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LECTURE 2: DECAY OF MATRIX COEFFICIENTS

VITALY BERGELSON AND ALEXANDER GORODNIK

Preliminary version

A measure-preserving action of a group G on a probability space
(X,µ) is called mixing if for every f1, f2 ∈ L2(X), we have

〈πX(g)f1, f2〉 →
(∫

X

f1 dµ

)(∫
X

f2 dµ

)
as g →∞ (“g →∞” means that the sequence g has no accumulation
points).

Exercise 0.1. (1) Consider the measure-preserving transformation
T of a probability space (X,µ). If L2(X) has non-constant
eigen-functions, then the action is not mixing. In particular, an
ergodic rotation on the torus is not mixing.

(2) Let T be a hyperbolic matrix in SL2(Z). Then the correspond-
ing Z-action on the torus R2/Z2 is mixing. (Hint: consider what
happens for characters first.)

(3) Generalise the previous example to automorphisms of d-dimensional
torus.

The following theorem implies any ergodic action of the group G =
SLd(R) is mixing.

Theorem 0.2 (Howe, Moore). Consider a unitary representation π of
G = SLd(R) on a Hilbert space H such that H contains no nonzero
vectors fixed by G. Then for every v, w ∈ H,

〈π(g)v, w〉 → 0 as g →∞.

We will use the following notation:

K = SO(d) = the orthogonal group,

A = {diag(a1, . . . , ad) :
∏
i

ai = 1, ai > 0},

A+ = {diag(a1, . . . , ad) :
∏
i

ai = 1, a1 ≥ · · · ≥ ad > 0},

N = the group of unipotent upper triangular matrices.
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We also set

kθ =

(
cos θ − sin θ
sin θ cos θ

)
, at =

(
t 0
0 t−1

)
, us =

(
1 s
0 1

)
.

The following decompositions hold:

G = NAK (Iwasawa decomposition),

G = KA+K (Cartan decomposition).

Exercise 0.3. Check these decompositions. (Hint: you already know
them from a linear algebra course. Review the Gramm-Schmidt or-
thogonalization and canonical forms of quadratic forms.)

Proof. We prove the theorem by contradiction. Suppose that for some
sequence gn → ∞ and v, w ∈ H, we have 〈π(gn)v, w〉 9 0. We write
gn = knanln in terms of the Cartan decomposition. Then clearly, an →
∞, and after passing to a subsequence, we may assume that lnv → v′

and k−1
n w → w′ for some v′, w′ ∈ H. It is easy to check that

〈π(gn)v, w〉 − 〈π(an)v′, w′〉 → 0.

Hence, 〈π(an)v′, w′〉9 0.
Let’s consider G = SL2(R). Our intermediate aim is to show that

there exists a nonzero vector fixed by {us}. From the previous para-
graph, we have vectors v, w ∈ H and tn → +∞ such that 〈π(atn)v, w〉9
0. After passing to a subsequence, we may assume that lim π(atn)v =
v′, where the limit is in the weak! topology. Then 〈π(atn)v, w〉 →
〈v′, w〉, so v′ 6= 0. We have

π(us)v
′ = limπ(usatn)v = limπ(atnus/t2n)v.

Since

‖π(atnus/t2n)v − π(atn)v‖ → 0,

it follows that

π(us)v
′ = limπ(atn)v = v′,

which proves the claim.

Exercise 0.4. Generalize this argument to SLd(R). Namely, show
that there exists a nonzero vector fixed by the subgroups of the form(
id ∗
0 id

)
.

Now we fix a nonzero vector v which is invariant underN = {us}, and
consider the function φ(g) = 〈π(g)v, v〉, which N -biinvariant. Consider
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the action of G on R2. Since StabG(e1) = N and the action is trivial,
we have identification

R2 − {0} = G/N,

and φ can be consider as an N -invariant function on R2−{0}. Note the
N -orbits in R2 are the horizontal lines, except the x-axis, and single
points on the x-axis. The function φ is constant on horizontal lines
y = c, c 6= 0. Hence, by continuity, it is constant on the line y = 0. We
have

〈π(at)v, v〉 = φ(t, 0) = φ(0, 0) = ‖v‖2.
By the equality case, of the Cauchy-Schwart inequality, π(at)v = v.
This implies that the function φ is biinvariant under AN . Since AN
has a dense orbit in R2, φ is constant, i.e., 〈π(g)v, v〉 = ‖v‖2. As above,
this implies that v is G-invariant, which is a contradiction.

Exercise 0.5. Complete the proof for SLd(R): using Exercise 0.4, de-
duce that there exists a nonzero vector which is invariant under copies
of SL2(R) which generate SLd(R).

�

Now we observe that decay of matrix coefficient implies a mean er-
godic theorem:

Corollary 0.6. Consider an ergodic action of G = SLd(R) on a prob-
ability space (X,µ). Let Bn be a sequence of Borel subsets of G such
that 0 < m(Bn) <∞ and m(Bn)→∞. Then for every f ∈ L2(X),

1

m(Bn)

∫
Bn

f(g−1x) dm(g)→
∫
X

f dµ as n→∞

in L2-norm.

Proof. It suffices to consider a function f with
∫
X
f dµ = 0.

Let ε > 0 and Q be a compact subset of G such that

| 〈πX(g)f, f〉 | < ε for all g /∈ Q.

Then we have∥∥∥∥ 1

m(Bn)

∫
Bn

πX(g)f dm(g)

∥∥∥∥2

=
1

m(Bn)2

∫
Bn×Bn

〈
πX(g−1

2 g1)f, f
〉

≤ (m⊗m)({(g1, g2) ∈ Bn ×Bn : g−1
2 g1 ∈ Q})

m(Bn)2
‖f‖2 + ε.

Making a change of variable (g1, g2) 7→ (g1, g
−1
2 g1), we deduce that

(m⊗m)({(g1, g2) ∈ Bn ×Bn : g−1
2 g1 ∈ Q}) ≤ m(Bn)m(Q).

Since m(Bn)→∞, the corollary follows. �


