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LECTURE 3: RATES OF DECAY OF MATRIX
COEFFICIENTS AND KAZHDAN PROPERTY

VITALY BERGELSON AND ALEXANDER GORODNIK

Preliminary version

In this lecture, we prove a quantitative version of Theorem ??. A
vector v is called K-finite if the span of Kv is finite. Then we set
d(v) = dim 〈Kv〉.

Theorem 0.1 (Howe, Tan, Oh). Let G = SLd(R), d ≥ 3, and π be a
unitary representation of G on a Hilbert space H such that H contains
no nonzero invariant vectors. Then for every K-finite vectors v, w ∈ H,

| 〈π(a)v, w〉 | ≤ c(ε)d(v)1/2d(w)1/2‖v‖‖w‖
(

max
i<j

ai
aj

)−1/4+ε

for every a ∈ A+ and ε > 0.

Remark 0.2. With a little more work, the rate can be improved by a
factor of two, but the aim of this notes is to give a proof with minimal
technology.

We note that an analogue of this theorem fails for SL2(R), and there
is no uniform general rate in this case. This is related to the fact that
SL2(R) does not have Kazhdan property (see Corollary 0.12 below).
Nonetheless, uniform rates have been established for some special fam-
ilies of representations of SL2(R) of number-theoretic significance. This
is related to the Selberg conjecture and property τ , which we don’t have
time to discuss in these lectures.

The proof of Theorem 0.1 uses copies of subgroups SL2(R) n R2

embedded in SLd(R). In fact, the crucial step is the following

Proposition 0.3. Let π be a unitary representation of the group G =
SL2(R)nR2 on a Hilbert space H. Assume that H contains no nonzero
vectors fixed by R2. Then for v, w in a dense subset of H consisting of
SO(2)-eigenvectors, we have

| 〈π(at)v, w〉 | ≤ c(v, w) t−1 for every t > 1.

where at = diag(t, t−1).
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Proof. We identify the space R̂2 of unitary characters of R2 with R2

by setting χu,v(x, y) = ei(vx−uy). The group SL2(R) acts on R̂2 by
(g ·χ)(v) = χ(g−1v), and under such identification, this is the standard
action on R2 (note that SL2(R) preserves the symplectic form vx−uy).
Note also that these actions agree with the action of SL2(R) on R2 by
conjugations as a subgroup of G.

Although the group of unitary operators π(R2) may not have a basis
consisting of eigenvectors as in the finite-dimensional case, there is a
natural substitute — a projection-valued measure PB, B is a Borel
subset of R2, such that

π(r) =

∫
R2

χz(r)dPz, r ∈ R2.

This equality means that for v, w ∈ H,

〈π(r)v, w〉 =

∫
R2

χz(r) d 〈Pzv, w〉 .

We have equivarience relation:

(0.1) π(g)PBπ(g)−1 = PgB for Borel B ⊂ R2.

For s > 1, we consider

Ωs = {x ∈ R2 : s−1 ≤ ‖x‖ ≤ s}.
Note that it follows from (0.1) that PΩs commutes if π(kθ). SinceH has
no vectors fixed by R2, P{(0,0)} = 0, and by continuity of the measure,
PΩsv → v as s → ∞ for every v ∈ H. Hence, it suffices to prove the
claim for SO(2)-eigenvectors in ∪s>1Im(PΩs).

For v, w ∈ Im(PΩs) and a = diag(t, t−1), we have

〈π(a)v, w〉 = 〈π(a)PΩsv, PΩsw〉 = 〈PaΩsπ(a)v, PΩsw〉
= 〈π(a)v, PaΩsPΩsw〉 = 〈PΩsπ(a)v, PaΩs∩Ωsw〉
= 〈π(a)Pa−1Ωsv, PaΩs∩Ωsw〉 = 〈π(a)Pa−1ΩsPΩsv, PaΩs∩Ωsw〉
= 〈π(a)Pa−1Ωs∩Ωsv, PaΩs∩Ωsw〉 .

Hence, by the Cauchy-Schwartz inequality,

(0.2) | 〈π(a)v, w〉 | ≤ ‖Pa−1Ωs∩Ωsv‖‖PaΩs∩Ωsw‖.
Note that the sets a−1

t Ωs ∩ Ωs are contained in the strip around the
x-axis of size s/t, so we expect that the norm ‖Pa−1Ωs∩Ωsv‖ decay as
t → ∞. We prove that this is the case when v is an eigenfunction of
{kθ}. Let π(kθ)v = e2πinθv. We decompose R2 into disjoint sectors S1,
. . . , Sm of equal size θ = 2π/m. Then

π(kθ)PSiv = PkθSiπ(kθ)v = e2πinθPSi+1
v.
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This shows that the vectors PS1v, . . . , PSmv have the same norms.
Since we have orthogonal decomposition

v =
m∑
i=1

PSiv.

It follows that ‖PSiv‖ = 1
m

= θ
2π

. This implies that

‖Pa−1Ωs∩Ωsv‖ ≤
2 sin−1(s2/t)

2π
,

and a similar estimate holds for ‖PaΩs∩Ωsw‖. Now the proposition
follows from (0.2). �

The main draw-back of Proposition 0.3 is that the bound is not
explicit in terms of v and w. This problem is rectified in Proposition
0.10 below. The proof will be carried out in several steps. With the help
of Proposition 0.3, we show that the tensor square of π|SL2(R) embeds in
a sum of the regular representations, and for the regular representation,
we establish explicit estimate in terms of the Harish-Chandra function.

