

1950-3

School and Workshop on Dynamical Systems

30 June - 18 July, 2008

Ergodic theory, combinatorics, diophantine approximation - 2

V.Bergelson Ohio State University, USA

LECTURE 2: DECAY OF MATRIX COEFFICIENTS

VITALY BERGELSON AND ALEXANDER GORODNIK

Preliminary version

A measure-preserving action of a group G on a probability space (X, μ) is called mixing if for every $f_1, f_2 \in L^2(X)$, we have

$$\langle \pi_X(g)f_1, f_2 \rangle \to \left(\int_X f_1 \, d\mu\right) \left(\int_X f_2 \, d\mu\right)$$

as $g \to \infty$ (" $g \to \infty$ " means that the sequence g has no accumulation points).

- **Exercise 0.1.** (1) Consider the measure-preserving transformation T of a probability space (X, μ) . If $L^2(X)$ has non-constant eigen-functions, then the action is not mixing. In particular, an ergodic rotation on the torus is not mixing.
 - (2) Let T be a hyperbolic matrix in $SL_2(\mathbb{Z})$. Then the corresponding \mathbb{Z} -action on the torus $\mathbb{R}^2/\mathbb{Z}^2$ is mixing. (Hint: consider what happens for characters first.)
 - (3) Generalise the previous example to automorphisms of *d*-dimensional torus.

The following theorem implies any ergodic action of the group $G = SL_d(\mathbb{R})$ is mixing.

Theorem 0.2 (Howe, Moore). Consider a unitary representation π of $G = SL_d(\mathbb{R})$ on a Hilbert space \mathcal{H} such that \mathcal{H} contains no nonzero vectors fixed by G. Then for every $v, w \in \mathcal{H}$,

$$\langle \pi(g)v, w \rangle \to 0 \quad as \ g \to \infty.$$

We will use the following notation:

$$K = SO(d) = \text{ the orthogonal group,}$$
$$A = \{ \operatorname{diag}(a_1, \dots, a_d) : \prod_i a_i = 1, a_i > 0 \},$$
$$A^+ = \{ \operatorname{diag}(a_1, \dots, a_d) : \prod_i a_i = 1, a_1 \ge \dots \ge a_d > 0 \}.$$

N = the group of unipotent upper triangular matrices.

We also set

$$k_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \quad a_t = \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}, \quad u_s = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}.$$

The following decompositions hold:

G = NAK (Iwasawa decomposition), $G = KA^+K$ (Cartan decomposition).

Exercise 0.3. Check these decompositions. (Hint: you already know them from a linear algebra course. Review the Gramm-Schmidt orthogonalization and canonical forms of quadratic forms.)

Proof. We prove the theorem by contradiction. Suppose that for some sequence $g_n \to \infty$ and $v, w \in \mathcal{H}$, we have $\langle \pi(g_n)v, w \rangle \not\rightarrow 0$. We write $g_n = k_n a_n l_n$ in terms of the Cartan decomposition. Then clearly, $a_n \to \infty$, and after passing to a subsequence, we may assume that $l_n v \to v'$ and $k_n^{-1} w \to w'$ for some $v', w' \in \mathcal{H}$. It is easy to check that

$$\langle \pi(g_n)v, w \rangle - \langle \pi(a_n)v', w' \rangle \to 0.$$

Hence, $\langle \pi(a_n)v', w' \rangle \not\rightarrow 0.$

Let's consider $G = \operatorname{SL}_2(\mathbb{R})$. Our intermediate aim is to show that there exists a nonzero vector fixed by $\{u_s\}$. From the previous paragraph, we have vectors $v, w \in \mathcal{H}$ and $t_n \to +\infty$ such that $\langle \pi(a_{t_n})v, w \rangle \not\rightarrow$ 0. After passing to a subsequence, we may assume that $\lim \pi(a_{t_n})v =$ v', where the limit is in the weak! topology. Then $\langle \pi(a_{t_n})v, w \rangle \rightarrow$ $\langle v', w \rangle$, so $v' \neq 0$. We have

$$\pi(u_s)v' = \lim \pi(u_s a_{t_n})v = \lim \pi(a_{t_n} u_{s/t_n^2})v.$$

Since

$$\|\pi(a_{t_n}u_{s/t_n^2})v - \pi(a_{t_n})v\| \to 0,$$

it follows that

$$\pi(u_s)v' = \lim \pi(a_{t_n})v = v',$$

which proves the claim.

