transition for CA3 as
predicted (indicated by the line in the inset
and the dash in the full panel). The CAI
network did not transition to bursts and
had a smooth transition to seizures with
an onset that is harder to define but ap-
proximately coincides with the predicted
values. Thus, the reduced model predicts
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that as synaptic strengths are enhanced, CA3 is more likely to
transition to bursting, but CAl is more likely to transition to a
seizing regimen, agreeing with experimental results.

Discussion

Here, we have introduced a simple small-world network represen-
tation of excitatory neurons in the hippocampal slice. The network
was implemented using three different neuron models: noisy and
leaky integrate-and-fire, stochastic Hodgkin-Huxley, and a Poisson
spike-train model. We used these models to explain why seizures
may not be hypersynchronous, but bursts are. In these simulations,
seizure activity in the CAl-like networks is not fully synchronous,
allowing the activity to be sustained. The same model supports that
bursts in CA3 are caused by synchronous rapid recruitment of neu-
ronal activity. Simulation results were independent of particular cel-
lular models used, indicating that the proportion of long-distance
connections is more important than the details of individual neu-
rons in determining the epileptiform properties of the network. We
derived a reduced mathematical model of the average activity in the
network as a birth—death process (map) indiscrete time. This model
avoids a purely mean-field approximation (which would ignore the
small-world properties of the network) and instead retains parame-
ters directly related to the physiology and the connectivity of the
network. The one-dimensional map predicted the transition from
seizing to bursting found in the network simulations as the number
of synapses per neuron, proportion of long-distance connections,
and synaptic strength were varied. These transitions were described
as a Joss of stability of an equilibrium in the map. A more detailed
description of the refractory dynamics gave rise to a higher-
dimensional map. This map could be analyzed to predict the transi-
tion from normal activity to seizing. These reduced models highlight
the roles of physical parameters that could underlie the different
epileptiform behaviors observed in CA1 versus CA3.

Relation to previous modeling studies
A number of recent modeling studies have examined problems
similar to those studied here. For example, Tsodyks et al. (2000)
studied coherent activity in randomly connected networks with
depressing synapses. They observed coherent activity, somewhat
similar to the bursting seen here. In their work and in related
work (Tabak et al,, 2000; Wiedemann and Luthi, 2003), networks
of neurons with depressing synapses initiate bursts from excita-
tory neurons that had not fired for some time and thus gave rise
to large postsynaptic effects. Synaptic depression shut down
bursts in these studies. In contrast to these models, our model has
explicit small-world connectivity that plays an important role in
the behavior of the network. We focused on how changes in the
number of long-distance connections, synaptic strength, and
overall connectivity led to dramatic changes in network activity.
Nishikawa et al. {2003) studied synchronization in small-
world networks that ranged from our Watts-Strogatz style to
networks in which a few hyperconnected “hub” neurons served
to reduced the mean path length. They found that hubbed net-
works were less likely to synchronize than Watts—Strogatz net-
works, although the hubbed networks have smaller mean path
lengths. Superficially, this result seems to contrast with our result
that the greatest synchronization was seen with small path
lengths. But this apparent discrepancy is an artifact of the way the
networks were constructed in these two studies. Our results are
compatible with the general argument of Nishikawa and col-
leagues, in that network synchronization decreases with increas-
ing heterogeneity in the number of connections per neuron. Our
bursting networks with large p have both small mean path and
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low heterogeneity, because in a randomly connected network,
each cell receives approximately the same number of connec-
tions. Our seizing networks with small p are more heterogeneous
and thus are expected to be less synchronized.

Two additional computational efforts have shown that small-
world networks similar to ours can synchronize. Networks of
oscillatory elements synchronize when the network contains
enough long-distance connections of sufficient synaptic strength
(Hong et al., 2002). Roxin and colleagues {2004) have showed
that adding long-distance connections makes small-world net-
works of integrate-and-fire neurons transition from sustained
activity to synchronous bursts of finite duration. Oscillation of
population activity has been studied by Curtu and Ermentrout
(2001) and Wilson and Cowan (1973) using differential equa-
tions similar in form to our discrete-time maps. Our work utilizes
these types of models to study epilepsy. First, we relate our mod-
els to epilepsy in a specific brain region (hippocampus) and at-
tempt to explain why regions CAl and CA3 exhibit different
epileptiform behaviors in slice models. Second, we show that the
relationship between the number of long-distance connections
and seizing or bursting is remarkably independent of the neuro-
nal model used. Third, our derivation of the reduced map models
retains important physiological parameters of which the effect on
epileptiform behavior can be studied directly.

Relation to experimental results

This model helps to explain how a stable network may become
unstable and prone to epileptiform behaviors. Many drugs and
disturbances to the cell equilibria can cause this. For example,
4-AP induces epileptiform behaviors in slice models by blocking
voltage-gated K* channels and thus indirectly enhancing EPSP
amplitudes (Chesnut and Swann, 1988). It is shown in Figure 5
that enhancing synaptic strength can transition a stable network
into bursting or seizing. Epilepsy can also be induced following
cell death. Although decreasing the number of cells alone cannot
induce epilepsy in our networks, a concomitant increase in syn-
aptic strength to compensate for the reduced synaptic activity
might. Although our simulations only included excitatory cells,
normal network activity depends on a balance of excitation and
inhibition for stability. The parameter p, could be interpreted as
representing the ratio of excitation to inhibition. In hippocampal
slices, epileptiform activity can be induced by pharmacologically
blocking inhibitory synaptic activity (Amitai et al., 1993). These
disinhibited slice models of epilepsy show three stages during the
ictal event (Borck and Jefferys, 1999). After the first stage of de-
polarization, the second consists of high-frequency oscillations
similar to our seizures. The third stage consists of postictal bursts
that are similar to our bursts. Our model suggests that the seiz-
ing—bursting transition in disinhibited slices may correspond to
increasing synaptic strength, connectivity, or cellular excitability
during the ictal event.

We predict from our model that networks with fewer recur-
rent connections are more likely to seize than networks with
more recurrent connections. Qur model is consistent with the
theory that epileptiform behaviors are generated by positive feed-
back in excitatory network activity (Schwartzkroin, 1994), result-
ing in runaway excitation. This may help to explain why some
regions of the brain produce seizures, whereas others produce
epileptiform bursts. The range of synaptic strengths for which the
network will produce seizing behavior is smaller for networks
with more recurrent excitatory synapses. These networks are
more likely to transition from normal directly to bursting with-
out observing seizures, Our model suggests that epileptiform
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bursts in CAl may occur only when it receives strong synchro-
nous synaptic input from the burst-prone CA3 region. If bursting
input to a seizure-producing region is stopped, the region may be
released to produce its own seizing behavior, as observed exper-
imentally by Barbarosie and Avoli (1997) and Bragdon et al.
(1992).

Organotypic cultures of neocortex generate waves of activity
that are reminiscent of our normal and bursting activity (Beggs
and Plenz, 2003). Normal activity in the organotypic cultures is
scale-free, in that the probability distribution of sizes of waves
and the distribution of wave lifetimes both obey a power law,
whereas picrotoxin-induced bursts were not. Beggs and Plenz
(2003) replicated their scale-free behavior in a multilayer, feed-
forward model. In our simulations, distributions of activity do
not resemble power laws for normal, seizing, or bursting activity.
We believe that our simulated activity is not scale-free primarily
because waves of activity, once initiated, almost always propagate
over long distances and thus have long lives. This behavior stands
in contrast to that observed and modeled by Beggs and Plenz
(2003), in which the most common events are small in spatial
scale and short in duration.

The time scales that we observe for the bursting and seizing do
not necessarily correspond to actual time scales observed exper-
imentally in vitro. Furthermore, the seizures in the model do not
end as seizures do in the it vitro models, because the small-world
network model and our mathematical description of the model
are highly reduced compared with the hippocampal slice. We
expect that fuller models, including inhibition and more spatial
realism, may address these discrepancies. The purpose of this
model is to develop an understanding of how changes in the
physiology change the behavior from normal to bursts to sei-
zures. Therefore, we simulated the networks with only excitatory
activity and overestimated the number of recurrent excitatory
connections in the CA1 and CA3. This model could be expanded
to include inhibitory neurons and more realistic connection
schemes, such as a two-dimensional lattice of neurons. The pur-
pose of this model was not to calculate the exact transition of the
network behavior or to derive physiological values for these tran-
sitions but to give an intuitive feel for why these transitions occur.
The exact parameter values where the networks transition be-
tween behaviors may differ as we change the form and constitu-
ents of the network, but we expect that these transitions will
remain qualitatively the same. Nevertheless, we feel that our sim-
ple network is useful as one approximation to the qualitative
properties of collective behavior in the hippocampus.
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In temporal lobe epilepsy. changes in synaptic and intrinsic properties
occur on a background of altered network architecture resulting from
cell loss and axonal sprouting. Although modeling studies using
idealized networks indicated the general importance of network to-
pology in epilepsy. it is unknown whether structural changes that
actually take place during epileptogenesis result in hyperexcitability.
To answer this question. we built a 1:] scale structural model of the
rat dentate gyrus from published in vivo and in vitro cell type-specific
connectivity data. This virtual dentate gyrus in control condition
displayed globally and locally well connected (“small world™) archi-
tecture. The average number of synapses between any two neurons in
this network of over one million cells was less than three. similar to
that measured for the orders of magnitude smaller C. elegans nervous
system. To study how network architecture changes during epilepto-
genesis, long-distance projecting hilar cells were gradually removed
in the structural model. causing massive reductions in the number of
total connections. However. as long as even a few hilar cells survived.
global connectivity in the network was effectively maintained and. as
aresult of the spatiatly restricted sprouting of granule cell axons, local
connectivity increased. Simulations of activity in a functional dentate
network model. consisting of over 50.000 multicompartmental single-
cell models of major glutamatergic and GABAergic cell types, re-
vealed that the survival of even a small fraction of hilar cells was
enough to sustain networkwide hyperexcitability. These data indicate
new roles for fractionally surviving long-distance projecting hilar
cells observed in specimens from epilepsy patients.

INTRODUCTION

The dentate gyrus. containing some of the most vulnerable
cells in the entire mammalian brain, offers a unique opportu-
nity to investigate the importance of structural alterations
during epileptogenesis. Many hilar cells are lost in both hu-
mans and animal models after repeated seizures, ischemia. and
head trauma (Buckmaster and Jongen-Relo 1999; Ratzliff et al.
2002: Sutula et al. 2003), accompanied by mossy fiber (granule
cell axon) sprouting. In temporal lobe epilepsy, loss of hilar
neurons and mossy fiber sprouting are hallmarks of seizure-
induced end-folium sclerosis (Margerison and Corsellis 1966;
Mathern et al. 1996). indicating the emergence of a fundamen-
tally transformed microcircuit. Because structural alterations in
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experimental models of epilepsy occur concurrently with mul-
tiple modifications of synaptic and intrinsic properties, it is
difficult to unambiguously evaluate the functional conse-
quences of purely structural changes using experimental tech-
niques alone.

Computational modeling approaches may help to identify
the importance of network architectural alterations. Indeed,
prior modeling studies of idealized networks indicated the
importance of altered network architecture in epileptogenesis
(Buzsdki et al. 2004: Netoff et al. 2004: Percha et al. 2005).
However. to test the role of structural changes actually taking
place during epileptogenesis. the network models must be
strongly data driven. i.e.. incorporate key structural and func-
tional properties of the biological network (Ascoli and Atkeson
2005; Bernard et al. 1997: Traub et al. 2005a.b). Such models
should also be based on as realistic cell numbers as possible, to
minimize uncertainties resulting from the scaling-up of exper-
imentally measured synaptic inputs to compensate for fewer
cells in reduced networks.

Within the last decade. large amounts of high-quality exper-
imental data have become available on the connectivity of the
rat dentate gyrus both in controls and after seizures. From such
data, we assembled a cell type—specific connectivity matrix for
the dentate gyrus that, combined with in vivo single cell axonal
projection data. allowed us to build a 1:1 scale structural model
of the dentate gyrus in the computer. We characterized the
architectural properties of this virtual dentate gyrus network
using graph theoretical tools. following recent topological
studies of biochemical and social networks, the electric grid.
the Internet (Albert et al. 1999: Barabdsi et al. 2000: Eubank et
al. 2004: Jeong et al. 2000: Watts and Strogatz 1998), the
Cuenorhabditis elegans nervous system (Watts and Strogatz
1998). and model neuronal circuits (Lin and Chen 2005:
Masuda and Aihara 2004: Netoff et al. 2004; Roxin et al.
2004). To test the functional relevance of the alterations
observed in our structural model, we enlarged. by two orders of
magnitude. a recently published 500-cell network model of the
dentate gyrus. incorporating multicompartmental models for
granule cells, mossy cells. basket cells, and dendritically pro-
jecting interneurons reproducing a variety of experimentally
determined electrophysiological cell-specific properties (San-
thakumar et al. 2005).

Taken together. the results obtained from these data-driven
computational modeling approaches reveal the topological
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NETWORK REORGANIZATION IN EPILEPSY

characteristics of the control dentate gyrus and demonstrate
that hyperexcitability can emerge from purely structural
changes in neuronal networks after loss of neurons and sprout-
ing of new connections, in the absence of changes in synaptic
or intrinsic cellular properties.

METHODS

A three-step strategy was implemented to investigate the functional
role of the structural reorganizations that take place in the rat dentate
gyrus during epileptogenesis: /) construction of the database: 2)
construction of the structural models (control and diseased versions);
and ) construction of the functional models (control and diseased
versions). These three steps will be described first, followed by details
of the implementation and assessment of the structural and functional
models. Additional details can be found in appendixes A1-A3.

Construction of the database and the models

CONSTRUCTION OF THE DATABASE. The database for the normal
and epileptic biological dentate networks was assembled from pub-
lished data. This process itself entailed several distinct steps. As an
initial step. eight types of dentate cells were identified as anatomically
well described: granule cells. mossy cells. basket cells, axo-axonic
cells, molecular layer cells with axonal projections to the perforant
path (MOPP cells). hilar cells with axonal projections to the perforant
path (HIPP cells). hilar cells with axonal projections to the comumis-
sural-associational pathway (HICAP cells). and interneuron-specific
(IS) cells (Fig. 1A). Next. the numbers of cells for each of these eight
neuronal types were estimated from the published data (see cell
numbers in the left column of Table 1. with references). For a full
description of how the cell numbers were estimated. see APPENDIX A l.
As athird step in assembling the database, the connectivity matrix was
filled in (Table 1). This matrix contains estimates of how many
postsynaptic cells among each of the eight cell types a single presyn-
aplic neuron of a given type innervates (for example. from the third
row, second column in Table 1: a single basket cell innervates about
1,250 granule cells: mean and ranges are indicated. with references).
For full justification of the estimates in the connectivity matrix. see
APPENDIX A2. As a final step, spatial constraints in connectivity were
considered. For each cell type, the extent of the axons of single cells
along the septotemporal axis of the dentate gyrus was determined
from in vivo single-cell fills published in the literature (Fig. 2). For
example, in the case of control mossy fibers. the averaged in vivo
axonal distribution of 13 granule ceils (Buckmaster and Dudek 1999)
was fitted with a single Gaussian (Fig. 2). For a full description of the
construction of the axonal distributions from the in vivo single-cell
filling data and the single or double Gaussian fits, see APPENDIX A3.

CONSTRUCTION OF THE STRUCTURAL MODEL—CONTROL CONDI-
TION. Once the database was assembled. a structural model of the
dentate gyrus was created in the computer. This was a so-called graph
network, consisting of “nodes” (corresponding to neurons) and “links™
(corresponding to synaptic connections). Each node carried the iden-
tity and connectivity pattern of a particular cell type (in other words.
there were “granule cell nodes™ and “mossy cell nodes.” etc.). The
links were directed (like synapses) but nonweighted (meaning that a
link simply represented the existence of a connection from cell A to
cell B. irrespective of the number of synapses between cells A and B
or the functional strength of that connection; note that the functional
model. described later, takes some of these factors into account). The
structural model was full scale (1:1, meaning that the number of nodes
in the graph equaled the total number of celis in the dentate gyrus) and
captured the salient connectivity and axonal distribution of the various
cell types. Overall, the resulting structural model of the dentate gyrus
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was similar to graph representations of other real-world systems (e.g..
Watts and Strogatz 1998).

CONSTRUCTION OF THE STRUCTURAL MODEL—PROGRESSIVE SCLE-
ROSIS. In terms of the structural reorganization of the neuronal
networks during limbic epileptogenesis. the loss of hilar cells and
the sprouting of mossy fibers are two key factors underlying the
process of “end-folium™ (meaning the dentate gyrus) sclerosis
(Margerison and Corsellis 1966; Mathern et al. 1996) (in the rest
of the paper. we will use the shorthand “sclerosis™ for end-folium
sclerosis; note that end-folium sclerosis is distinct from the broader
term “hippocampal sclerosis™). Herein. we simulated the structural
changes in sclerosis by removing hilar cells (mossy cells, HIPP
cells. HICAP cells. and IS cells) and adding mossy fiber contacts.
The biological process of sclerosis (original meaning: “hardening
of the tissue™) encompasses more than the loss of cells and
sprouting of axons (importantly. it also entails gliosis). However,
from the perspective of neuronal network reorganization in the
dentate gyrus. the loss of hilar cells and the sprouting of mossy
fibers are clearly the two major factors.

