The Abdus Salam
International Centre for Theoretical Physics
United Nations

IAEA

School and Workshop on Dynamical Systems

30 June - 18 July, 2008

Ergodic theory, combinatorics, diophantine approximation-2

V.Bergelson
Ohio State University, USA

LECTURE 2: DECAY OF MATRIX COEFFICIENTS

VITALY BERGELSON AND ALEXANDER GORODNIK
Preliminary version

A measure-preserving action of a group G on a probability space (X, μ) is called mixing if for every $f_{1}, f_{2} \in L^{2}(X)$, we have

$$
\left\langle\pi_{X}(g) f_{1}, f_{2}\right\rangle \rightarrow\left(\int_{X} f_{1} d \mu\right)\left(\int_{X} f_{2} d \mu\right)
$$

as $g \rightarrow \infty$ (" $g \rightarrow \infty$ " means that the sequence g has no accumulation points).

Exercise 0.1. (1) Consider the measure-preserving transformation T of a probability space (X, μ). If $L^{2}(X)$ has non-constant eigen-functions, then the action is not mixing. In particular, an ergodic rotation on the torus is not mixing.
(2) Let T be a hyperbolic matrix in $\mathrm{SL}_{2}(\mathbb{Z})$. Then the corresponding \mathbb{Z}-action on the torus $\mathbb{R}^{2} / \mathbb{Z}^{2}$ is mixing. (Hint: consider what happens for characters first.)
(3) Generalise the previous example to automorphisms of d-dimensional torus.

The following theorem implies any ergodic action of the group $G=$ $\mathrm{SL}_{d}(\mathbb{R})$ is mixing.

Theorem 0.2 (Howe, Moore). Consider a unitary representation π of $G=S L_{d}(\mathbb{R})$ on a Hilbert space \mathcal{H} such that \mathcal{H} contains no nonzero vectors fixed by G. Then for every $v, w \in \mathcal{H}$,

$$
\langle\pi(g) v, w\rangle \rightarrow 0 \quad \text { as } g \rightarrow \infty
$$

We will use the following notation:

$$
\begin{aligned}
K & =\operatorname{SO}(d)=\text { the orthogonal group } \\
A & =\left\{\operatorname{diag}\left(a_{1}, \ldots, a_{d}\right): \prod_{i} a_{i}=1, a_{i}>0\right\} \\
A^{+} & =\left\{\operatorname{diag}\left(a_{1}, \ldots, a_{d}\right): \prod_{i} a_{i}=1, a_{1} \geq \cdots \geq a_{d}>0\right\},
\end{aligned}
$$

$$
N=\text { the group of unipotent upper triangular matrices. }
$$

We also set

$$
k_{\theta}=\left(\begin{array}{ll}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right), \quad a_{t}=\left(\begin{array}{ll}
t & 0 \\
0 & t^{-1}
\end{array}\right), \quad u_{s}=\left(\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right) .
$$

The following decompositions hold:

$$
\begin{aligned}
& G=N A K \quad \text { (Iwasawa decomposition) }, \\
& G=K A^{+} K \quad \text { (Cartan decomposition). }
\end{aligned}
$$

Exercise 0.3. Check these decompositions. (Hint: you already know them from a linear algebra course. Review the Gramm-Schmidt orthogonalization and canonical forms of quadratic forms.)

Proof. We prove the theorem by contradiction. Suppose that for some sequence $g_{n} \rightarrow \infty$ and $v, w \in \mathcal{H}$, we have $\left\langle\pi\left(g_{n}\right) v, w\right\rangle \nrightarrow 0$. We write $g_{n}=k_{n} a_{n} l_{n}$ in terms of the Cartan decomposition. Then clearly, $a_{n} \rightarrow$ ∞, and after passing to a subsequence, we may assume that $l_{n} v \rightarrow v^{\prime}$ and $k_{n}^{-1} w \rightarrow w^{\prime}$ for some $v^{\prime}, w^{\prime} \in \mathcal{H}$. It is easy to check that

$$
\left\langle\pi\left(g_{n}\right) v, w\right\rangle-\left\langle\pi\left(a_{n}\right) v^{\prime}, w^{\prime}\right\rangle \rightarrow 0 .
$$

Hence, $\left\langle\pi\left(a_{n}\right) v^{\prime}, w^{\prime}\right\rangle \nrightarrow 0$.
Let's consider $G=\mathrm{SL}_{2}(\mathbb{R})$. Our intermediate aim is to show that there exists a nonzero vector fixed by $\left\{u_{s}\right\}$. From the previous paragraph, we have vectors $v, w \in \mathcal{H}$ and $t_{n} \rightarrow+\infty$ such that $\left\langle\pi\left(a_{t_{n}}\right) v, w\right\rangle \nrightarrow$ 0 . After passing to a subsequence, we may assume that $\lim \pi\left(a_{t_{n}}\right) v=$ v^{\prime}, where the limit is in the weak! topology. Then $\left\langle\pi\left(a_{t_{n}}\right) v, w\right\rangle \rightarrow$ $\left\langle v^{\prime}, w\right\rangle$, so $v^{\prime} \neq 0$. We have

$$
\pi\left(u_{s}\right) v^{\prime}=\lim \pi\left(u_{s} a_{t_{n}}\right) v=\lim \pi\left(a_{t_{n}} u_{s / t_{n}^{2}}\right) v .
$$