Exercise 0.4. Generalize this argument to $SL_d(\mathbb{R})$. Namely, show that there exists a nonzero vector fixed by the subgroups of the form $\begin{pmatrix} id & * \\ 0 & id \end{pmatrix}$.

Now we fix a nonzero vector v which is invariant under $N = \{u_s\}$, and consider the function $\phi(g) = \langle \pi(g)v, v \rangle$, which N-biinvariant. Consider

 $\mathbf{2}$

the action of G on \mathbb{R}^2 . Since $\operatorname{Stab}_G(e_1) = N$ and the action is trivial, we have identification

$$\mathbb{R}^2 - \{0\} = G/N,$$

and ϕ can be consider as an *N*-invariant function on $\mathbb{R}^2 - \{0\}$. Note the *N*-orbits in \mathbb{R}^2 are the horizontal lines, except the *x*-axis, and single points on the *x*-axis. The function ϕ is constant on horizontal lines $y = c, c \neq 0$. Hence, by continuity, it is constant on the line y = 0. We have

$$\langle \pi(a_t)v, v \rangle = \phi(t, 0) = \phi(0, 0) = ||v||^2.$$

By the equality case, of the Cauchy-Schwart inequality, $\pi(a_t)v = v$. This implies that the function ϕ is biinvariant under AN. Since AN has a dense orbit in \mathbb{R}^2 , ϕ is constant, i.e., $\langle \pi(g)v, v \rangle = ||v||^2$. As above, this implies that v is G-invariant, which is a contradiction.

Exercise 0.5. Complete the proof for $SL_d(\mathbb{R})$: using Exercise 0.4, deduce that there exists a nonzero vector which is invariant under copies of $SL_2(\mathbb{R})$ which generate $SL_d(\mathbb{R})$.

Now we observe that decay of matrix coefficient implies a mean ergodic theorem:

Corollary 0.6. Consider an ergodic action of $G = \text{SL}_d(\mathbb{R})$ on a probability space (X, μ) . Let B_n be a sequence of Borel subsets of G such that $0 < m(B_n) < \infty$ and $m(B_n) \to \infty$. Then for every $f \in L^2(X)$,

$$\frac{1}{m(B_n)} \int_{B_n} f(g^{-1}x) \, dm(g) \to \int_X f \, d\mu \quad \text{as } n \to \infty$$

in L^2 -norm.

Proof. It suffices to consider a function f with $\int_X f \, d\mu = 0$. Let $\varepsilon > 0$ and Q be a compact subset of G such that

$$|\langle \pi_X(g)f, f \rangle| < \varepsilon \text{ for all } g \notin Q.$$

Then we have

$$\begin{aligned} \left\| \frac{1}{m(B_n)} \int_{B_n} \pi_X(g) f \, dm(g) \right\|^2 &= \frac{1}{m(B_n)^2} \int_{B_n \times B_n} \left\langle \pi_X(g_2^{-1}g_1) f, f \right\rangle \\ &\leq \frac{(m \otimes m)(\{(g_1, g_2) \in B_n \times B_n : g_2^{-1}g_1 \in Q\})}{m(B_n)^2} \|f\|^2 + \varepsilon. \end{aligned}$$

Making a change of variable $(g_1, g_2) \mapsto (g_1, g_2^{-1}g_1)$, we deduce that

 $(m \otimes m)(\{(g_1, g_2) \in B_n \times B_n : g_2^{-1}g_1 \in Q\}) \leq m(B_n)m(Q).$ Since $m(B_n) \to \infty$, the corollary follows.