There were three important features that needed to be considered
during the implementation of sclerosis in the structural model. First,
just as in the biological network. the loss of hilar cells entailed the loss
of both the excitatory mossy cells and the inhibitory HIPP. HICAP.
and IS interneurons in the hilus (Buckmaster and Jongen-Relo 1999).
Second. just as in the biological network, the spatial extent of sprouted
mossy fibers from a single granule cell remained restricted to a single
hippocampal lamella (about 600 wm) like the control mossy fibers
(Buckmaster et al. 2002b). Third. the progression of sclerosis was
implemented by considering tull (100%) sclerosis the state of maxi-
mal hilar cell loss (when all hilar cells are removed) and the addition
of a maximal number of previously nonexistent mossy fiber connec-
tions to other granule cells [the densest. anatomically quantified
sprouting reported in the literature from an experimental epilepsy
model was an average of 275 extra mossy fiber contacts per granule
cell (Buckmaster et al. 2002b)—we considered this number 100%
sprouting]. Therefore intermediate stages in the progression of scle-
rosis could be distributed between the control (0% sclerosis) and the
maximally sclerotic (100% sclerosis) states. For example, at 50%
sclerosis, 50% of mossy cells and 50% of hilar interneurons were lost,
and 50% of the maximal sprouting of mossy fibers was implemented
(Fig. 1B,). Sclerosis could also be studied in networks containing only
the nodes representing the excitatory cells (“isolated excitatory
graph™) or only the interneurons (“isolated inhibitory graph™). How-
ever. mossy fiber sprouting obviously could not be implemented in the
isolated inhibitory graph. Similarly. sprouting could be studied with-
out hilar cell loss (“sprouting-only networks™). However, the reverse
was not necessarily true because mossy cell loss without mossy fiber
sprouting in the isolated excitatory graph caused the graph to become
disconnected as sclerosis progressed (because granule cells do not
make synapses on each other in the control network). It should also be
noted that in the isolated interneuronal graphs, axo-axonic cells were
included only as synaptic targets for other interneurons. but not
sampled for the L and C calculations. because they exclusively
projected to excitatory neurons. In addition, the interneuronal graphs
were characterized only =96.66% sclerosis because 100% sclerosis
resulted in a disconnected graph.

CONSTRUCTION OF THE STRUCTURAL MODEL—EQUIVALENT RAN-
DOM GRAPHS. Specific topological measures (the average path
length and the clustering coefficient; see following text) were
calculated for each structural model representing different stages in
the progression of sclerosis, to quantify how network architecture
changes during sclerosis. However. because the numbers of nodes
and links change during sclerosis, these topological measures are
meaningful only if they are contrasted with similar measures taken
for equivalent random graphs at each stage of sclerosis. An
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FIG. 1. Schematic of the basic circuitry of

the dentate gyrus and the changes to the net-
work during sclerosis. A: relational representa-
tion of the healthy dentate gyrus illustrating the
network connections between the 8 major cell
lypes: GC, granule cell: BC, basket cell; MC,
mossy cell AAC, axo-axonic cells: MOPP.
molecular layer interneurons with axons in per-
forant-path termination zone: HIPP, hilar inter-
neurons with axons in perforant-path termina-
tion zone: HICAP, hilar interncurons with ax-
ons in the commissural/associational pathway
termination zone: and IS, interneuron sclective
cells. Schematic shows the characteristic loca-
tion of the various cell types within the 3 layers
of the dentate gyrus, Note, however. that this
dingram does not indicate the topography of
axonal connectivity (present in both the struc-
tural and functional dentate models) or the so-
matodendritic location of the synapses (incor-
porated in the functional network models). B,:
schematic of the excitatory connectivily of the
healthy dentate gyrus is illustrated (only cell
types in the hilus and granule cells are shown).
Note that the granule cell axons {the mossy
tibers) do not contact other granule cells in the
bealthy network. B, schematic ol the dentate
gyrus at 50% sclerosis shows the loss (indicated
by the large x symbols) of half the population
of alt hilar cell types and the 50% sprouting of
mossy libers that results in abnormal connec-
tions between granule cells (note that. unlike in
this simplilied schematic. all granule cells
formed sprouted contacts in the structural and
functional models of sclerosis: thus progressive
increase in sprouting was implemented by in-
creasing the number of postsynaptic granule
cells contacied by single sprouted mossy fibers:
see METHODS). C: schemalics of 3 basic network
topologies: regular. small-world, and random.
Nodes in a regular network are connected to
their ncarest neighbors, resulting in a high de-
gree of local interconnectedness (high cluster-
ing coefficient C), but also requiring a large
number of steps to reach other nodes in the
network from a given starting point (high aver-
age path length L). Reconnection of even a few
of the local connections in a regular network to
distal nodes in a random manner results in the
emergence of a small-world network, with a
conserved high clustering coefficient (C) but a
low average path length (L), In a random net-
work, there is no spatial restriction on the con-
nectivity ol the individual nodes, resulting in a
network with a low average path length L but
also a low clustering coefficient C.
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TABLE 1. Connectivity matrix for the neuronal network of the control dentate gyrus
AXxo-axonic MOPP
Granule Cells Mossy Cells Basket Cells Cells Cells HIPP Cells HICAP Cells IS Cells
Granule cells X 9.5 15 3 X 110 40 20
(1,000,000} X 7-12 10-20 1-5 X 100-120 30-50 10-30
ref. [1-5] ret. [6] ref. |7] ref. [6-9] ref. [6.7.9] ref. {6] ref. {4,10,11]  ref. {4.7.10.11} ref. [7]
Mossy cells 32500 350 7.8 7.5 5 600 200 X
(30.000) 30.000-35.000 200-500 5-10 5-10 5 600 200 X
ref. [11] ref. [4.11-13] ref. [12:13] ref. [13] ref. {13] ref. |14] ref. [12,13] ref. [12,13] ref. [15]
Basket cells 1,250 75 35 X X 0.5 X X
(10.000) 1.000-1,500 50-100 20-50 X X 0-1 X X
ref. [16,17) ref. §4.16-19) ref. {11.16.17.19]  ref. [16.17,20.21] ref. [18} ref. [ 18] ref. [18) ref. | 18] ref. [10.20]
Axo-axonic cells 3,000 150 X X X X X X
(2,000) 2.000-4.000 100-200 X X X X X X
ref. 4.22] ref. {4.18.22] ref. {4.5.11.14.23} ref, [5.18] ref. [5.18] ref. |5.18] ref. [S5.18] ref. 15.18] ref. [5.18,19]
MOPP cells 7.500 X 40 1.5 7.5 X 7.5 X
(4,000) 5.000-10.000 X 30-50 1-2 5-10 X 5-10 X
rel. [11,14] ref. [14] rell [14.24] ref. [14,25] ref. [14.26]  ref. [14.25]  ref. {14.20.25] ref. [14.25] ref. [14.15]
HIPP cells 1,550 35 450 30 15 X 15 X
(12.000) 1.500-1,600 20-50 400-500 2040 10-20 X 10-20 X
ref. [11] ref. [4.101.20]  ref. [4.11.12.27.28] ref. [4.11,20) ret. [20.25] rel. [25] ref. [14,20.25] rel. [25) ref. [15.20]
HICAP cells 700 35 175 X 15 50 50 X
(3.000) 700 3040 150-200 X 10-20 50 50 X
ref. [5.29.30] ref, [4.11.20] rel. [20] rel. [4.11.20) ref. [20] ref. {14.20] ref. [20} rel. [20]
IS cells X X 7.5 X X 7.5 7.5 450
(3.000) X X 5-10 X X 5-10 5-10 100-800
ref. [15.29.30) ref. [15] ref. {15] refl. [15.19] ref. [15] ref. {19] ref. [19] ref. [15})

Cell numbers and connectivity values were estimated from published data for granule cells, Mossy cells. basket cells, axo-axonic cells, molecular layer
intermeurons with axons in perforant-path termination zone (MOPP), hilar intemeurons with axons in perforant-path termination zone (HIPP), hilar interneurons
with axons in the commissural/associational pathway termination zone (HICAP), and intemeuron-selective cells (IS). Connectivily is given as the number of
connections to a postsynaptic population (row /) from a single presynaptic neuron (column 1. The average number of connections used in the graph theoretical
calculations is given in bold. Note, however. that the small-world structure was preserved even it only the extreme low or the extreme high estimates were used
for the caleulation of L and C (for further details, see APPENDIX B1(3). References given correspond to: 'Gaarskjaer (1978): *Boss ot al. (1985): *West (1990);
*Patton and McNaughton (1995): *Freund and Buzsdki (1996); *Buckmaster and Dudek (1999): "Acsddy ot al. (1998): *Geiger et al. (1997): *Blasco-Ibanez et
al. (2000); '°Gulyis et al. (1992); ''Buckmaster and Jongen-Relo (1999); '*Buckmaster et al. (1996): "*Wenzel et al. (1997); *Han et al. (1993); **Gulyds et
al. (1996): "*Babb et al. (1988): '"Woodson et al. (1989); '"Halasy and Somogyi (1993): "®Acsddy et al. (2000); *Sik et al. (1997); 'Bartos et al. (2001); **Li
etal, (1992); *'Ribak ¢t al. (1985): *Froischer et al. (1991): **Katona et al. (1999): *Soriano et al. (1990); 'Claiborne et al. (1990): *Buckmaster et al. (2002a):

Nomura ot al. (1997a); *Nomura ct al. (1997bh),

equivalent random graph has the same numbers of nodes and links
as the graph (representing a particular degree of sclerosis) to which
it is compared. although the nodes have no representation of
distinct cell types and possess uniform connection probabilities for
all nodes. For example, the equivalent random graph for the control
(0% sclerosis) structural model has about a million nodes and the
same number of links as in the control structural model. but the
nodes are uniform (i.e., there is no “granule cell node,” as in the
structural model) and the links are randomly and uniformly dis-
tributed between the nodes.

CONSTRUCTION OF THE FUNCTIONAL MODEL. The effects of struc-
tural changes on network excitability were determined using a real-
istic functional model of the dentate gyrus (note that “functional”
refers to the fact that neurons in this model network can fire spikes.
receive synaptic inputs, and the network can exhibit ensemble activ-
ities. e.g., traveling waves: in contrast, the structural model has nodes
that exhibit no activity). The functional model contained biophysically
realistic, multicompartmental single-cell models of excitatory and
inhibitory neurons connected by weighted synapses. as published
previously (Santhakumar et al. 2005). Unlike the structural model.
which contained eight cell types. the functional model had only
four cell types. as a result of the insufficient electrophysiological
data for simulating the other four cell types. The four cell types
that were in the functional model were the two excitatory cells
(i.e.. the granule cells and the mossy cells) and two types of
interneurons (the somatically projecting fast spiking basket cells

and the dendritically projecting HIPP cells: note that these repre-
sent two major. numerically dominant, and functionally important
classes of dentate interneurons, corresponding to parvalbumin- and
somatostatin-positive interneurons: as indicated in Table |. basket
cells and HIPP cells together outnumber the other four interneuronal
classes by about 2:1). Because the functional model had a smaller
proportion of interneurons than the biological dentate gyrus, control
simulations (involving the doubling of all inhibitory conductances in
the network) were carried out to verify that the observed changes in
network excitability during sclerosis did not arise from decreased
inhibition in the network. i.e.. that the conclusions were robust (see
RESULTS and APPENDIX B3).

Although the functional model was large. because of computa-
tional limitations. it still contained fewer neurons (a total of about
50.000 multicompartmental model cells) than the biological den-
tate gyrus (about one million neurons) or the full-scale structural
model (about one million nodes). Because of this 1:20 reduction in
size, a number of measures had to be taken before examining the
role of structural changes on network activity. First, we had to
build a structural model of the functional model itself (i.e.. a graph
with roughly 50.000 nodes) and verify that the characteristic
changes in network architecture observed in the full-scale struc-
tural model of the dentate gyrus occur in the {:20 scale structural
model (graph) of the functional model as well. Second. certain
synaptic connection strengths had to be adjusted from the experi-
mentally observed values (see following text).

J Newrophysiol « VOL 97 « FEBRUARY 2007 » WWW.jn.org

2002 ‘L ydiep uo Bio ABojoisAyd-ul wouy pepeojumog




2
=

b4
w

Granuie cell Basket cell

-
[=]

154
o

0.

0.0 +

Normalized axonal extent
Normalized axonal extent

".3000-2000-1000 0 1000 2000 3000

.-3000-2000-1000 0 1000 2000 3000

DYHRFJELD-JOHNSEN ET AL.

FIG. 2. Gaussian fits to experimentally determined distribu-
tions of axonal branch length used in construction of the models

Distance from soma (um) Distance from soma (um) of the dentate gyrus. A: plol shows the averaged axonal distri-
C D bution of 13 pranule cells (Buckmaster and Dudek 1999) and the
g § corresponding Gaussian (it. B: {it to the septotemporal distribu-
g Axo-axonic cell § HIPP cell tion ol axonal lengths of a tilled and reconstructed basket cell
= 1.0 = 1.0 (Sik et al. 1997). C: fit to the axonal distribution of a CAl
s S axo-axonic cell (Li et al. 1992). D: Gaussian fit to the averaged
3 06 8 05 axonal distributions of 3 HIPP cells from gerbil (Buckmaster ¢t
E . § ) al. 2002a). E: fitto averaged axonal distributions of 3 mossy cells
B -] illustrates  the characteristic bimodal pattern ol distribution
SO. E0.0 v {Buckinaster ¢t al. 1996). F: histogram of the axonal lengths of
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§ § plots. the septal end of the dentate gyrus is on the leff (indicated
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Implementation and assessment of the models

IMPLEMENTATION OF THE STRUCTURAL MODEL. The dentate gyrus
was represented as a 6-mm strip (corresponding to the approximate
septotemporal extent of the rat dentate gyrus: West et al. 1978)
subdivided into 60-pum bins. Cells of the eight distinct neuronal types
were represemed in the structural model as individual nodes and
distributed evenly among the bins. The nodes were linked according
to cell-type-specilic connection probabilities derived from the aver-
age number of projections from the pre- to the postsynaptic neuronal
class in the literature (i.e.. according to the connectivity matrix shown
in Table 1: appendixes Al and A2). In general. in addition to the mere
existence of connections between two particular cell types (codified in
Table 1), the probability of connections from one particular cell A to
a given cell B also depends on the extent of the axonal arbor of cell
A and the relative distance between cells A and B. Therefore the
cell-type-specitic connection probability was further modified by a
factor obtained by the normalized Gaussian fits to the experimentally
determined axonal distributions of the presynaptic cells (APPENDIX A3
and Fig. 2) and the relative positions of the pre- and postsynaptic
neurons in the graph. Within these cell-type-specific constraints,
connections were made probabilistically on a neuron to neuron (or.
more specifically. because we are talking about a graph, a “"node to
node™) basis with a uniform synapse (“outgoing link™) density
along the axon [in agreement with the in vivo data in Sik et al.
(1997)]. treating multiple synapses between two cells as a single
link and excluding autapses. Note that this implementation of the
structural model did not take into account certain potential factors
that may distort local connection probabilities (see DISCUSSION). Also note
that because the neuronal origin of GABAergic sprouting is unknown
(Andre et al. 2001: Esclapez and Houser 1999), only sprouting of
mossy fiber connections were included in sclerotic graphs.

ASSESSMENT OF THE STRUCTURAL MODEL: CALCULATION OF GRAPH
CHARACTERISTICS. To quantify the topological characteristics of
the structural model. the approach of Watts and Strogatz (1998).

originally applied to the neuronal network of the worm C. elegany.
was used. Two measures were used to assess the salient features of the
structural models: the average path length L (average number of steps
to reach any node in the network) reflecting global connectivity and
the average clustering coefficient C (for a given node. the fraction of
possible connections between its postsynaptic nodes that actually
exist) as a measure of local connectivity. In human societies. for
example. C describes the probability that friends of person X also
know each other (i.e., it is a measure of local “‘cliquishness™), whereas
L describes what is commonly known as “the six degrees of separa-
tion™ between any two persons on the planet (i.e., it is a measure of
large-distance or “global” connectivity). These two key topological
measures for the structural model of the dentate gyrus were calculated
using custom C code on a Tyan Thunder 2.0 GHz dual Opteron server
(32 GB RAM). Graph calculation times were roughly 50 h per graph.

In general. there are three distinct major network topologies (for
reviews. see Buzsiki et al. 2004 Soltesz 2006): 7) Regular (high L.
high C): 2) Random (low L. low C): and 3) Small world (low L. high
C) (Fig. 1C). The graph of a regular (or “ordered™ or “lattice-like™)
network is characterized by a high degree of local interconnectedness
(because each node is linked to its nearest neighbors. resulting in a
high C). but nodes at the two ends of the graph are separated by a large
number of nodes (leading 10 a high L). In other words, a regular
network has an abundance of local connections (thus the comparison
to a “lattice” or a fishing net). but has no long-distance connections.
Conversely, the graph of a random network is well connected globally
(low L). but its local connectivity is low (low C) (this is because
random connectivity does not typically form local clusters. but it
results in numerous long-distance connections). A small-world struc-
ture can be best understood by considering that it can be derived from
a regular network by disconnecting and randomly reconnecting a few
of its connections (leading to at [east a few long-distance connections,
which, in wrn, results in a low L while retaining the high C of the
regular network) (Fig. 1C: note that the term “random reconnection™
is used here for didactic purposes to describe a commonly used
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derivation of a small-world network from a regular network. without
implying that long-distance connections in an actual biological small-
world network are random). Therefore small-world networks are both
locally (high C) and globally (low L) well connected (again, in the
language of social networks. humans tend to have a strongly inter-
connected local cluster of friends, but also at least a few acquaintances
with connections far outside of the local circle). The quantitative
determination of the small-world topology of a given network is
performed by comparison to an equivalent random graph: for a
small-world network, L =~ L__,qom and C >> C,u0m:

Given the large size of the graph. L and C were determined from the
weighted averages of randomly sampled nodes (“weighted” here
refers to the fact that our sampling took into account the ratio of the
nodes representing granule cells, mossy cells, and the six interneuro-
nal classes: i.e.. the sampling of the nodes in the structural model had
to reflect the ratio of the constituent cell types). A minimum of
1/1.000 granule and mossy cells and 1/100 interneurons were sampled
and control calculations were performed to verify the accuracy and
stability of the sampling method. as described in APPENDIX B1.

IMPLEMENTATION OF THE FUNCTIONAL MODEL. The functional
model network was implemented using the NEURON 5.6 simulation
environment (Hines and Carnevale 1997). The required simulation
times ranged from about 35 to 70 h per model network. The single-cell
models were taken from Santhakumar et al. (2005). with morpholo-
gies, voltage-gated conductances, and intrinsic properties based on
detailed experimental data. Briefly. the single-cell models had nine to
17 compartments including a somatic compartment and two to four
dendrites. Minimally. each dendrite was modeled with a proximal,
middle. and distal dendritic segment. The models contained nine
classes of active conductance mechanisms such as sodium channels,
three types of potassium channels (A-type and fast and slow delayed
rectifier), three types of calcium channels (L-. N-. and T-type), two
types of calcium-dependent potassium channels (SK and BK chan-
nels). /. and an intracellular calcium clearance process. The intrinsic
properties of the cell types were modeled to simulate the passive
(membrane potential at rest. input resistance. and membrane time
constant) and active (amplitude and threshold of action potential, fast
afterhyperpolarization. spike frequency adaptation. and sag ratios)
properties observed in experimental data (Lubke et al. 1998: Staley et

TABLE 2. Parameters of functional network model

1571

al. 1992). For granule cells. the somatodendritic distribution of active
conductances was adapted from Aradi and Holmes (1999). In all other
cell types, the active conductances. with the exception of sodium and
fast delayed rectifier potassium channels, were distributed uniformly
in all compartments. Sodium and fast delayed rectifier potassium
conductances were present only in the soma and proximal dendritic
compartments. Additionally. correction for the membrane area con-
tribution of spines was implemented for the granule and mossy cell
models. The multicompartmental single-cell models of 50.000 gran-
ule. 1.500 mossy, 500 basket. and 600 HIPP cells were evenly
distributed in 100 bins along the septotemporal axis.

Connectivity in the functional model network was established using
the procedure described for the structural model. All connection
probabilities were increased fivefold compared with the structural
model. to compensate for the fewer number of cells in the functional
model and ensure that no cells in the model networks were discon-
nected (note that even with this increase in connection probability.
each presynaptic cell still made fewer connections in the functional
model network than in the full-scale structural model because the
postsynaptic cell populations were reduced by a factor of 20: compare
Tables 1 and 2). The synaptic conductances between cell types, based
on unitary conductances from the literature. were taken from Santha-
kumar et al. (2005). Excitatory synaptic conductances were adjusted
to avoid depolarization block in postsynaptic cells arising from the
higher value of the clustering coefficient C in the functional model
network (see Fig. 3B). Except when specifically stated (see APPENDIX
B3). distance-dependent axonal conduction delays were not included.
Perforant path stimulation was simulated as in Santhakumar et al.
(2005). by a single synaptic input to 5.000 granule cells. 10 mossy
cells (note that only a fraction of all mossy cells receive direct
perforant path input: Buckmaster et al. 1992; Scharfman 1991), and
50 basket cells (situated in the middle lamella of the model network)
att = 5 ms after the start of the simulation. Additional details of the
functional model network, including the convergence and divergence
of the connections and the synaptic weights, are listed in Table 2. Note
that the current functional model has three primary differences from
the network model of Santhakumar et al. (2005). First. we have
enlarged the network by two orders of magnitude. making it possible
to study the small-world network characteristics of the dentate gyrus.

Functional Model Network Parameters

Fron To — GC MC BC HC
Granule cells* Convergence 68.03 78,08 370.95 2.266.64
(50,000) Divergence 68.03 2.34 3N 27.19
Synapse weight, n§ 1.00 0.20 0.94 0.10
Mossy cells Convergence 243.62 87.23 5.59 375.53
(1.500) Divergence 8.120.82 87.23 i.86 150.21
Synapse weight, n§ 0.30 0.50 0.30 0.20
Basket cells Convergence 3.1 6.31 8.98 n/a
(500) Divergence 313.22 18.93 B.98 n/a
Synapse weight, nS 1.60 1.50 7.60 nfa
HIPP cells Convergence 4.82 3.76 140.13 nfa
(600) Divergence 401.86 9.39 116.77 n/a
Synapse weight, nS 0.50 1.00 0.50 nfa
Perforant path+ Synapse weight. n§ 20.00 17.50 10.00 n/a

The cell numbers (column 1) and synaplic connectivity values and sirengths in the functional model network are used for the activity caleulations in Fig. 4
(quantified in Fig. 5). Note that this network is smaller (50.000+ cells) than the full-scale dentate gyrus (>1.000.000 cells): thus the connectivity had to be
adjusted from what is shown in Table 1. Convergence is given as the number of connections converging onto a single posisynaptic neuron (row [) from a
presynaptic neuronai population (column 1), For example, 243 mossy cells converge on a single granule cell in this network, Divergence is given as the number
of connections diverging 1o a postsynaptic population (row /) from a single presynaptic neuron (column I). For example, a single mossy cell makes synapses
on 8,120 postsynaptic granule cells in this network. The strengths of the connections are given in nanosiemens (nS). For example. the strength of the excitatory
synapse formed by a single mossy cell on a single granule cell is 0.3 nS. *Granule cell to granule cell connections represent values at 100% sprouting. ¥Perforant
path input 10 5.000 granule cells (two synapses each). 50 basket cells (two synapses each). and 10 mossy cells (one synapse each) in 1he central 10 bins of the

network model.
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FiG. 3. Alterations in L and C with sclerosis for the various
structural models of the dentate gyrus. A, C. and E: changes in
average path length L with sclerosis. B, D, and F: changes in
clustering coctficient C with sclerosis. Explanation of symbols
in A also applies to B-D. Explanation of symbols in E also
applies to F. Black lines in A-D: full-scale structural models.
Black lines in E and F: isolated excitatory/inhibitory graphs.
Biue lines: structural model of the functional model with
selerosis, Green lines: structural model of the functional model

0 20% 40% 60% 80% 100%
Degree of Sclerosis

Average path length L
N W s 0 ;d
|
Clustering coefficient C
(structural model)

0 == +0
0 20% 40% 60% 80% 100%
Degree of Sclerosis

network with sprouting only. Dashed lines in A and B: equiv-
alent random graphs of the full-scale structural model. A and B:
plots of the changes in L and C of the various dentate graphs.
L and C for the full-scale structural model of the healthy (i.e..
At 0% sclerosis) dentate gyrus are marked with O™ on the
y-axis. C and D: plots for relative L (=L, ngom from A) and
relative C (=C/C,0n. from B). In C and D, dotted horizontal
lines indicate the relative L and C for the full-scale structural
madel of the healthy dentate graph: vertical dotted lines indi-
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cate the degree of sclerosis where the relative L exceeds and the
relative C decreases below the values for the control graph.
Note the close similarity of the relative L and C changes during
sclerosis in the structural model of the tunctional maodel net-
work (50,000+ nodes; blue lines) and in the full-scale struc-
tral model (>1 million nodes; solid black lines). E and F:
plots of changes in L and C for the isolated excitatory and
inhibitory graphs with sclerosis and for the isolated excitatory
graphs with sprouting alone (without mossy cell loss), respec-
tively. Changes in L and C for inhibitory interneurons after

(onaiyuy)
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Second. in contrast to the Santhakumar et al. (2005) study that focused
on moderate (<50%) sclerosis. the current model examines the
structural and functional effects of the progression of sclerosis from 0
to 100%. Third. the use of Gaussian fits to constrain axonal distribu-
tions instead of an uniform probability adopted in the earlier model
considerably increased topological accuracy of this model. Moreover,
the current study also tested the effects of hilar interneuronal loss and
parallel increases in sprouting and hilar cell loss in contrast to the
independent examination of sprouting and mossy cell loss performed
in Santhakumar et al. (2005).

ASSESSMENT OF THE FUNCTIONAL MODEL: MEASURES OF HYPEREX-
CITABILITY. Excitability of the functional model was assessed by a
number of measures. including: /) total duration of the granule cell
discharges in the network (defined as the time from the first spike fired
by a granule cell in the network to the last spike fired by a granule cell
in the network: note that the first and the last granule cell spikes may
originate from different granule cells); 2) mean number of spikes per
granule cell: 3) latency to spread of activity from the perforant path
activation to the firing of the most distant granule cells in the network:
and 4) synchrony of granule cell discharges. Because the latter
measure is the most complicated. it will be described below
separately.

To assess synchrony. the coherence of granule cell firing between
100 and 200 ms (i.e.. sufticiently far in time from the initial stimulus,
and during a period where networkwide activity could be observed at
most degrees of sclerosis: see Fig. 4) was calculated. using a pub-
lished coherence measure (Foldy et al. 2004; White et al. 1998). The
local coherence was calculated by all-to-all comparison of the activity
in granule cells #25000 to #25999. Pairwise comparison of the activity
in granule cells #25000 to #25999 and #45000 to #45999 provided the
long range coherence, To calculate coherence from the network
simulations during the postsimulation analysis, trains of square pulses
were generated for each firing cell in a pair with each pulse of unitary
height centered on the spike peak and the width equal to 20% of the
mean interspike interval of the faster spiking cell in the pair. Subse-
quently. the shared area of the unit height pulse trains was calculated
(equivalent to the zero time lag cross-correlation). Coherence was

hilar intemeuron loss: dotted Tines: for excitatory cell types
(granule cells and mossy cells): solid lines: tor mossy fiber
sprouting in the absence of concurrent mossy cell loss: dashed
lines. Note the 2 y-axes in B and F.

S Wwepyeo) Suueisniy

defined as the sum of their shared areas normalized by the square root
of the product of the total areas of the individual trains (Foldy et al.
2004 White et al. 1998).

Data analysis and plotting were done using Matlab 6.5.1 (The
MathWorks. Natick MA) and Sigmaplot 8.0 (SPSS. Chicago IL).

Note that the structural and functional model networks are
available for download from ModelDB (http://senselab.med.yale.
edu/senselab/ModelDB).

RESULTS

Key features of the biological net captured by the
structural model

The structural model of the healthy. nonsclerotic dentate
gyrus contained over one million (1.064.000) nodes. with the
majority (94%) representing granule cells. The million nodes
in the control dentate graph were richly linked by over a billion
links (1.287,363,500). As in the biological network, there was
a large difterence in the degree of interconnectedness between
nodes representing different cell types. The nodes representing
granule cells gave the fewest links (Table 1) and these links
were also the most spatially restricted (corresponding to the
restricted septotemporal extent of the in vivo filled granule cell
axons shown: Figs. 1B and 2). In contrast, nodes representing
mossy cells formed by far the highest number of links to other
nodes (Table 1) and these links spanned almost the entire
length of the dentate graph (corresponding to the large extent
of single mossy cell axon arbors: Figs. 1B and 2).

Globally and locally well connected nature of the control
dentate gyvrus

We assessed the quantitative topological properties of the
control structural model of the dentate gyrus by calculating
L and C for the graph at 0% sclerosis and for the equivalent
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FiG. 4. Effects of the sclerosis-related topological changes on granule cell activity in functional model networks. A—F: raster plots of the first 300 ns of action
potential discharges of granule cells in the functional model network (Granule ccells #1 to #50,000, plotted on the y-axis) at increasing degrees of sclerosis.
Network activity was initiated hy a single stimulation of the perforant path input to granule cells #22.500 to #27.499 and to 10 mossy cells and 50 basket cells
(distrihuted in lhe same area as the stimulated granule cells) at t = 5 ms (as in Santhakumar et al. 2005). Perforant path activation led to an initial spike in the
directly stimulated granule cells (vertically aligned dots at t = 14 ms). followed by a gap in granule cell activity resulting from inhibition by local, directly
stimulated basket cells. Note that the most pronounced hyperactivity was observed at submaximal (80%) sclerosis (for quantification. see Fig. 5. A-D).

random graph. The average path length for the control
dentate graph was remarkably low (L = 2.68. marked O in
Fig. 3A), considering the presence of over one million nodes
in the network. The L = 2.68 value indicated that. on
average, fewer than three synapses separated any two neu-
rons in the dentate gyrus. Therefore the low L showed that
the graph was well connected globally. To our knowledge,
this is the first measurement of L for a mammalian micro-
circuit, where each neuron is represented by a unique node
in the graph. It is interesting to note that the average path
length for the control dentate graph was virtually identical to
the L = 2.65 reported for the much smaller nervous system
of the worm C. elegans with a connected graph of only 282
nodes (Watts and Strogatz 1998) (note, however, that the C.
elegans simulations were done on a nondirected graph.
whereas our graphs take into account the directionality of
the connections).

The average path length calculated for the equivalent ran-
dom graph was only slightly lower (L, (., = 2.25) than the L
for the control structural model, resulting in a L/L 4o ratio
close to one (1.19; indicated by the solid black line at 0%
sclerosis in Fig. 3C). However, the control structural model
was much more highly connected locally than the equivalent
random graph. as shown by the high value of the relative
clustering coefficient (C/C = 0.026751 / 0.001135 =

random

24.7, indicated by the solid black line at 0% sclerosis in Fig.
3D: note that the control value for C is marked O in Fig. 3B).
The relatively low average path length and high clustering
coefficient of the control dentate graph fulfilled the dual re-
quirements of L =~ L, 4om and C >> C_ 4o, demonstrating
that the normal, healthy biological dentate gyrus is a small-
world network (Watts and Strogatz 1998).

Enhanced local and global connectiviry with submaximal
sclerosis and the transition to a more regular network
structure at severe sclerosis

Next, we determined how the graph characteristics of the
dentate gyrus change during the progression of sclerosis. char-
acterized by the loss of hilar neurons and mossy fiber sprouting
(Longo et al. 2003; Nadler 2003: Ratzliff et al. 2004). The fully
sclerotic dentate graph exhibited only a small (4.5%) decrease
in the total number of nodes (48,000 nodes representing hilar
cells lost out of 1.064,000), but there was a dramatic (74%)
reduction in the number of links (953,198,800 links removed
out of the total 1,287.363,500), indicating that maximal sprout-
ing did not replace the lost links resulting from the removal of
all richly connected hilar cells (Table 1). To determine how
small-world topology was affected by the removal of so many
links, L and C values were calculated for dentate graphs
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constructed at various degrees of sclerosis (solid black lines in
Fig. 3. A and B). Because the average path length and cluster-
ing coefficient of the equivalent random graphs also changed
with deletion of nodes and addition of links. these were
recalculated for each degree of sclerosis (dashed lines in Fig. 3,
A and B).

The results revealed that the progression of sclerosis (in-
creasing loss of the predominantly long distance projecting
mossy cells and hilar interneurons, with increasing degrees of
spatially restricted mossy fiber sprouting) did not significantly
elevate L, until about 90% of the hilar cell nodes were lost
(solid black line in Fig. 3A). In fact, the relative average path
length (L/L,,,4,m) actually decreased below the control, 0%
sclerotic level (illustrated by the horizontal dotted line in Fig.
3C). These data indicated that, despite the loss of long-distance
projecting hilar cells and the resulting massive decrease in
connections. there was a seemingly paradoxical enhancement
of long-distance connectivity and conservation of the small-
world topology during submaximal (<<90%) sclerosis. How-
ever, the relative L did not stay below its control value because
it showed a sudden increase during the last stages of sclerosis.
Therefore the changes in relative L during sclerosis were
strongly biphasic (i.e.. the initial decrease in L was followed by
a sudden increase). Importantly. as illustrated in Fig. 3C, it was
only at 96.6% sclerosis (vertical dotied line) that the relative
average path length (solid black line) started to increase above
the control value (horizontal dotted line), indicating that global
connectivity was preserved until the final stages of sclerosis.

The high C value (the second characteristic feature of
small-world topology) of the control dentate graph was also
preserved and actually enhanced during submaximal sclerosis.
Although the initial increase in C values was followed by a
subsequent decrease at midlevel sclerosis (around 40%) (solid
black line in Fig. 3B). the relative clustering coefficient
(CIC, paom- SOlid black line in Fig. 3D) increased above the
control value (indicated by horizontal dotted line in Fig. 3D)
up to about 90% sclerosis, showing a sclerosis-related
enhancement of local connectivity. Similar to the biphasic
changes in relative L. it was only shortly before the onset of
full sclerosis that the relative C values decreased below the
control level (dotted lines in Fig. 3D; note that. even though
relative clustering coefficient decreased at 100% sclerosis in
Fig. 3D, the absolute clustering coefficient in Fig. 3B remained
more than tenfold higher than C even at maximal scle-
rosis).

The decreasing relative average path length (solid black line
in Fig. 3C) and increasing relative clustering coefficient (solid
black line in Fig. 3D) during submaximal sclerosis together
demonstrated an unexpected enhancement of the features char-
acterizing a small-world topology. However. a transition to a
more regular or lattice-like network structure (Watts and Stro-
gatz 1998), characterized by high values of both L and C (i.e.,
poor global but rich local connectivity), occurred shortly be-
fore maximal (100%) sclerosis (note that the fully sclerotic
network is not a true lattice structure with only nearest-
neighbor connections because, e.g.. the axonal arbors of basket
cells span roughly 25% of the septotemporal extent of dentate
gyrus, providing a large number of midrange connections in
the network even at 100% sclerosis).

random
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Analvsis of the changing roles of topological factors using
isolated excitatory and inhibitory structural models

To determine the mechanisms underlying the transient en-
hancement of small-world properties during sclerosis, graphs
of the excitatory and inhibitory parts of the dentate network
were considered separately. First, the isolated excitatory graph
was examined. The sclerosis-induced changes in L and C in the
isolated excitatory graph (mossy cells and granule cells alone:
solid lines in Fig. 3. E and F) were generally similar to the
alterations in the full dentate graph (solid black lines in Fig. 3.
A and B), suggesting that it was the loss of long-range con-
nections (in this case, from mossy cells) and mossy fiber
sprouting that played key roles in alterations of graph structure.
Sprouting without mossy cell loss did not significantly affect
the average path length in the excitatory graph (dashed line in
Fig. 3E). indicating that the added local connections from
sprouted mossy fibers mattered little for L when the long-range
connections of the mossy cells were retained. However. sprout-
ing without mossy cell loss in the excitatory graph produced
similar changes in the clustering coefficient (dashed line in Fig.
3F) as sprouting with mossy cell loss (solid line in Fig. 3F).
(Note that the essentially unchanged L and the biphasic
changes in C observed in the sprouting-only isolated excitatory
network will play an important role in determining the role of
L and C in network hyperexcitability during sclerosis; see
following text.) The decrease in C at higher degrees of scle-
rosis (which is also observed in the structural model containing
both excitatory and inhibitory neurons) was the result of each
granule cell primarily contacting other granule cells after
mossy fiber sprouting. Because the probability of sprouted
connections between any two granule cells is low, the fraction
of actually existing connections between pairs of postsynaptic
granule cells is also low, resulting in a decreasing C (see
METHODS, ASSESSMENT OF THE STRUCTURAL MODEL: CALCULATION OF
GRAPH CHARACTERISTICS). In the structural model network con-
taining both excitatory and inhibitory neurons, this dominant
influence of granule-to-granule cell connections on the clus-
tering coefficient was more gradual as a result of the larger
number of nongranule cell postsynaptic targets of each granule
cell.

In contrast to the isolated excitatory graph. the isolated
interneuronal graph (i.e.. without granule cells and mossy
cells) showed a steady increase in average path length and
decrease in clustering coefficient with sclerosis (dotted lines in
Fig. 3. E and F) because the progressive loss of hilar interneu-
rons resulted in an increasingly sparse graph (note that there
were no granule cells and thus no sprouting of mossy fibers in
the isolated interneuronal graph). Interestingly, the control
interneuronal graph had an order of magnitude higher cluster-
ing coefficient (C = 0.0561) than the control excitatory graph
(C = 0.0060). reflecting the significantly more interconnected
nature of interneuronal circuits.

These results showed that, during submaximal sclerosis, it
was primarily the sprouting of mossy fibers that played a key
role in determining topology because the local shortcuts pro-
vided by sprouting not only increased C, but also maintained a
low L: for granule cells (GC). the loss of mossy cells (MC)
removed a number of two-step (GC — MC — GC) and
three-step (GC — MC — MC — GC) paths that were partially
compensated by the introduction of a large number of new
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three-step paths (GC — MC — GC — GC: GC — GC - MC
— GC). This mechanism was similar for connections involving
other long-range projecting hilar neurons. However, with se-
vere sclerosis. the primary role shifted to the loss of hilar cells
because their numbers became too small to maintain the low
average path length (even with maximal sprouting). Therefore
these calculations, carried out in the isolated excitatory and
inhibitory networks, revealed that mossy fiber sprouting was
primarily responsible for the transient increase in C at sub-
maximal sclerosis, whereas the dramatic increase in L at
maximal sclerosis was mostly explained by the loss of the last
distantly projecting hilar neurons. In other words. the key
topological determinant switches from sprouting to hilar cell
loss during severe sclerosis.

Biphasic alterations in network topology during sclerosis
result in biphasic changes in network excitability

Next. the functional consequences of the biphasic alterations
in network topology observed in the structural model were
explored in our large-scale, topographically, and biophysically
realistic functional model of the dentate gyrus (for details on
the model, see MeTHODS). Before the simulations, we first
verified that the changes in L and C for the graph of the
functional model network with 50,000+ cells were similar to
those observed for the graph of the biological network con-
taining 1,000,000+ cells (blue lines in Fig. 3. A-D: compare
with solid black lines in the same panels).

As with the biological dentate gyrus (Santhakumar et al.
2001), the functional model network of the normal, nonscle-
rotic dentate gyrus showed only limited firing in response to
single simulated perforant path stimulation (Fig. 44). Between
20 and 80% sclerosis (when the features characteristic of
small-world topology were found to be enhanced in the struc-
tural model). the functional model network showed increasing
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hyperexcitability (Fig. 4. B-E), with activity spreading to the
entire network by 40% sclerosis. reminiscent of the epilepti-
form activity recorded in vitro (Rafiq et al. 1995). However,
beyond 80% sclerosis, corresponding to the change from a
small-world network to a more regular network in the struc-
tural model, the activity in the functional model network
decreased (Fig. 4F). In other words, changes in network
activity during sclerosis, as assessed by a probing stimulus to
the perforant path, appeared to be biphasic, similar to the
biphasic nature of the topological alterations during sclerosis
observed in the structural model. It is interesting to note that
the structural changes also affected network dynamics, as
indicated by the transition from a spatially relatively uniform
pattern (40—60% sclerosis; Fig. 4, C and D) to a pattern with
distinct waves of activity (80~-100% sclerosis: Fig. 4, E and F).
that could collide and mutually annihilate (Netoft et al. 2004;
Roxin et al. 2004).

Next, we quantified the changes in activity seen in Fig. 4 in
the functional model network during sclerosis, using a number
of measures of hyperexcitability (see METHODS). Both the max-
imal duration of granule cell activity and the mean number of
spikes fired per granule cell (black lines in Fig. 5. A and B)
increased and peaked at 80% sclerosis, followed by a decrease
at 100% sclerosis. For degrees of sclerosis where the activity
spread to the entire functional model network (40-100% scle-
rosis). the latency from perforant path activation to the firing of
the most distant granule cells (black line in Fig. 5C) was the
shortest (i.e., activity spreads the fastest) at 60% sclerosis (89.7
ms), followed by an increase in latency to the maximal value at
100% sclerosis (106.2 ms). The topological alterations aiso
affected synchrony of firing in the network. Comparison of
local and global synchrony in granule cell firing showed that
local and [ong-range coherences initially were similar at 40 and
60% sclerosis (Fig. 5D, dashed black line: local coherence;
solid black line: long-range coherence), but the long-range

FIG. 5. Biphasic changes in granule cell firing in the func-
tional model of the dentate gyrus during progressive sclerosis
and the lack of biphasic changes when sprouting occurs without
hilar neuron loss. Black Jines: sclerosis; green lines: sprouting
alone, without concurrent hilar cell loss. A: changes in the

maximal duration of perforant path stimulation-evoked granule
cell firing (for a description of this measure, sec METHODS) as a
function of sclerosis or sprouting alone (note that granule cell
firing pemnsisted beyond 2,000 ms at 80 and 100% sprouting in
the sprouting-only case). B: mean number of spikes fired per
granule cell with progressive sclerosis or sprouting without cell
” loss. C: latency to firing of granule cells in all 100 bins, in
networks with persisient activity in all granule cell bins. D:
local (dashed line, all-to-all comparison of action potential
firing in granule cells #25000 to #25999) and long range (solid

line, pairwise comparison of the activity in granule cells #25000
1o #25999 10 granule cells #45000 to #45999) coherence of
granule cell firing in the time interval of 100 o0 200 ms for
40-100% sclerosis or sprouting without cell loss. Note that in
C and D, results are shown only for 40-100% sclerosis or
sprouting, where activity spread to the entire network and
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persisted beyond 100 ms. E and F: changes in average total
peak conductance of excitatory (£) and inhibitory (F) synapses
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when sprouting took place without hilar cell loss.
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coherence subsequently decreased with increasing sclerosis,
whereas the local coherence dramatically increased. This di-
vergence of local and long-range synchrony with progressive
sclerosis reflected the increasing dominance of short-range
connections over long-range hilar cell axonal projections.
Taken together. these measures all indicated that biphasic
changes in the structural model resulted in biphasic alterations
in hyperexcitability during sclerosis.

We also tested the potential caveat that changes in the
activity of the functional model network simply reflected
alterations in net excitatory and inhibitory conductances to
granule cells, rather than transitions in network architecture. As
shown in Fig. 5. E and F (black lines), there was a monotonic
decrease in both net excitatory and inhibitory peak conduc-
tances received by individual granule cells during sclerosis.
Clearly, these monotonic changes in synaptic innervation of
the granule cells could not be directly responsible for the
biphasic changes in network activity.

Network activity parallels changes in sprouting in the
absence of cell loss

The described biphasic changes in network hyperexcitability
during sclerosis (solid black lines in Fig. 5. A-D) occurred in
conjunction with biphasic changes in both relative average path
length and relative clustering coefficient (solid black and blue
lines in Fig. 3, C and D). Which of these two topological
measures primarily determine changes in network hyperexcit-
ability? How do the changes in L and C correspond to cell loss
and mossy fiber sprouting? To answer these questions, we took
advantage of the fact that (as noted before), in graphs of the
isolated excitatory network with sprouting but no cell loss
(dashed lines in Fig. 3. E and F), the average path length did
not change significantly, but the clustering coefficient still
underwent a biphasic change with increasing degree of sprout-
ing. Therefore we could use sprouting-only networks (showing
unchanged L but biphasic changes in C) to test whether
biphasic changes in the clustering coefficient alone would
conserve the biphasic changes in network hyperexcitability.
Accordingly. we constructed functional model networks where
mossy fiber sprouting occurred in the absence of hilar neuron
loss. Again, before the actual simulations were performed, we
first verified that the graphs of these sprouting-only functional
model networks indeed showed the expected biphasic changes
in absolute and relative clustering coefficient (green lines in
Fig. 3, B and D), without significant changes in absolute and
relative average path length (green lines in Fig. 3. A and C).
(Note that these calculations were crucial because the func-
tional model network contained 20 times fewer neurons than
the number of nodes in the structural model network. Therefore
topological changes taking place in the structural model cannot
be automatically assumed to occur in the graph of the func-
tional model.)

In response to perforant path stimulation, the sprouting-only
functional model networks showed increasing granule cell
activity with progressive sprouting, which spread to the entire
model network in a self-sustained manner at 40-100% sprout-
ing (Fig. 6). Detailed analysis of the activity in the sprouting-
only networks (green lines in Fig. 5. A~D) showed that both the
maximal duration of activity and the mean number of spikes
fired per granule cell increased monotonically with increasing

DYHRFIJELD-JOHNSEN ET AL.

degree of sprouting and exceeded those in the corresponding
sclerotic networks (compare black and green lines in Fig. 5. A
and B: note the difference in scale of the y-axes), whereas the
latency of the spread of activity to the most distant granule
cells steadily decreased (green line in Fig. SC). In contrast to
the sclerotic networks (black lines in Fig. 5D), the local and
long-range coherence of the granule cell firing remained sim-
ilar to each other for all degrees of sprouting in the sprouting-
only networks (green lines in Fig. SD). The monotonic increase
in granule cell firing and decrease in latency of activity prop-
agation in the sprouting-only networks reflected the monotonic
increase in excitatory drive to granule cells with progressive
sprouting (68 nS increase per granule cell at maximal sprout-
ing: green line in Fig. 5E), whereas inhibition remained con-
stant (green line in Fig. 5F).

These results with the sprouting-only networks demonstrate
that biphasic changes in the absolute and relative clustering
coefficient alone (i.e.. without corresponding alterations in path
length) do not result in biphasic changes of network hyperex-
citability. Therefore these findings further support the conclu-
sion that. in networks with concurrent sprouting and hilar
neuron loss. the biphasic changes in relative average path
length and the corresponding transition from a small world to
a more regular network structure were primarily responsible
tor the biphasic change in network hyperexcitability.

Control simulations and tests of robustness

To examine the robustness of our results, we tested the
effects of changes in structural and functional parameters on L
and C values and on network activity in an extensive series of
control simulatjons. These controls are described in appendixes
B2 and B3 and illustrated in Figs. 7-9. The control simulations
concerning structural parameters [aPPENDIX B2, (1)—~5)] in-
cluded tests of cell-type—specific changes in neuronal density
along the septotemporal axis. inhomogeneity in connectivity
along the transverse axis. axonal distributions at the septal and
temporal poles of the model dentate gyrus. offset degrees of
cell loss and sprouting, and the bilateral dentate gyrus model
with both associational and commissural projections. The con-
trol simulations concerning functional parameters [APPENDIX
B3. (1)+3)] included increasing (doubling) the strength of
inhibitory synaptic connections, inclusion of axonal conduc-
tion delays. and simulation of spontaneous instead of stimula-
tion-evoked activity.

All variations in structural parameters in these control cal-
culations yielded L and C values that were similar to the L and
C values of the base mode] used in the rest of the paper.
Similarly. the simulations of activity with altered structural and
functional parameters all displayed the characteristic decrease
in network activity with the transition from 80 to 100%
sclerosis. demonstrating the robustness of the major conclu-
sions.

DISCUSSION

The following are major findings of this study. /) The
control dentate gyrus is a locally and globally well connected
small-world network. 2) Structural alterations during epilepto-
genesis result in biphasic changes of small-world topology.
Initially. and during the majority of the sclerotic process. the

J Newropiysiol « VOL 97 « FEBRUARY 2007 « WWW,jn.0rg

2002 'v1 yosew uo Bio"ABojoisAyd-ul wosy papeojumoq




NETWORK REORGANIZATION IN EPILEPSY

A Health

1 50000 J

8

2250001 |

c

[

o 1

0 100 200 300
Time (msec)
40% Sproutin

+& 50000 PO

8

2250001 |

c

]

O] P
100 200 300
Time (msec)

E 80% Sprouting

a1 50000

8

g 250001 |

[~

ol

0]

0 100
Time (msec)

200 300

1577
B 20% Sprouting
3 50000
8 :
£ 25000 '(
[
(O] 1
0 100 200 300
Time (msec)
60% Sprouting
i
8
2
3
c
]
(O]
100 200
Time (msec)
E 100% Sprouting
i
gzsooo [
3
=
il
(O]

10 100
Time (msec)

200 300

FIG. 6. Functional effects of sprouting without hilar ncuron loss in the functional model network. A—F: raster plots of action potential discharges of granule
cells in the functional model networks at increasing degrees of mossy fiber sprouting. Network activity was initiated as in Fig. 4. Note that maximal hyperactivity

occurred at maximal sclerosis (for quantification, see Fig. 5, A-D).

features defining the small-world characteristics of the dentate
gyrus are enhanced (the dentate gyrus becomes “more small
world” than in its control state). This is shown by a decreased
relative L and increased relative C. indicating enhanced global
and local connectivity. However. just before maximal sclerosis
is reached, the refative L sharply increases as a result of the
loss of the last long-distance projecting hilar cells, while
relative C declines, leading to an overall decrease in the
small-world characteristics. 3) Analyses of isolated excitatory
and inhibitory graphs show that biphasic changes in small-
world characteristics correspond to changing roles of topolog-
ical factors: During submaximal sclerosis, the key factor is the
predominantly local mossy fiber sprouting, which (as long as at
least some long-distance projecting hilar cells survive) com-
pensates for the loss of hilar cells (leading to a decrease in
relative L, despite the loss of many long-distance connections).
However. during the last stages of sclerosis, the loss of hilar
neurons becomes the major topological determinant: as the last
long-distance connections are removed, the network evolves
into a more regular, lattice-like structure. 4) Simulations in the
functional network show that changes in network topology
predict the development of hyperexcitability: during submaxi-
mal sclerosis, when small-world characteristics increase, net-
work hyperexcitability increases: however, during the last
stages of sclerosis. when small-world characteristics decrease,
the network hyperexcitability declines. 5) Sprouting-only net-
works, showing insignificant changes in L but biphasic

changes in C, exhibited monotonic increases in hyperexcitabil-
ity. These latter results further underline the importance of
network topology by indicating that, in networks with concur-
rent sprouting and hilar cell loss, the biphasic changes in
relative L (and the corresponding transition from a small-world
to more regular network topology) are primarily responsible
for the biphasic change in network hyperexcitability. Conse-
quently. these results suggest that the survival of even a few
hilar cells is critically important in maintaining networkwide
hyperexcitability in the epileptic dentate gyrus.

Limitations of the models and robustness of the conclusions

Although our structural model was full scale and incorpo-
rated eight neuronal classes with cell-type-specific and topo-
graphic connections, the “virtual dentate gyrus™ did not repli-
cate the complete connectivity of the biological network. In
most cases, specific components were not represented in the
structural model because no precise data were available. For
example, recent results indicate that local connection probabil-
ity may be modified by intraclass correlations (Yoshimura and
Callaway 2005: Yoshimura et al. 2005) and overrepresentation
of small network motifs (Milo et al. 2002; Reigl et al. 2004;
Song et al. 2005: Sporns and Kotter 2004). However, there is
no evidence for such factors in the dentate gyrus. In the
functional model, the neuronal populations were simulated
with homogeneous cellular properties and synaptic connectiv-
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ity strengths. However. a large degree of heterogeneity was
still present, stemming from the use of four very different
neuronal populations with different synaptic characteristics,
variability in the number and distribution of connections, and a
random, noisy conductance implemented in the mossy cell
models to emulate the experimentally described spontaneous
firing. Furthermore, simulations with continuous random syn-
aptic activation of the network (see Fig. 9, C and D) did not
alter the described behavior. The functional model deliberately
did not incorporate a number of factors that reportedly change
in epilepsy because our goal was to test the functional roles of
purely structural changes. while keeping all functional param-
eters unaltered.

Despite model limitations, the conclusions are remarkably
robust. Confidence in the results are strengthened by two
tactors: /) the multicompartmental single-cell models were
specifically developed to replicate a large number of electro-
physiological properties. including resting membrane poten-
tial, input resistance, action potential amplitude, threshold.
adaptation. afterhyperpolarization, maximal firing rate. and sag
ratio (Santhakumar et al. 2005); and 2) the functional networks
constructed from these model cells simulate biological re-
sponses, including action potential firing in only a small
fraction of granule cells in response to a single-shock stimu-
lation of perforant path fibers under control conditions (San-
thakumar et al. 2005) (Fig. 44). resulting from the low resting
membrane potential of granule cells and strong feedforward
inhibition from basket cells. Also. hyperexcitability already

emerged in the functional model at mild (20-40%) levels of
sclerosis. in agreement with experimental observations (Lo-
wenstein et al. 1992: Santhakumar et al. 2001: Toth et al.
1997). In addition, an extensive series of control simulations
(appendixes B2 and B3) tested the dependency on structural
and functional parameters that may not have been well con-
strained by experimental data: e.g.. the biphasic change in
network hyperexcitability was unaltered despite doubling of all
inhibitory conductances in the functional model to compensate
for the excluded interneuronal subtypes. Remarkably, control
simulations with the bilateral model showed that the conclu-
sions persisted even when the network was doubled in size and
interconnected with anatomically realistic commissural projec-
tions. The robustness of the conclusions was further supported
by the strong predictive powers of the different models: e.g..
although the structural model was based on nonweighted
graphs, consistent functional effects were observed in the
functional model with weighted synaptic connections.

Control dentate microcircuit as a small-world network

Our results demonstrated that neurons in the healthy dentate
gyrus form a both locally and globally well connected small-
world network microcircuit. Interestingly, any two neurons in
the healthy dentate gyrus were separated by fewer than three
synapses on average, just as in the C. elegans neuronal network
(Watts and Strogatz 1998). despite the severalfold difterence in
network size. It is interesting to speculate that perhaps an
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evolutionary pressure exists to keep L constant as network size
increases. However, more networks must be analyzed to test
this hypothesis. Currently. the only neuronal networks for
which L and C values have been determined. with individual
neurons considered as distinct nodes. are the networks of the C.
elegans (Watts and Strogatz 1998), culture systems (Shefi et al.
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model of the dentate gyrus. A: cell-type—specific
commissural axonal distributions, based on esti-
mates from data in the published literature [sce
APPENDIX B2(5)]. B: raster plots of granule cell
activity as a function of sclerosis in the functional
bilateral model. Top panels: contralateral side. Bor-
tom panels: ipsilateral side. B,: 0%, B,: 80%, B;:
100%  sclerc Sclerosis was bilateral and per-
forant path stimufation was applied to the middie
lamella in the ipsilateral side only. Note that at
100% sclerosis. the activity did not spread to the
contralateral side as a result of the complete loss of
mossy cells. C: calculations of L (C,) and C (Cy)
show that the L and C lor the entire bilateral
network were similar to the L and C of the “base™
full-scale (ipsilateral) structural model of the den-
tate gyrus used to obtain the data presented in
RESULTS. €', shows that the drop in activity (calcu-
lated for both sides) with the progression of sclero-
sis from R0 to 100% was present in the bilateral
functional model (and was even more pronounced
than in the base model). Note that the symbols in C,
also apply to C; and C; (symbols in C, overlap).
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2002). and the dentate gyrus (present study). In all other studies
where small-world characteristics were determined from ana-
tomical data, the nodes were entire brain areas (Achard et al.
2006: Sporns and Zwi 2004; Stephan et al. 2000). not single
cells. Studies describing small-world topology of interarea
brain connectivity (Sporns and Zwi 2004; Stephan et al. 2000)

100% Sclerosis

AG. 9. Control simulations for functional pa-
rameters, A: granule cell activity in functional
model networks with double inhibition {maximal
conductance of all inhibitory synapses indicated in
Table 2 was doubled compared with the base net-
work used in the rest of the simulations; see APPEN-
DiXx B3(D)]. B: granule cell activity with axonal
conduction delays included in the network [an ax-
onal conduction velocity of 0.25 m/s (Bartos et al.
2002) was implemented in the network: see APPEN-
pix B3(2)]. C: granule cell activity in functional
model networks with spontaneous activity [simu-
lated 10-Hz Poisson-distributed perforant path in-
puts were applied independently to all granule cells,
all basket cells and 100 mossy cells, as a function of
increasing amount of sclerosis; see  APPENDIX
B3(3)]. A,, B,. Cp: 0% sclerosis: As B, Cat 80%
sclerosis; Ay By Co 100% sclerosis, D: summary
plot of granule cell activity tor the base model used
in the rest of the paper and for the 3 control
simulations depicted in this figure. Note that, in
spite of large changes in functional parameters. the
characteristic biphasic shape of the changes in ac-
tivity with sclerosis (the drop in activity with the
progression of sclerosis from 80 to 100%) was
present in all simulations.
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predict that the low L of the dentate gyrus is unlikely to
increase considerably when larger parts of the limbic system
are considered. in agreement with the presence of long-dis-
tance connections between distinct limbic areas (Buzsdki et al.
2004: Ceranik et al. 1997; Sik et al. 1994).

Functional relevance of topological changes during
epileptogenesis and correspondence to experimental data

Based on the presence of both local and long-distance
connections. it may be predicted that small-world topology
should allow both fast local computations and efficient relay of
signals to distant parts of the network. Indeed, previous mod-
eling studies demonstrated that small-world networks display
fast signal propagation and long-range synchronization (Bara-
hona and Pecora 2002: Lago-Fernandez et al. 2000; Li and
Chen 2003; Masuda and Aihara 2004). We found a marked
enhancement of small-world characteristics of the submaxi-
mally sclerotic dentate that was accompanied by increasing
degrees of hyperexcitability. as assessed by a number of
different measures. The enhancement of small-world network
characteristics during submaximal sclerosis was counterintui-
tive (it took place despite a massive loss of connections).
occurring because mossy fiber sprouting compensated tor the
loss of long-range hilar neurons, leading to only slight in-
creases in L. However, this compensation was a double-edged
sword: because of the highly localized mossy fiber sprouting.
submaximal sclerosis increased the clustering coefficient, lead-
ing to an overall enhancement of small-world network prop-
erties, and thus enhanced network hyperexcitability.

The importance of network topology was perhaps best dem-
onstrated by the surprising decrease of hyperexcitability with
maximal sclerosis. This decrease in hyperexcitability took
place at the transition from small-world topology to a more
regular network structure, resulting from the loss of the last
hilar mossy cells that normally project several millimeters in
the dentate gyrus. innervating tens of thousands of granule
cells. This result not only supported the functional role of
network topology. it is also in agreement with experimental
observations in both epileptic animals and humans. That s, in
experimental studies of animal models of epilepsy where
quantitative hilar cell counts have been pertormed. the hilar
cell loss was never 100% (Buckmaster and Dudek 1997:
Buckmaster and Jongen-Relo 1999: Cavazos and Sutula 1990:
Cavazos et al. 1994; Gorter et al. 2001; Leite et al. 1996;
Mathern et al. 1997; van Vliet et al. 2004: Zappone and
Sloviter 2004). (Note that our results indicate that even a tiny
fraction of mossy cells can maintain low L and a high level of
hyperexcitability.) Similarly, in surgically removed specimens
from pharmacologically intractable human temporal lobe epi-
lepsy patients (Gabriel et al. 2004). cell counts showed that
roughly 20% of the mossy cells survive on average, even in
patients with pronounced sclerosis (Blumcke et al. 2000). The
survival of 20% of the mossy cells in human specimens from
intractable epilepsy patients coincides with the maximal epi-
leptiform activity in our model networks observed at around
80% sclerosis.

APPENDIX Al: ESTIMATION OF CELL NUMBERS

The number of granule cells (GCs) in the dentate gyrus of the rat
was estimated to be 1,000.000 (Boss et al. 1985: Freund and Buzsiki
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1996: Gaarskjaer 1978: Patton and Mcnaughton 1995: West 1990).
Buckmaster and Jongen-Relo (1999) estimated the number of GAD-
mRNA negative neurons in the dentate hilus [presumed mossy cells
(MCs)] to be 30,000 (see also control calculations in APPENDIX B1).
The maximal fraction of GABAergic cells in the granule cell layer of
the dentate has been estimated to be 2% (Babb et al. 1988: Woodson
et al. 1989). many of which are likely to be basket cells (BCs) (Patton
and Mcnaughton 1995). Thus because the number of granule cells is
1.000.000. we set the number of basket cells to 10,000 (also in
agreement with Patton and Mcnaughton 1995). In the CA| region of
the rat hippocampus. the ratio of pyramidal cells to axo-axonic cells
(AACS) is estimated to be 200-600:1 (Li et al. 1992). whereas the
ratio of granule cells to axo-axonic cells in the dentate is estimated to
be in the higher end of this range (Patton and Mcnaughton 1995).
Assuming a GC:AAC ratio of 500:1, we estimated the number of
axo-axonic cells to be 2.000. Buckmaster and Jongen-Relo (1999)
estimated the total number of GAD-mRNA positive neurons in the
molecular layer of the dentate gyrus to be about 10.000. Assuming an
even distribution between inner-, medial- and outer molecular layers.
we estimated that there were 4.000 molecular layer interneurons with
axonal arborization in the perforant path termination zone (MOPP
cells), with somata located in the inner molecular layer (Han et al.
1993). Note that molecular layer interneurons with a majority of their
postsynaptic targets outside the dentate gyrus. like the outer molecular
layer interneurons projecting to the subiculum (Ceranik et al. 1997).
have not been included. Because the hilar interneurons with axonal
arborization in the perforant path termination zone (HIPP cells) are
thought to be identical to the somatostatin positive interneurons in the
demate hilus (Freund and Buzséki 1996: Katona et al. 1999) and
because Buckmaster and Jongen-Relo (1999) estimated that there
were 12,000 somatostatin-positive neurons in the hilus, we included
12,000 HIPP cells in the dentate network. Hilar interneurons with
axonal arborizations in the commissural/associational pathway termi-
nation zone (HICAP cells) are thought to be NOS-positive (Freund
and Buzsdki 1996). Because roughly 50% of the nearly 7.000 NOS-
positive cells in the hilus are single labeled (i.e.. not somatostatin/
neuroptide-Y or calretinin positive) (Nomura et al. 1997ab). we
estimated the number of HICAP cells in the dentate gyrus to be 3,000.
The hilus contains about 6.500 calretinin-positive cells (Nomura et al.
1997a.b). roughly 30% of which are somatostatin-positive (presum-
ably spiny CR positive cells) and some of which overlap with the
NOS-positive cells (Nomura et al. 1997a.b). Hilar interneuron-selec-
tive cells (IS cells) are aspiny and calretinin-positive (Gulyds et al.
1996), and. assuming that maximally 50% of the calretinin-positive
cells are aspiny. we estimated the number of IS cells to be 3.000.

APPENDIX A2: ESTIMATION OF CONNECTIVITY

The connectivity for each cell type is summarized in Table | and
described below in detail. In the estimates given below, we used a
uniform bouton density along the axon of the presynaptic cell. in
agreement with the in vivo data in Sik et al. (1997).

Granule cells

Mossy fibers (granule cell axons) in the healthy rat dentate gyrus
are primarily restricted to the hilus (97%). with few collaterals (3%)
in the granule cell layer (Buckmaster and Dudek 1999). In addition to
mossy cells (Acsddy et al. 1998), mossy fibers were also shown to
contact basket cells (Buckmaster and Schwartzkroin 1994: Geiger et
al. 1997) and parvalbumin-positive interneurons (Blasco-Ibanez et al.
2000). With a 1otal of 400-500 synaptic contacts made by a single
mossy fiber (Acsddy et al. 1998). the 3% of each axon located in the
granule cel]l layer (Buckmaster and Dudek 1999) was estimated to
contact 15 basket cells and three axo-axonic cells, assuming no
preferential targeting of either interneuron type. In the hilus. a single
granule cell was shown to project to seven to 12 mossy cells, forming
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large complex mossy fiber boutons (Acsady et al. 1998), whereas an
estimated 100-150 mossy fiber terminals target hilar interneurons
with approximately one synapse per postsynaptic interneuron (Acsidy
et al. 1998). Gulyds et al. (1992) estimated that a single spiny
CR-positive cell (presumed HIPP cell) is contacted by about 9,000
granule cells. With 12,000 HIPP cells and 1.000.000 GCs, each
granule cell is estimated to contact about 110 HIPP cells. The
remaining contacts were distributed among HICAP cells (40 con-
tacts). Additionally. in agreement with the presence of mossy fiber
terminals on aspiny calretinin-positive interneurons (Acsddy et al.
1998). we included 15 mossy fiber synapses to IS cells. Because
mossy fibers avoid the molecular layer (Buckmaster and Dudek 1999)
in the healthy dentate gyrus. it is assumed that they do not contact
MOPP cells. During sclerosis. sprouted mossy fibers were shown to
contact =500 postsynaptic granule cells (Buckmaster et al. 2002b):
thus we estimate an average of 50 to 500 connections from a single
granule cell to other granule cells at maximal sclerosis.

Mossy cells

A single filled mossy cell axon was reported to make 35.000
synapses in the inner molecular layer (Buckmaster et al. 1996: Wenzel
et al. 1997). Assuming a single synapse per postsynaptic cell. a single
mossy cell is estimated to contact 30.000-35,000 granule cells. Of the
2,700 synapses made by a single mossy cell axon in the hilus, about
40% (about 1,000 synapses) target y-aminobutyric acid (GABA)-
negative neurons (Wenzel et al. 1997). Because each mossy cell is
estimated to make one to five synaptic contacls on a postsynaptic
mossy cell (Buckmaster et al. 1996). we estimate that each mossy cell
contacts about 350 other mossy cells. The remaining 60% of the hilar
mossy cell axons target GABA-positive cells (Buckmaster et al. 1996;
Wenzel et al. 1997), with no reports supporting mossy cell targeting
of IS cells. Assuming that there is no preferential target selectivity
between HIPP and HICAP cells, and that each postsynaptic hilar
interneuron receives two synaptic contacts from a single mossy cell
axon (Buckmaster et al. 1996), we estimated that each mossy cell
contacted 600 HIPP and 200 HICAP cells. With very low mossy cell
to interneuron connectivity in the inner molecular layer (Wenzel et al.
1997). we estimated that each mossy cells contacts five to ten basket
and axo-axonic cells and nearly five MOPP cells with somata in the
inner molecular layer (Han et al. 1993).

Basket cells

In the CA3 region of the rat hippocampus, each principal cell is
contacted by about 200 basket cells (Halasy and Somogyi 1993).
whereas it is suggested a granule cell in the dentate is contacted by as
few as 30 basket cells. Assuming that each of the 1,000,000 granule
cells is contacted by 115 basket cells, each making one to 20 synaptic
connections (Acsady et al. 2000: Halasy and Somogyi 1993). we
estimated that each basket cell contacted about 1.250 granule cells.
Mossy cells receive 10-15 basket cell synapses (Acsddy et al. 2000).
leading to an estimate of 75 mossy cells contacted by a single basket
cell. Roughly 1% of the 11,000 synapses made by a single basket cell
axon in the granule cell layer of the dentate are onto other basket cells
(Sik et al. 1997) with three to seven synapses per postsynaptic cell
(Bartos et al. 2001). Consequently, we estimated that each basket cell
in the dentate gyrus contacted 35 other basket cells. Because hilar and
molecular layer interneurons are not a major target of basket cells
(Halasy and Somogyi 1993). we estimated that a basket cell contacted
zero to one HIPP cells (i.e., every second basket cell contacted a HIPP
cell). Similarly. the basket cell synapses onto axo-axonic cells, HI-
CAP. and MOPP cells were assumed to be negligible. Because
parvalbumin-positive (PV) cells preferentially contact other PV-pos-
itive cells in the hilus (Acsady et al. 2000), we assume that basket
cells do not contact the calretinin-positive IS cells (Gulyds et al.
1992).
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Axo-axonic cells

Most synapses made by axo-axonic cell axons are thought to target
granule cell axon initial segments (Halasy and Somogyi 1993), al-
though a small fraction of axon collaterals also descend into the
superficial and deep hilus (Freund and Buzsaki 1996: Han et al. 1993).
In neocortex. an axo-axonic cell makes four to ten synapses on the
postsynaptic cells” axon initial segment (Li et al. 1992). With
22,000.000 estimated axon initial segment synapses in the granule cell
layer (Halasy and Somogyi 1993) and assuming four synapses per
postsynaptic cell [based on the data from the neocortex from Li et al.
(1992}], we estimated that each of the 2,000 axo-axonic cell targeted
about 3,000 granule cells. Mossy cells receive axo-axonic cell inhi-
bition (Ribak et al. 1985) and. with the comparatively small fraction
of axons from axo-axonic cells in the hilus (Freund and Buzsdki 1996:
Han et al. 1993), it was estimated that axo-axonic cells targeted a
number of mossy cells equal to about 5% of their granule cell targets.
corresponding to 150 mossy cells. Because axo-axonic cells primarily
target the axon initial segment of non-GABAergic cells (Freund and
Buzsdki 1996: Halasy and Somogyi 1993). we assumed that these
cells did not project to interneurons.

HIPP cells

HIPP cells were previously estimated to contact about 1,600 gran-
ule and 450 basket cells with one to five synapses per postsynaptic cell
(Sik et al. 1997). Mossy cells can have one dendrite in the molecular
layer (Buckmaster et al. 1996). which can be targeted by HIPP cell
axons, whereas granule cells have two primary dendrites (Claiborne et
al. 1990: Lubke et al. 1998). With the mossy cell population corre-
sponding to 1/30 of the granule cell number. the mossy cell dendrites
constitute a target for HIPP cells about 1/60 of that of granule cells.
Increasing this fraction to about 1/45 to account for the presence of a
few HIPP cell contacts on mossy cells in the hilus (Buckmaster et al.
2002a) allowed us to estimate that each HIPP cell contacts about 35
mossy cells. HIPP cell axonal divergence onto HICAP and MOPP
cells in the molecular layer was assumed to be similar to that found for
somatostatin-positive cells in CA1 (Katona et al. 1999) and set to 15
connections to each population. The HIPP cell axonal divergence to
axo-axonic cells was estimated to be between the divergence to basket
and HICAP cells and thus the HIPP cell axon was assumed (o contact
30 axo-axonic cells.

MOPP cells

MOPP cells target an estimated 7.500 granule cells in the rat
dentate gyrus. Although MOPP cells have a horizontal axonal extent
similar to that of HIPP celis. they show considerably less branching
(Han et al. 1993), leading us to estimate that they contact only half as
many MOPP and HICAP cells as HIPP cells. Because MOPP cell
axons are restricted to the molecular layer (Han et al. 1993) and do not
target the basal dendrites of basket cells, they were assumed to contact
< 1/10 the number of basket cells targeted by HIPP cells. Likewise,
because MOPP cells with axons restricted to the outer and middle
molecular layers (Han et al. 1993) would not target the hilar dendrites
of axo-axonic cells (Soriano et al. 1990) and the axo-axonic cells with
somata and proximal dendrites in the hilus (Han et al. 1993). we
estimate that MOPP cells contact only one to two axo-axonic cells.
Because the MOPP cell axonal arbors in the molecular layer (Han et
al. 1993) do not overlap with major parts of the dendritic arborizations
of mossy cells (Frotscher et al. 1991), HIPP cells (Han et al. 1993;
Katona et al. 1999: Sik et al. 1997). and IS cells (Guly4s et al. 1996),
the connectivity to these cells was deemed negligible.

HICAP cells

Sik et al. (1997) estimated that the septotemporal extent and bouton
density of HICAP cell axons was similar to those of HIPP cell axons.
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whereas the estimated axonal length of HICAP cells was nearly half
that of the HIPP cell axonal length. Thus we estimated that HICAP
cells contacted about half the number of granule cells contacted by
HIPP cells, although because the HICAP cells have an additional 3%
of axon collaterals in the hilus (Sik et al. 1997), their number of
postsynaptic mossy cells was assumed to be the same as that of the
HIPP cells. HICAP cells were assumed to contact less than half the
number of basket cells targeted by HIPP cells (about 175) and a
negligible number of axo-axonic cells. With a total of 26.000 from a
single HICAP cell axon (Sik et al. 1997). nearly 700 synapses should
be present in the hilus. Assuming two to five synapses per postsyn-
aptic cell. each HICAP cell could contact 100-300 hilar cells. We
assumed that each HICAP cell targeted 50 HIPP and HICAP cells.
which, along with 35 synapses on mossy cells. was in the estimated
range. Although the total axonal length of HICAP cells is only about
half that of HIPP cells. the number of MOPP cells targeted was
assumed to be the same (about 10-20) because the HICAP cell axons
primarily project to the inner molecular layer where both cell bodies
and proximal dendrites of MOPP cells are located (Han et al. 1993).

IS cells

IS cells contact an estimated 100-800 other IS cells and five to ten
(presumably CCK-positive) basket cells (Gulyas et al. 1996). Acsidy
et al. (2000) suggested that CCK cells would include both BC and
HICAP morphologies and that, furthermore, IS cells project to soma-
tostatin-positive presumed HIPP cells. We therefore estimate that IS
cells also project to five to ten HICAP cells and HIPP cells.

APPENDIX A3: FITS TO THE EXPERIMENTALLY
DETERMINED AXONAL DISTRIBUTIONS

The density of connections made by each neuron type as a function
of distance from the soma was assumed to be proportional (o the
length of axonal branches (Sik et al. 1997). For each cell type.
Gaussian distributions were fitted to normalized. binned distributions
of data from in vivo fills of the respective cells (Fig. 2). The
distribution of sprouted mossy fiber to granule cell connections during
sclerosis followed the same distribution as that of the healthy mossy
fibers (Buckmaster and Dudek 1999) (Fig. 24). Because of the
bimodal distribution of the mossy cell axonal branches (Fig. 2E). a
single Gaussian was fitted to the average of the length of axonal
branches on both sides of the soma and mirrored around the somatic
coordinate 10 give the final fit. No experimental data are available on
the axonal distributions of MOPP and IS cells. However. because the
horizontal axonal extent of MOPP cells was previously reported to be
about 2 mm (Hun et al. 1993). they were assigned a distribution based
on the average of the basket and HIPP cell axonal distributions. IS
cells were assumed to have axonal distributions similar to those of
MOPP cells. Note that these axonal distributions are all for ipsilateral
projections; for axonal distributions concerning commissural projec-
tions, see APPENDIX B2(5) and Fig. 8A.

APPENDIX B1:
AND C

CONTROLS FOR CALCULATING L

To ascertain the robustness of our calculations of L and C in the
full-scale structural model of the dentate gyrus. a number of control
calculations were performed.

(1) Accuracy of sampling

Because the structural model of dentate gyrus contained a total of
1.064.000 interconnected nodes. it was not computationally feasible to
calculate the properties of all nodes. Therefore a minimum of 1/1.000
granule and mossy cells and 1/100 interneurons were sampled ran-
domly. and the weighted averages of L and C were calculated (see
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METHODS). To ensure the accuracy and stability of this sampling
method. control calculations were performed using different random
seeds 1o establish connectivity and randomly sample different sub-
populations of cells. Comparison of L and C of the network graphs
generated using different random seeds to establish connectivity
and/or sampling different cells did not reveal significant differences:
in fact. the SD of L and C calculated for these control networks was
<0.2%. Additionally, the clustering coefticient calculated for the
equivalent random graph of the control dentate gyrus agreed with the
theoretical value for a random graph C = k/n = 0.0011. where % is the
number of connections per node and # is the number of nodes (Watts
and Strogatz 1998).

(2) Variations in cell numbers

The small-world structure of the structural model of the dentate
gyrus was preserved even when large changes in the estimated cell
numbers were introduced. For example, control calculations showed
that reducing the number of mossy cells by 50% did not dramatically
change the graph structure (L = 2,79, C = 0.0263).

(3) Variations in connectivity estimates

The calculations of L and C presented in this paper were based on
the means of connectivity ranges estimated from the literature (Tuble
1). The small-world structure was preserved even if only the extreme
low or the extreme high connectivity estimates (Table 1) were used
for the calculation of L and C (extreme low: L = 2.76: C = 0.0163:
extreme high: L = 2.62: C = 0.0379), indicating the robustness of the
basic findings.

APPENDIX B2: CONTROLS FOR
STRUCTURAL PARAMETERS

In tive distinct sets of control simulations. we tested the effects of
changes in structural parameters on L and C values and network
activity. comparing the obtained data to the L and C and uctivity
measures calculated for the base model described in the main part of
the paper.

(1) Inhomogeneous distributions of newrons along the
septotemporal axis

The density of neurons along the septotemporal axis was previously
shown to vary in a cell-type~specific manner in the dentate gyrus.
Specifically. the density of granule cells decreases dramatically at the
temporal pole (Fricke and Cowan 1978). whereas the densities of
mossy cells and hilar interneurons increase at the temporal pole
(Buckmaster and Jongen-Relo 1999) (Fig. 7A). Calculations of L and
C for structural models implementing these inhomogeneous cell
distributions along the septotemporal axis did not show any significant
differences from the baseline structural model described in the main
text (Fig. 7. C, and C,) and the corresponding functional model
network with inhomogeneous cell distributions also displayed the
characteristic decrease in activity with the progression of sclerosis
from 80 to 100% (Fig. 7C;).

(2) Inhomogeneity in connectivity along the transverse axis

Earlier autoradiographic studies showed that within a given lamella,
the density of associational fibers from hilar cells to their molecular
layer targets appears to double from the tip of the ventral blade to the
tip of the dorsal blade (Fricke and Cowan 1978). This nonuniform
projection density in the transverse plane (perpendicular to the sep-
totemporal axis) was modeled by including a linear ventrodorsal
scaling in the probability of connecting mossy cells and HIPP cells to
their molecular layer targets (e.g.. granule cell #10.000 in each bin had
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twice the probability of receiving mossy or HICAP cell input com-
pared with granule cell #1). The results obtained with the structural
and functional models implementing inhomogeneous connectivity in
the transverse plane for either L and C (Fig. 7. C, and C,) or the
granule cell activity (Fig. 7C;) did not show any signiticant differ-
ences from the base model described in the main text.

(3) Axonal distributions at the septal and temporal poles
(anatomical boundary)

The cell-type-specific axonal distributions (Fig. 2) were based on in
vivo fills obtained from cells situated some distance away from the
septal and temporal poles of the dentate gyrus. However. the structural
and functional model networks contained cells whose axons reached
these boundaries. Because it is not known how the axonal distribu-
tions are skewed at the two poles of the biological dentate gyrus.
control simulations with four different boundary conditions were
implemented affecting all cell types, resulting in the conservation or
reduction of the septotemporal span (i.e.. the tail-to-tail width) of the
Gaussians shown in Fig. 2. and the conservation or reduction of the
total axonal length (i.e.. the area under the Gaussians: note that the
total axonal length corresponds to the total number of connections): /)
reduced septotemporal span, reduced total axonal length (i.e., the
axons beyond the anatomical boundary were simply cut off and not
preserved: this was the baseline method used for all simulations
described in RESULTS): 2) reduced septotemporal span. conserved total
axonal length (i.e,, higher density of axons in the arbor that remained
after the cutoff at the boundary): 3) conserved septotemporal spa.
conserved total axonal length: 4) conserved septotemporal span.
reduced axonal length. These four boundary conditions are illustrated
for the case of a granule cell situated at the septal pole of the dentate
gyrus in Fig. 7B. The results of these control calculations showed that
the L and C values obtained for the three additional boundary
conditions were similar to the L and C values calculated for the
baseline case (reduced septotemporal span, reduced total axonal

1583

length) used in the rest of the paper (Fig. 7, C, and C,). Similarly. the
networks with the distinct boundary conditions all showed the char-
acteristic decrease in activity as sclerosis progressed from 80 to 100%
(Fig. 7C;). Therefore these anatomical boundary controls further
support the robustness of our main results.

(4) Offset degrees of sprouting and hilar neuron loss

A strong correlation between the degree of hilar neuron loss and
mossy fiber sprouting was previously reported in both specimens from
patients with temporal lobe epilepsy (Gabriel et al. 2004) and animal
models (Nadler and Jiao 2004). However. to test whether a potential
offset in the degrees of sprouting and hilar cell loss would affect our
main conclusions, control calculations with sprouting lagging 20%
behind the hilar neuron loss were performed (70% sprouting with 90%
cell loss, 80% sprouting with 100% cell loss). These calculations did
not show any significant differences from the baseline model de-
scribed in the main text (Fig. 7. C,-C),).

(5) Bilateral model of the dentate with
commissural projections

The full-scale structural model consisted of only one side of the
dentate gyrus (and. consequently. contained only ipsilateral. associa-
tional connections). To test whether the main findings of the paper (on
L and C and the biphasic activity) also apply when both sides of the
dentate gyrus are taken into account. bilateral structural and functional
model networks were implemented. For both the structural and func-
tional bilateral models. two individual unilateral models were imple-
mented and anatomically realistic commissural connections were
established between them (Table B1). Cell-type specificity of the
commissural projections and their axonal distributions (Fig. 84) were
constrained based on data from studies using anterograde tracer
techniques (reviewed in Deller 1998). Briefly. /) because mossy fibers
do not cross the commissure (Blackstad et al. 1970: Zappone and

TaBLE B1l.  Connectivity matrix for commissural projections of the control dentate gyrus
% Commisural Axo-axonic MOPP HIPP HICAP
Projections Granuje Cells Mossy Cells Basket Celis Cells Cetls Cells Cells IS Cells
Granule cells 0% X X X X X X X X
(1,000.000) ref. [1.2] X X X X X X X X
Mossy cells 100% 22,500 X 6 6 X X X X
(30.000) 15.00G-30,000 X 2-10 2-10 X X X X
ret. |3.4] ref. {S5-7] ref. [4.8] ref. |5-7] ref. [5=7] ref. [4.8] ref. [4.8] rel. [4.8]
Basket celts 8% 400 X 10 X X X X X
(10.000) 400 X 10 X X X X X
ref. |2] ref. [8] ref. {8}
Axo-uxonic cells 38% 1000 X X X X X X X
(2.000) 1000 X X X X X X X
ref. [2] ret. [8] ref. [4.8]
MOPP cells 0% X X X X X X X X
(4.000) X X X X X X X X
ref. [2]
HIPP cells 98% 400 X 40 X 4 X X X
{12.000) 400 X 40 X 4 X X X
ref. [2] ref. [8] ref. [4.8) ref. [B} ref, [8] ref. [4.8] ref. [4.8] ref. [4.8]
HICAP cclis 0% X X X X X X X X
(3.000 X X X X X X X X
IS cells 33% X X 3 X X X X X
(3.000) X X 3 X X X X X
ref. 2] ref, (4.8} ref. [4.8]  ref. (48]  ref. [4.8]

Connectivity values were estimated from published data [sec apPENDIX B2(5)] and are given as number of connections to the contralateral postsynaptic
population (row /) trom a single presynaptic neuron (cofumn 1). The fraction of a population projecting conlralulcmlly and the average number of connections
used in the graph theoretical calculations are given in bold. References given correspond to: 'Blackstad et al. (1970); “Zappone and Sloviter (2001); *Frotscher
et al. (1991): *Deller (1998); *Deller et al. (1994); *Fricke and Cowan (1978); "Seress and Ribuk (1984); *Deller et al. (1995a).

J Neurophysiol « VOL 97 « FEBRUARY 2007 « wWw.jn.org

2002 ‘v 1 yorep uo BioABojoisAyd-uf woly papeojumoq




1584

Sloviter 2001). granule cells were modeled without contralateral
projections. 2) Mossy cells have extensive commissural projections
(Frotscher et al. 1991) with almost all cells projecting bilaterally
(Deller 1998). Similar to their ipsilateral side. the commissural pro-
jections of mossy cells terminate exclusively in the inner molecular
layer and on both granule cells and parvalbumin-positive interneurons
(Deller et al. 1994: Seress and Ribak 1984). In agreement with tracer
studies demonstrating similar densities and longitudinal extent for
both associational and commissural projections to the inner molecular
layer (Fricke and Cowan 1978). the number and septotemporal span of
the ipsilateral distribution of mossy cell axons were conserved on the
contralateral side. However. commissural contacts of the mossy cell
axons were restricted to the molecular layer because they are known
to avoid synaptic contacts in the hilus (Deller 1998: Deller et al.
1995b). In contrast to the bimodal ipsilateral distribution, the con-
tralateral distribution of mossy cell axons is unimodal with the
maximal density in the homotopic contralateral lamella (Deller 1998).
Therefore the commissural axonal distribution of mossy cells was
described by a single Gaussian (Fig. 84) with the same septotemporal
width as the ipsilateral mossy fiber axons (Fig. 2). with the peak
located in the contralateral lamella homotopic to the soma. 3) Previous
studies showed that nearly 38% of parvalbumin cells, nearly 98%
somatostatin cells. and nearly 33% of calretinin interneurons in the
denate project contralaterally (Zappone and Sloviter 2001). Addition-
ally. with the exception of avoiding hilar targets. the cell-type spec-
ificity of the interneuronal axonal termination zone is preserved in
contralateral projections (Deller et al. 1995b). Therefore we included
contralateral projections from basket cells. axo-axonic cells. HIPP
cells. and IS cells to their appropriate targets in the bilateral network
(Table B1). However. in keeping with the more restricted septotem-
poral span of the interneuronal contralateral projections (Deller et al.
1995a.b) we reduced the number of contacts and longitudinal extent of
commissural terminals (Fig. 84) compared with the corresponding
associational connections (Fig. 2).

To test whether the biphasic change in network hyperexcitability was
present in a bilateral dentate gyrus, a bilateral functional model network
was also implemented, by scaling down the connectivity of the bilateral
structural model in exactly the same way as for the ipsilateral model.
resulting in a bilateral functional model with 100,000+ cells (containing
the various cell types in anatomically realistic proportions, as in the
ipsilateral model). The commissural connection sirengths and Kinetics
were assumed to be identical to those for the ispilateral model (Table 2).
Because of the additional inputs to granule celis from spontaneously
active contralateral mossy cells. the bilateral functional model network
showed greater granule cell discharge activity (Fig. 88,) than that of the
unilateral model after perforant path stimulation at 0% sclerosis. How-
ever, in agreement with the low firing frequency of biological granule
cells (Santhakumar et al. 2005). 87.3% of granule cells did not spike and
the average firing frequency of granule cells remained low (0.27 Hz) at
0% sclerosis even in the bilateral model (as illustrated by the similar
activity measures for the bilateral and base models at 0% sclerosis in Fig.
8C,).

The results of these bilateral control simulations showed that the L
and C characteristics of the bilateral network with >2 million nodes
and possessing both cominissural and associational links were virtu-
ally identical to the L and C values calculated for the ipsilateral
structural network (Fig. 8. C, and C,). Futhermore. the bilateral
functional model network also displayed the characteristic drop in
activity as sclerosis progressed from 80 to 100% (Fig. 8. B, B,. and
C,). Note that the hyperactivity in the bilateral model at 100%
sclerosis did not spread to the contralateral side (Fig. 8B;). arising
from the complete loss of mossy cells, resulting in an even more
pronounced decrease in the overall granule cell firing at 100% scle-
rosis in the bilateral network than in the ipsilateral base model
(compare open and filled circles in Fig. 8C,).

DYHRFJELD-JOHNSEN ET AL.

APPENDIX B3: CONTROLS FOR
FUNCTIONAL PARAMETERS

In addition to simulations testing the effects of changes in the
structural model (described above), three sets of control simulations
were performed to determine the effects of varying specific parame-
ters in the functional network model. In all cases, we tested how large
parameter changes affect the biphasic nature of the changes in hyper-
excitability during sclerosis.

(1) Double inhibition

Stemming trom the lack of sufficiently detailed data on four
interneuron types. only the two major somatically and dendritically
projecting interneuronal classes (basket and HIPP cells) were included
in the functional model network. effectively removing nearly 50% of
the inhibitory connections (see Table 1). Therefore control simula-
lions were carried out to determine if large increases in inhibition in
the network alter the basic conclusions. As illustrated in Fig. 9. A ,-A,
(and summarized in Fig. 9D). the biphasic changes in network activity
in the functional model during sclerosis persisted even after doubling
of the maximal conductances of all inhibitory synapses (base values
listed in Table 2). Therefore these data indicate that the main conclu-
sions do not depend on the strength of inhibition included in the
functional model.

(2) Axonal conduction delay

In the baseline network mode] described in the main text. a fixed.
connection-type-specific synaptic delay was used (Santhakumar et al,
2005). In additional control simulations. an axonal conduction velocity of
0.25 m/s (Bartos et al. 2002) was used to add distance-dependent delays
to connections made outside the 60-pm bin of the presynaptic neuron.
This resulted in an additional 0.24-ms delay for each bin separating the
pre- and postsynaptic cells. As illustrated in Fig. 9. 8,8, (and summa-
rized in Fig. 9D). these simulations with distance-dependent delays
displayed biphasic changes in network activity during sclerosis similar to
those in networks with fixed synaptic delays. These data also support the
robustness of our conclusions,

{3) Spontaneous instead of stimulation-evoked activity

In most simulations, a perforant path stimulus was used to inves-
tigate the functional consequences of network architectural changes.
To show that the main conclusions were stimulus independent. spon-
taneous network activity. simulated by uncorrelated activation of each
granule cell. each basket cell and 100 evenly distributed mossy cells
was implemented by assigning individual perforant path inputs with
Poisson-distributed interspike intervals. As illustrated in Fig. 9. C,-C,
(and summarized in Fig. 9D). these simulations revealed the charac-
teristic biphasic changes in activity with sclerosis: the average granule
cell activity showed a peak at 80% sclerosis, followed by a decrease
at 100% sclerosis. Therefore the main conclusions were not dependent
on the specitic parameters of the stimulus.
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We use a simple dynamical model of two interacting networks of integrate-and-fire neurons to explain a
seemingly paradoxical result observed in epileptic patients indicating that the level of phase synchrony declines
below normal levels during the state preceding seizures (preictal state). We model the transition from the
seizure free interval (interictal state) to the seizure (ictal state) as a slow increase in the mean depolarization of
neurons in a network corresponding to the epileptic focus. We show that the transition from the interictal to
preictal and then to the ictal state may be divided into separate dynamical regimes: the formation of slow
oscillatory activity due to resonance between the two interacting networks observed during the interictal
period, structureless activity during the preictal period when the two networks have different properties. and
bursting dynamics driven by the network corresponding to the epileptic focus. Based on this result, we
hypothesize that the beginning of the preictal period marks the beginning of the transition of the epileptic

network from normal activity toward seizing.

DOI: 10.1103/PhysRevE.76.021920

L. INTRODUCTION

Epilepsy. one of the most common neurological disorders.
is characterized by the sudden onset of recurrent seizures due
to a hypersynchronous firing of populations of neurons. Due
to the debilitating nature of seizures and the fact that ap-
proximately 1% of the world population suffers from epi-
lepsy. much research has investigated the dynamics of the
onset of seizures with the hopes of developing methods of
seizure prediction [1]. One of the most common types of
epilepsy is focal epilepsy in which seizures originate from a
circumscribed region within the brain. Since only about 2/3
of epilepsy patients will respond to medication. surgery to
remove the focal region is another option for treatment [2].
In order to locate the focus. clinicians rely on information
from electroencephalogram (EEG) recordings combined with
various imaging techniques. The availability of EEG data
from these patients has allowed researchers to study the dy-
namics of the EEG signal before and during a seizure in
hopes of better understanding the seizure generating process
with the ultimate goal of predicting seizures.

Through the analysis of EEG recordings. it has recently
been shown that one can identify a preictal period before the
onset of a seizure during which various properties of the
EEG time series differ from those during interictal (activity
between seizures) and ictal (seizure) periods [3]. Attempts
have been made to characterize this preictal period using.
among others, the largest Lyapunov exponent [4], correlation
density [5], correlation dimension {6,7]. and dynamical simi-
larity measures [8~10]. Other recent approaches utilize mea-
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sures of phase synchrony which determines the degree of
phase locking between two oscillatory signals. Although the
concept of phase synchronization has long been known [11],
it is only recently that it has been applied to nonlinear time
series analysis [12] and biological data in the analysis of
Parkinson patients [13]. the cardiovascular and respiratory
systems [14], the calcium oscillations of epileptic cultures of
astrocytes [15,16]. and in EEG recordings [17-20].

Measures of phase and lag synchronization show a rather
unexpected effect: A significant decrease in synchronization
between certain EEG channels during the preictal period.
The patterning of channels that exhibit this drop is quite
complicated and is not necessarily dependent upon spatial
structure. It has been hypothesized that this is due to the fact
that the spatial and functional structure of the brain do not
overlap [19]. Specifically, structures that are far in terms of
Euclidian distance may have strong functional links. while
neighboring regions may be functionally independent. This
leads one to believe that the drop in synchronization occurs
in weakly connected. functionally different regions of the
brain. Thus while the cause of this decrease is unknown. it
has been hypothesized [17.19] that the recordings are per-
formed in separate regions of synchronized activity where
one site has become involved in the synchronous activity
associated with the epileptic focus and onset of the seizure,
while the other site has yet to become enveloped in this
activity.

Testing this hypothesis experimentally as well as under-
standing its dynamical underpinnings is difficult since the
EEG records the activity from a population of neurons, and
while EEG recordings give important information about neu-
ral activity, the recorded signal cannot be directly linked to
the underlying dynamics of the brain. We thus turn to a mod-
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eling approach to gain turther insight into the possible
mechanisms for the increased synchrony observed during in-
terictal periods as well as the drop in synchrony during the
preictal period.

We study a computational model in which two coupled
networks of integrate-and-fire neurons model separate EEG
recording sites. We choose one network to be associated with
the seizure generating region (epileptic focus) and slowly
drive this pathological network into a bursting (seizing) state
by increasing the excitability of the neurons within that net-
work over time. This method of transition into a seizure is
chosen to mimic a class of cellular mechanisms thought to
lead to a seizure [21]. A model of this type allows for analy-
sis of the levels of synchronization over the total population
of the networks (similar to using intracranial EEG) as well as
at the level of the individual neurons.

We observe changes within the collective dynamics of the
pathological network as the neurons transition from the glo-
bally asynchronous firing state which we consider to repre-
sent normal neural dynamics into the bursting state of a sei-
zure. If the collective dynamics of the networks share gross
dynamical properties (i.e.. the same excitability). the net-
works will enter a resonance state. This leads to an amplifi-
cation of the intrinsic oscillatory rhythm and increased levels
of locking between collective signals of the networks. How-
ever. as the network corresponding to the epileptic focus be-
gins its transition into the seizing state (but before the net-
work begins to burst). the networks stop resonating. resulting
in an elimination of the oscillatory patterning and a subse-
quent drop in phase synchrony that marks the beginning of
the preictal period. During this time, the neurons of the
pathological network continue to fire asynchronously but be-
gin to increasingly lock their frequencies. Once the patho-
logical network reaches the bursting state. it begins to drive
the other network into a bursting state and we again see the
high levels of synchronization characteristic of the ictal pe-
riod.

We thus postulate that the preictal period marks the be-
ginning of the transition from normal neural dynamics into
bursting dynamics. which is characterized by the steady in-
crease and locking of neuronal frequencies that eventually
leads to bursting. This transition in the “focal” network is
accompanied by an initial lack of a similar transition in the
“normal” network. which causes the divergence of intrinsic
network properties and a drop in the phase synchrony be-
tween the two networks.

II. METHODS
A. Model

The system studied in the paper consists of two intercon-
nected small-world networks (SWNs) of integrate-and-fire
neurons. Each network consists of 225 neurons situated on a
two-dimensional (2D) square lattice with a lattice constant of
a=1 and periodic boundary conditions. Neurons are initially
locally connected to neighbors within a radius of k=2. The
connections are then rewired with a probability of p=0.3.
consistent with the Watts-Strogatz small-world (SW) model
[22]. The small-world architecture has been shown to pro-
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duce self-sustained activity [23], increase the network’s abil-
ity to synchronize [24.25]. and has previously been used for
models of epileptic behavior [26-28].

We introduce connections between the two networks by
selecting a fraction f=0.5 of the neurons in each network to
send synaptic current to randomly chosen m neurons in the
other network. Unless stated otherwise. m=15. Connecting
the networks in this manner causes the neurons in one net-
work to receive. on average. seven random connections from
the other network. representing the average activity of that
network.

The dynamics of each neuron are governed by

T%X— =—a V() + 2 I+ B2 Jy) + DO +E. (1)
j€s kEy

where 7,,=20 ms, a; is the leakage coefficient which is uni-
formly distributed in [1.1.1]. & represents the intranetwork
connections. y represents the internetwork connections of the
ith neuron. and we sum over the incoming synaptic current J.
B is the coupling parameter between the networks. For the
simulations. we used B=0.4 unless otherwise noted. The
noise variable for each neuron &) is uniformly distributed
in [0.0.5] and E is the excitability parameter which is con-
stant for each neuron in a given network. but is allowed to
vary between the networks. The neural excitability deter-
mines the amount of synaptic input needed to cause the neu-
ron to fire and acts as a control parameter between the asyn-
chronous firing of neurons within a network and bursting
behavior where the population of neurons fires collectively.
We use this parameter to induce bursting in one network by
slowly raising its value over time. bringing the network from
a nonbursting state into a bursting state. The level of excit-
ability at which the network transitions into the bursting state
is referred to as the bursting threshold. We will denote the
two networks as N1 and N2 with respective excitability pa-
rameters £, and E,.

Equation (1) was integrated using Euler’s method and a
neuron was said to fire an action potential when the mem-
brane potential V reached a threshold value of I. At this
point. the neuron emits a spike of synaptic current that is sent
to the neurons to which it is connected. For this reason we
use the term “spike™ to refer to the firing of a neuron. The
incoming synaptic current to the ith neuron from the jth

neuron is given by
L=t t=t;

Jij(n) =A[CXp(-— —1) —exp(- ——i)] )
) s N T

where #; denotes the last time at which the jth neuron spiked.
7,=0.2 ms is the slow time constant. and 7,=0.02 ms is the
fast time constant. These two time constants determine the
spike shape and are chosen to approximate a biological ac-
tion potential [29]. The parameter A=1.8 sets the amplitude
of the spike. After firing, the membrane potential is reset to
0, and the neuron enters a refractory period of 8 ms under
which it does not integrate incoming current. Moreover.
when out of the refractory period. a neuron only integrates
synaptic current if the total value is above a threshold level
of 0.4. Each network has an intranetwork synaptic delay of
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0.6 ms and unless stated otherwise. the internetwork delay is
0.8 ms. These two constants define the spatial extent and the
distance between the two networks.

For comparison with EEG recordings. we consider here
the total current signal of each network which we define to
be the sum of all synaptic currents of the neurons within the
network at each point in time. as this tells us the collective
activity of a population of neurons. We can then look at
measures of phase and lag synchrony between the total cur-
rent signals of our networks while varying their relative
properties and compare the results to those obtained from
EEG recordings of epileptic patients. Our model also allows
us to monitor the firings of the individual neurons within the
network and to study how the synchronization of the indi-
vidual neurons leads to the observed signal. This allows for
insight into the mechanisms behind the synchronization of
the two networks on the neuronal level which is difficult to
obtain from actual EEG recordings.

B. Mean phase coherence

We first examine the mean phase coherence in our system
which is a measure of phase synchrony. Phase synchrony
refers to the state where the phases of two oscillators become
locked while their amplitudes remain uncorrelated [30]. This
generally occurs in systems of weakly coupled. nonidentical
oscillators. We consider the brain to be an example of such
systems, as a first order approximation, since each neuron is
different. and the total number of synapses a given neuron
has is small compared to the total number of neurons in the
brain. The general definition of phase locking in noisy oscil-
lators is

A¢, - = |k, — I, = const. (3)

where ¢ denotes the phase of the oscillators and & and / are
integers (here we use k=/=1). The mean phase coherence
examines the angular distribution of the difference in phase
between two oscillators and is defined [17] as

N=1
| ’ 1
R= NE etAth,_:(;Al) . )

J=0

where N denotes the number of samples in a discrete time
series and 1/At is the sampling rate. This definition restricts
RE[0.1] and phase locking occurs for R=1 while R=0 im-
plies unsynchronized signals.

To calculate R for our simulations. we used a moving
window technique in accordance with [18] with k=/=1. The
time series of the collective signal was divided into a series
of windows composed of 4096 points or 819.2 ms with an
overlap of 20%. First. the data in each window were de-
meaned (the mean value of the signal was subtracted, elimi-
nating any dc component of the signal), and a Hanning win-
dow was applied. We then used the Hilbert transform [31] to
define the analytic signal and calculate the instantaneous
phase of the signal.