Since

$$
\left\|\pi\left(a_{t_{n}} u_{s / t_{n}^{2}}\right) v-\pi\left(a_{t_{n}}\right) v\right\| \rightarrow 0
$$

it follows that

$$
\pi\left(u_{s}\right) v^{\prime}=\lim \pi\left(a_{t_{n}}\right) v=v^{\prime},
$$

which proves the claim.
Exercise 0.4. Generalize this argument to $\mathrm{SL}_{d}(\mathbb{R})$. Namely, show that there exists a nonzero vector fixed by the subgroups of the form $\left(\begin{array}{ll}i d & * \\ 0 & i d\end{array}\right)$.

Now we fix a nonzero vector v which is invariant under $N=\left\{u_{s}\right\}$, and consider the function $\phi(g)=\langle\pi(g) v, v\rangle$, which N-biinvariant. Consider
the action of G on \mathbb{R}^{2}. Since $\operatorname{Stab}_{G}\left(e_{1}\right)=N$ and the action is trivial, we have identification

$$
\mathbb{R}^{2}-\{0\}=G / N
$$

and ϕ can be consider as an N-invariant function on $\mathbb{R}^{2}-\{0\}$. Note the N-orbits in \mathbb{R}^{2} are the horizontal lines, except the x-axis, and single points on the x-axis. The function ϕ is constant on horizontal lines $y=c, c \neq 0$. Hence, by continuity, it is constant on the line $y=0$. We have

$$
\left\langle\pi\left(a_{t}\right) v, v\right\rangle=\phi(t, 0)=\phi(0,0)=\|v\|^{2} .
$$

By the equality case, of the Cauchy-Schwart inequality, $\pi\left(a_{t}\right) v=v$. This implies that the function ϕ is biinvariant under $A N$. Since $A N$ has a dense orbit in \mathbb{R}^{2}, ϕ is constant, i.e., $\langle\pi(g) v, v\rangle=\|v\|^{2}$. As above, this implies that v is G-invariant, which is a contradiction.

Exercise 0.5. Complete the proof for $\mathrm{SL}_{d}(\mathbb{R})$: using Exercise 0.4, deduce that there exists a nonzero vector which is invariant under copies of $\mathrm{SL}_{2}(\mathbb{R})$ which generate $\mathrm{SL}_{d}(\mathbb{R})$.

Now we observe that decay of matrix coefficient implies a mean ergodic theorem:
Corollary 0.6. Consider an ergodic action of $G=\mathrm{SL}_{d}(\mathbb{R})$ on a probability space (X, μ). Let B_{n} be a sequence of Borel subsets of G such that $0<m\left(B_{n}\right)<\infty$ and $m\left(B_{n}\right) \rightarrow \infty$. Then for every $f \in L^{2}(X)$,

$$
\frac{1}{m\left(B_{n}\right)} \int_{B_{n}} f\left(g^{-1} x\right) d m(g) \rightarrow \int_{X} f d \mu \quad \text { as } n \rightarrow \infty
$$

in L^{2}-norm.
Proof. It suffices to consider a function f with $\int_{X} f d \mu=0$.
Let $\varepsilon>0$ and Q be a compact subset of G such that

$$
\left|\left\langle\pi_{X}(g) f, f\right\rangle\right|<\varepsilon \quad \text { for all } g \notin Q
$$

Then we have

$$
\begin{aligned}
& \left\|\frac{1}{m\left(B_{n}\right)} \int_{B_{n}} \pi_{X}(g) f d m(g)\right\|^{2}=\frac{1}{m\left(B_{n}\right)^{2}} \int_{B_{n} \times B_{n}}\left\langle\pi_{X}\left(g_{2}^{-1} g_{1}\right) f, f\right\rangle \\
& \quad \leq \frac{(m \otimes m)\left(\left\{\left(g_{1}, g_{2}\right) \in B_{n} \times B_{n}: g_{2}^{-1} g_{1} \in Q\right\}\right)}{m\left(B_{n}\right)^{2}}\|f\|^{2}+\varepsilon
\end{aligned}
$$

Making a change of variable $\left(g_{1}, g_{2}\right) \mapsto\left(g_{1}, g_{2}^{-1} g_{1}\right)$, we deduce that

$$
(m \otimes m)\left(\left\{\left(g_{1}, g_{2}\right) \in B_{n} \times B_{n}: g_{2}^{-1} g_{1} \in Q\right\}\right) \leq m\left(B_{n}\right) m(Q)
$$

Since $m\left(B_{n}\right) \rightarrow \infty$, the corollary follows.

