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LECTURE 2: DECAY OF MATRIX COEFFICIENTS

VITALY BERGELSON AND ALEXANDER GORODNIK

Preliminary version

A measure-preserving action of a group G on a probability space
(X, p) is called mixing if for every fi, fo € L?*(X), we have

(mx(9)fu, fo) — (/ fldu) (/ fzdu)

as g — oo (“g — oo” means that the sequence g has no accumulation

points).

Exercise 0.1. (1) Consider the measure-preserving transformation
T of a probability space (X, u). If L?(X) has non-constant
eigen-functions, then the action is not mixing. In particular, an
ergodic rotation on the torus is not mixing.

(2) Let T be a hyperbolic matrix in SLy(Z). Then the correspond-
ing Z-action on the torus R?/Z? is mixing. (Hint: consider what
happens for characters first.)

(3) Generalise the previous example to automorphisms of d-dimensional
torus.

The following theorem implies any ergodic action of the group G =
SL4(R) is mixing.

Theorem 0.2 (Howe, Moore). Consider a unitary representation m of
G = SL4(R) on a Hilbert space H such that H contains no nonzero
vectors fixed by G. Then for every v,w € 'H,

(r(g)v,w) =0 as g — oo.
We will use the following notation:

K =S0(d) = the orthogonal group,
A = {diag(ay,...,aq) : Hai =1,a; > 0},

At = {diag(ay,...,aq Haz_lal_ -+ >aq >0},

N = the group of unlpotent upper triangular matrices.
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We also set

fon — cost) —sind _(t 0 (1 s
=\ sin@ cosh @@=\ ¢t ) YT o 1 )

The following decompositions hold:

G = NAK (Iwasawa decomposition),
G =KA"K (Cartan decomposition).

Exercise 0.3. Check these decompositions. (Hint: you already know
them from a linear algebra course. Review the Gramm-Schmidt or-
thogonalization and canonical forms of quadratic forms.)

Proof. We prove the theorem by contradiction. Suppose that for some
sequence ¢, — oo and v,w € H, we have (7(g,)v,w) - 0. We write
Jn = kpayl, in terms of the Cartan decomposition. Then clearly, a,, —
00, and after passing to a subsequence, we may assume that [,v — v’
and k, 'w — w' for some v',w’ € H. It is easy to check that

(7(gn)v, w) = (m(an)v’,w’) — 0.

Hence, (7(a,)v’,w') - 0.

Let’s consider G = SLy(R). Our intermediate aim is to show that
there exists a nonzero vector fized by {us}. From the previous para-
graph, we have vectors v, w € ‘H and t,, — 400 such that (7 (as, )v, w) -
0. After passing to a subsequence, we may assume that lim7(a;, )v =
V', where the limit is in the weak! topology. Then (m(ay,)v,w) —
(v, w), so v # 0. We have

m(us)v" = Hm 7w (usay, )v = Hmw(ay, w2 v.
Since
|7 (g, wsp2 )v — m(ag, )v|| — 0,
it follows that
7(us)v" =limm(ay, )v =0,
which proves the claim.

Exercise 0.4. Generalize this argument to SLg(R). Namely, show
that there exists a nonzero vector fixed by the subgroups of the form

id  *
0 d )

Now we fix a nonzero vector v which is invariant under N = {u,}, and
consider the function ¢(g) = (7(g)v,v), which N-biinvariant. Consider
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the action of G on R?. Since Stabg(e;) = N and the action is trivial,
we have identification
Rz - {O} = G/ N )

and ¢ can be consider as an N-invariant function on R*—{0}. Note the
N-orbits in R? are the horizontal lines, except the z-axis, and single
points on the z-axis. The function ¢ is constant on horizontal lines
y = ¢, ¢ # 0. Hence, by continuity, it is constant on the line y = 0. We
have

(m(a)v,v) = ¢(t,0) = $(0,0) = [[v]>
By the equality case, of the Cauchy-Schwart inequality, m(a;)v = v.
This implies that the function ¢ is biinvariant under AN. Since AN
has a dense orbit in R?, ¢ is constant, i.e., (m(g)v,v) = ||v|>. As above,
this implies that v is G-invariant, which is a contradiction.

Exercise 0.5. Complete the proof for SLy(R): using Exercise 0.4, de-
duce that there exists a nonzero vector which is invariant under copies
of SLy(R) which generate SLy(R).

O

Now we observe that decay of matrix coefficient implies a mean er-
godic theorem:

Corollary 0.6. Consider an ergodic action of G = SL4(R) on a prob-
ability space (X, ). Let B, be a sequence of Borel subsets of G such
that 0 < m(B,) < oo and m(B,,) — oo. Then for every f € L*(X),

1 _
i L ) — [ pin e o

in L?-norm.

Proof. 1t suffices to consider a function f with [ Jdu=0.
Let € > 0 and ) be a compact subset of GG such that

[{mx(g9)f, [)| <e forall g¢Q.

Then we have
2 1

! /Wx(g)fdm(g) :W/B N (mx (92 90)f, f)

m(B,)
< (m®@m)({(g1,92) € Bu X Bu: g5 g1 € Q})
B m(B,)?
Making a change of variable (g1, g2) — (91,95 '91), we deduce that
(m @m)({(g1,92) € Bu X Bu: g5 g1 € Q}) < m(B)m(Q).

Since m(B,,) — oo, the corollary follows. U
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