The Hilbert transform of a signal s(¢) is given by
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1 Ty
.?(r):—P.v.f ﬂdf (5)
T N

(where P.V. denotes the Cauchy principal value) and the ana-
lytic signal is then defined as

(D) =s(r) +i5(r). (6)

From this. we can uniquely define the instantaneous phase of
our signal as

s(r)
(1) = aruan(x(')) s (7)
Finally, 10% of the signal was discarded at both ends to
minimize the edge effects caused by applying the Hilbert
transform to a finite signal. The resulting phases were used to
calculate the phase difference between signals and the mean
phase coherence.

C. Maximum linear cross correlation

We also examine the lag synchronization of the total cur-
rent signal. Lag synchronization refers to the case when the
state variables of two signals are the same but offset by a
constant time lag [32]. A measure of lag synchronization
between two signals s, ,(#) at a time lag 7 is the normalized
cross correlation given by

. C(s1.52)(7)
C(sy.52 = : 8
1= | e O O) ‘ ®
where C is the linear cross correlation function.
C(s).82)(7) = f $1(t+ 7)sy(0)dt. 9)

In order to measure the lag synchronization of our system,
we look at the maximum linear cross correlation [ 18] defined
as

C s = Max{ C(s,.55)(D)}. (10)

As with the case of the mean phase coherence. C,,, €[0.1],
and C,,=1 implies complete lag synchronization while
Cnax=0 for unsynchronized signals. We use the moving win-
dow technique described above to calculate C,,,x over each
window.

IIl. RESULTS

We observe three different types of behavior in the total
current signal of the modeled network as seen in Fig. 1. In an
uncoupled system. the network will undergo random firing
for low values of E as seen in Fig. 1(a). As the value of E is
increased and the mean firing rates of the neurons increase,
the network enters an oscillating stage where the total current
signal undergoes oscillatory modulation as in Fig. 1(b).
When E is increased further. the network reaches the burst-
ing threshold where the neurons begin to fire synchronously.
and the network enters the bursting stage of Fig. 1(c).
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FIG. I. Examples of the different types of behavior of the col-
lective current trace of a single. uncoupled network. (a) Random
firing behavior seen below the bursting threshold, E=0.85. (b) Fast
oscillatory modulation just before the transition to bursting, E
=0.95. (¢) Bursting behavior observed above the bursting threshold,
E=1.1.

These results are consistent with the findings of [26]. who
studied single 1D SWNs and induced bursting behavior by
adding additional long range connections to the network
while holding the excitability of the neurons constant. Here.
we hold the topology constant and induce the transition to
bursting by increasing the excitability of the neurons to
mimic the transition from interictal to ictal dynamics. It has
been shown [33] that slices from the CA3 region of the hip-
pocampus exhibit population bursts when the mean firing
rate of the neurons within a driver site is increased above a
threshold level. It has been hypothesized that bursting behav-
ior within a neural network is thus the result of the increase
in the mean firing rate of the neurons within a given region
above some frequency threshold. This is precisely what we
observe when increasing the excitability parameter due to the
link between the excitability parameter and the firing rate of
the neurons. In Fig. 2(a). we show this relationship between
the average firing rate of five neurons and the excitability
parameter. As we raise the excitability of the network. the
neurons begin to fire more rapidly and the network enters a
bursting state. As a result. there is also an increase in the
mean current output by the network [Fig. 2(b)].

In a coupled network system, the excitability of N2 is held
constant at E,=0.8. representing a local network which is not
a part of the epileptic focus. Conversely, N1 represents a
local network that is part of the epileptic focus. and we step
up the excitability of this network from E;=0.75 to E|=1.1
to obtain the transition to bursting, seizurelike dynamics. In
Fig. 3 we show the mean phase coherence R and the maxi-
mum linear cross correlation C, plotted as a function of the
difference in excitability between the networks, AE=E,
- E,. averaged over 100 simulations. The average values of R
and C,,, were calculated for each simulation by iterating for
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FIG. 2. (Color online) (a) Relationship between the excitability
parameter of a single network and the average firing rate of five
ditferent neurons within the network. Increasing the excitability of
the network causes the neurons to fire more rapidly and to synchro-
nize. (b) The average total current in a single network as a function
of the excitability. As the excitability is increased. the total synaptic
current in the network will rise. The dotted line denotes the bursting
threshold.

10 s at each value of AE and disregarding a transient time of
4s.

We focus on the three dynamical regimes. when: (A) both
networks are well below bursting threshold and have the
same properties (same excitability, AE=0). (B) both net-
works are below bursting threshold and AE # 0. and (C) the
neural excitability of N1 is above the bursting threshold.

For low values of E. below the bursting threshold. when
E\=E,. the total current signal of both networks remains
asynchronous but exhibits slow oscillatory modulation as ob-
served in a single network for relatively high network excit-
ability. However. the oscillatory modulation observed here is
due to the resonance drive of both networks through the
internetwork coupling. We associate this regime with the in-
terictal dynamics observed in the epileptic brain.

When the networks are below the bursting threshold but
have significantly different properties such that E| # E;. even
though the total input from N1 to N2 increases significantly
as E| is increased. both networks still may exhibit asynchro-
nous dynamics and. furthermore. the slow oscillatory modu-
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FIG. 3. Plots of the average phase coherence and maximum cross correlation coefficient as a function of the mismatch between the
excitability parameters in the networks. Values were averaged over 100 simulations as described in the text. Sample current traces are shown
for the different types of behavior seen during the resonance (A). random firing (B). and bursting regimes (C).

lation is abolished. We link this regime to the preictal state.

When N1 is above the bursting threshold. the bursting of
that network will induce bursting behavior in N2. This driv-
ing interaction that occurs during the bursting regime repre-
sents the spread of bursting behavior throughout different
regions of the brain during a seizure (the ictal state).

We thus observe a typical resonance curve centered on
AE=0 which is where we see the oscillatory behavior of the
networks that gives rise to the higher levels of synchroniza-
tion. As AE is further increased. the frequency response of
the two networks becomes mismatched. the slow oscillatory
modulation is abolished. and there is a drop in the synchro-
nization. The measures of synchronization rise again for
large values of AE. as this is the region where E, crosses the
bursting threshold and the networks enter the bursting re-
gime. with N1 driving the bursting in N2.

We then studied the role of the coupling and delay be-
tween the networks on the observable drop of phase syn-
chrony during the preictal period. Figure 4(a) shows the av-
erage values of R and C,,, for AE=0 (upper lines) and
AE=0.1 (lower lines) calculated over 20 simulations in
which the coupling parameter B was varied while the number
of connections between the networks was held constant at
m=135. As the coupling in the network increases, the level of
synchrony at the resonance increases and for high levels of
coupling. the synchrony during the parameter mismatch in-
creases as well. We calculated the differences, AR=R(AE
=0)-R(AE=0.1) and AC,,,,=Cru(AE=0)-C . (AE=0.1)
in Fig. 4(b). The peak in this curve is due to the interplay
between the level of synchrony at resonance and the spread
in the range of oscillations as the coupling is increased. We
see that the difference between the synchrony at resonance
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FIG. 4. (a. ¢. ¢) Average synchronization as a function of the coupling parameters during two regimes: AE=0—upper lines, and AE
=0.1—lower lines. (b. d. f) Difference between the level of synchronization between the two regimes. (a) and (b) Calculated as a function
B. with m=15. (¢) and (d) Calculated as a function of the number of connections between networks m with B=0.4. (¢) and (f) Calculated as
a function of internetwork synaptic delay with B=0.4 and m=15 with a constant intranetwork delay of 0.6 ms.
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FIG. 5. Panels (a)-(¢) show the analysis for N1. panels (d)—(f) show the analysis tor N2. (a) and (d) Interspike interval (ISI) histograms
for each neuron shown for tour levels of excitability mismatch. (b) and (e) Samples of corresponding collective signals. (¢} and () Interburst
interval (IBI) histograms of the collective signal during the same intervals as in (a) and (¢). Histograms were created by running a peak
detection program on the collective signal to determine population spikes. Note that the ISI and IBI histograms do not necessarily corre-
spond. indicating that the phase of the neuron plays a large role in the behavior of the network as a whole.
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and away from resonance remains high over a large range of
coupling parameters. A similar effect was observed when we
varied the number of connections /m between the networks
and kept the internetwork coupling strength constant at B
=0.4 [Figs. 4(c) and 4(d)]). For large m. we see a decrease in
the difference between synchrony levels. This is to be ex-
pected since as we add more internetwork connections. we
are effectively losing the distinction of having two separate
networks. We study the effects of internetwork delays on the
observed phenomenon in Figs. 4(e) and 4(f). Here we hold
the coupling parameters constant at B=0.4 and m=15. One
can see that as the delay between the networks is increased.
there is a decrease in the observed resonance peak. However,
the behavior is observed over a significant range of delays
indicating that the two interacting networks can be posi-
tioned relatively far apart.

In order to better understand the behavior ot the networks
in terms of the underlying neuronal dynamics, we examined
the behavior of the individual neurons within each network.
Figures 5(a) and 5(d) show histograms of the interspike in-
tervals (ISIs) of the individual neurons within each network
for four different values of AE in a system with B=0.4 and
m=15. We also performed a peak detection to detect bursts
in the total current signal of each network [Figs. 5(b) and
5(e)] to create histograms of the interburst intervals (IBIs).
The peak detection was done by smoothing the signal over a
window of 1.8 ms and a burst was said to occur when the
smoothed signal increased above a threshold value of 3.
These histograms of the networks’ collective behavior are
shown in Figs. 5(c) and 5(f). A bin size of | ms was used to
create the histograms.

We first focus on the behavior of the network for values of
E, below the bursting threshold. For the case of AE=0, we
see that the ISI histograms of neurons in each network as
well as the IBIs of each network have a similar distribution.
The networks are operating at the same frequency. We ob-
serve slow oscillatory modulation in the total activity of the
networks and consequently increased phase synchronization
between the networks. When AE=0.1. we observe a different
type of behavior. Although the individual neurons in N1 are
firing at an approximately locked rate leading to the narrow
ISI distribution. the total current signal of the network shows
a broad IBI distribution indicating that the neural activity
remains asynchronous. and the total current signal of the
network undergoes occasional random. low activity bursts.
The neurons in N2 show a virtually unchanged. wide distri-
bution of ISI. The distribution of IBI is similar to that ob-
served previously. but the slow oscillatory component in the
total activity is no longer observed. Thus the asynchronous
dynamics of the first network do not significantly alter the
temporal dynamics of the second network. This is due to the
fact that the neurons in N2 receive a current input from N1
which increases. but remains temporally unstructured.

When the value of £, is above the bursting threshold we
observe different behavior. Both networks start to burst with
evolving locking patterns. In the case of AE=0.4, the ISI
distributions of neurons in both N1 and N2 are highly peaked
and the peaks correspond to those of the IBI distributions in
the total activity of their respective networks. indicating that
the neural populations within the networks are highly syn-
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FIG. 6. Measures of synchronization. The vertical dashed line
represents the bursting threshold. (a) Excitability parameters as a
function of time. N1—black. N2—gray. (b) Phase coherence R as a
function of time. (¢) Maximum cross correlation coefficient C,, as
a function of time. High levels of synchronization occur during the
region of parameter matching and during bursting behavior. while
other regions exhibit low levels of synchronization.

chronized. and each network is now undergoing coherent
bursting behavior. However. the value of ISI and IBI is dif-
ferent as the networks enter a 2:1 locking regime.

When E, is further increased (AE=0.65). we observe a
transition to another type of behavior. The neurons in N1
remain synchronized and the network bursts at a higher fre-
quency due to the increase in the excitability. The neurons in
N2 become unsynchronized and fire roughly at multiples of
the period of the neurons in N1. This leads to relatively
weaker bursting. as a limited numbers of neurons fire in each
cycle, but 1:1 locking can be observed.

Thus even though the frequency of spiking and the aver-
age magnitude of the mean-field signal of N1 increases
monotonically with changes of neuronal excitability, the
slow oscillatory patterning in network activity observed
when the networks have the same properties is initially abol-
ished before the transition into bursting. This results in the
drop of synchrony in the transitional period, before the onset
of bursting. We thus hypothesize that the observed preictal
drop in phase synchrony of the EEG is due to the abolition of
resonant interaction between the two networks caused by
changes in the frequency response of network that is associ-
ated with seizure generation. Therefore we postulate that the
observed drop in synchrony is in fact an early signature of
the pathological changes in the dynamics of the focus that
eventually lead to seizure-type dynamics.

To demonstrate this transition from normal to pathological
dynamics. we hold the excitability of N2 constant at E,
=0.8 and slowly increase the excitability of N1 from E,
=0.75to E,=1.1 as shown in Fig. 6. The progression of the
changes in synchrony. driven by incremental changes in ex-
citability of N1, mimics those observed in epileptic patients
during transitions from interictal to preictal and preictal to
ictal states.

In Fig. 7 we show. for comparison. the temporal course of
the mean phase coherence R estimated from EEG time series
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FIG. 7. Profile of the mean phase coherence R for a pair of

intrahippocampal EEG recordings from a patient suffering from
mesial temporal lobe epilepsy. Seizure onset is at =0,

that were recorded intrahippocampally from a patient suffer-
ing from mesial temporal lobe epilepsy during the phase pre-
ceding an epileptic seizure. EEG signals were sampled at
260 Hz using a 12 bit analog-to-digital converter and filtered
within a frequency band of 0.5-85 Hz. R values were calcu-
lated (see Sec. II B) using a moving-window technique with
nonoverlapping segments of 15.8 s corresponding to 4096
data points. In contrast to our model simulations. in the ex-
perimental setting we do not have access to the actual excit-
abilities of the network dynamics assessed by the respective
EEG recordings. Nevertheless. we might speculate that the
time course of R. in general. reflects fluctuations of the ex-
citabilities of the network. Interestingly. during the time
frame —100-0 min the course of R and the fact that a seizure
occurs is consistent with what we observed in our model
when monotonically increasing the excitability of the “focal”
network.

Thus here we define the preictal length to be the time it
takes for the networks to transition from the resonance state
into the bursting state and study the distribution of these
lengths over multiple realizations of a given network (i.c..
different instances of a network with the same global statis-
tical properties). This can be seen in Fig. 8 for four runs on
12 different network realizations. The start of the preictal
period was marked by the point at which the mean phase
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FIG. 8. Calculated preictal lengths for 12 different realizations
of a network. Four simulations were run for each network realiza-
tion and the preictal length was calculated as described in the text.
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coherence dropped below one standard deviation of its aver-
age value during the resonance state. and the end of the
preictal period was defined to be a point at which the net-
works first entered the bursting state. We see that although
each realization displays the transition from resonance to
bursting. the time course varies for different realizations.
This variance in preictal lengths between patients has also
been observed experimentally [18].

IV. DISCUSSION AND CONCLUSIONS

We have used a simple toy model of coupled networks to
investigate the dynamical underpinnings of the drop in phase
synchronization that is observed in epilepsy patients before a
seizure. The observed regimes of high synchronization are
the result of two types of interacting dynamics: a resonance
interaction between the two networks when their properties
are similar, and directional driving when the network associ-
ated with the focus drives the bursting in the other network.

We equate this resonance interaction between our net-
works to the normal dynamics of the brain during the inter-
ictal period and the directional driving to the propagation of
the seizure during the ictal period. In between these two
dynamical regions. we have an intermediate state which we
equate to the preictal period where the dynamical properties
of the interacting networks are mismatched. and the reso-
nance interaction is abolished. while the directionally driven
bursting is not yet present. While during both the resonance
state and the driving state we see high levels of synchroni-
zation between the networks due to their similar dynamical
properties. it is the mismatch of properties during the inter-
mediate preictal state that leads to the observed decrease in
the phase synchrony between the two networks.

We therefore compare the transition out of the resonance
state and into the bursting state to the transition from normal
neuronal dynamics to the pathological dynamics of a seizure.
This implies that the observed drop in phase synchrony be-
tween certain EEG channels that defines the preictal period
could be a result of the initial biological changes in the neu-
rons associated with the focus and generation of the seizure
that occur long before the system actually reaches the seizing
state.

For this transition scenario to happen one has to assume
that in the interictal period the focal and normal networks in
the brain have similar gross dynamic properties so that they
enter the oscillatory resonant state. There is experimental
evidence from phase synchronization measures that interictal
synchronization is high between electrodes placed within the
same structure of the brain [17]. Such interactions are also
observed between the focus and other brain regions during
the interictal period [34]. Furthermore. it has become an ac-
cepted view in neuroscience that “the perpetual interactions
among the multiple network oscillators keep cortical systems
in a highly sensitive ‘metastable” state and provide energy-
efficient synchronizing mechanisms via weak links™ [35].

Although we have used a very simple model to explore a
possible explanation for the underlying dynamics governing
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different areas of the brain before a seizure. our model shows
the same behavior as observed in EEG recordings and has
allowed us to make valuable insights at the neuronal level
which cannot be done through the analysis of EEG record-
ings. We conclude that it is possible that the observed preic-
tal period is a manifestation of initial biological neuronal
changes that begin before the start of seizing behavior and
encourage further experimental work to explore this hypoth-
esis.
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