Exercise 0.4. Prove the following formulas for the Haar measure on
G = SL2(R):∫

G

f(g) dm(g) =

∫
R×(0,∞)×[0,2π)

f(usatkθ)t
−2dθ

dt

t
ds,∫

G

f(g) dm(g) =

∫
[0,2π)××[1,∞)×[0,2π)

f(kθ1atkθ2)(t
2 − 1/t2)dθ1

dt

t
dθ2.

Exercise 0.5. Prove the formula for the Haar measure on G = SLd(R):∫
G

f(g) dm(g) =

∫
N×A×K

f(nak)∆(a)dndadk

where ∆ is the modular function on NA, and dn, da, dk denote Haar
measures on corresponding subgroups.

A unitary representation π of a group G is called Lp here if for vectors
v, w in a dense subspace, one has 〈π(g)v, w〉 ∈ Lp(G).

Exercise 0.6. Prove that under the assumptions of Proposition 0.3,
the representation π|SL2(R) is Lp for p > 2.

We will need the following characterization of the L2-representations:

Theorem 0.7 (Godement). A representation π of a group G is L2 iff
it can be embedded as a subrepresentation of the sum ⊕∞n=1λG where λG
is the regular representation.
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Proof. (sketch) Suppose that there exists a dense subset H0 of H such
that 〈v, π(g)w〉 ∈ L2(G). Without loss of generality, we may assume
that H0 is countable. Consider the map T : H0 → ⊕H0L

2(G) defined
by

Tw = ⊕v∈H0 〈v, π(g)w〉 , w ∈ H0.

It is clear that it is injective, and satisfies the equivarience relation:

T ◦ π(g) = (⊕H0λ(g)) ◦ T, g ∈ G.

To finish the proof, we need to show that the map T extends to the
whole space H. . . �

A remarkable property of semisimple groups is that the matrix coef-
ficients of K-invariant vectors in the regular representation L2(G) can
be bounded by an explicit decaying function — the Harish-Chandra
function Ξ, which we now introduce. Recall that for G = SLd(R), we
have the Iwasawa decomposition G = NAK. For g ∈ G, we denote
by a(g) its A-component. Let ∆ be the modular function of the upper
triangular group NA. The Harish-Chandra function is defined by

Ξ(g) =

∫
K

∆(a(kg))−1/2 dk.

Note that Ξ is K-biinvariant.

Exercise 0.8. Prove that the Harish-Chandra function for SL2(R) is
given by

Ξ(at) =
1

2π

∫ 2π

0

(t−2 cos2 θ + t2 sin2 θ)−1/2dθ,

and for every ε > 0,

Ξ(at) ≤ c(ε)t−1+ε, t > 1.

We note that the asymptotic behaviour of the Harish-Chandra func-
tion is well-understood. It is known that Ξ ∈ L2+ε(G) for every ε > 0,
and there are very sharp pointwise bounds on decay of Ξ.

Theorem 0.9. Let G = SLd(R) and φ, ψ ∈ L2(G) be K-invariant
functions. Then

| 〈λ(g)φ, ψ〉 | ≤ ‖φ‖2‖ψ‖2 Ξ(g), g ∈ G.

Proof. The proof is based on the Herz’s “principe de majoration”.
Clearly, we only need to prove the estimate for g = a ∈ A. Using
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Exercise 0.5 and Fubini theorem, we obtain

〈λ(g)φ, ψ〉 =

∫
G

φ(ga)ψ(g)dm(g)

=

∫
N×A×K

φ(nbka)ψ(nb)∆(b)dndbdk

≤
∫
K

(∫
N×A

φ2(nbka)∆(b)dndb

)1/2(∫
N×A

ψ2(nbk)∆(b)dndb

)1/2

dk,

where the last estimate is the Cauchy-Schwarz inequality in L2(NA).
Since ψ is K-invariant,∫

N×A
ψ2(nbk)∆(b)dndb =

∫
N×A×K

ψ2(nbk)∆(b)dndbdk = ‖ψ‖2
2.

In terms of the Iwasawa decomposition, ka = n(ka)a(ka)k(ka), and

nbka = nbn(ka)a(ka)k(ka) = (nbn(ka)b−1)(ba(ka))k(ka).

Then using invariance of the measures, we get∫
N×A

φ2(nbka)∆(b)dndb =

∫
N×A

φ2((nbn(ka)b−1)(ba(ka)))∆(b)dndb

= ∆(a(ka))−1

∫
N×A

φ2(nb)∆(b)dndb

= ∆(a(ka))−1‖φ‖2.

This implies the theorem. �

Now we can prove a more explicit form of Proposition 0.3 for SO(2)-
finite vectors:

Proposition 0.10. Let notation be as in Proposition ??. Then for
every v, w ∈ H which are SO(2)-finite,

(0.3) | 〈π(at)v, w〉 | ≤ c(ε)d(v)1/2d(w)1/2‖v‖‖w‖ t−
1
2

+ε, t > 1,

for every ε > 0.

Proof. First, we reduce the proof to the case when v and w are SO(2)-
eigenfunctions. Every SO(2)-finite vector v can be written as v =∑n

i=1 vi where vi’s are orthogonal SO(2)-eigenfunctions. Then by the
Cauchy–Schwartz inequality,

n∑
i=1

‖vi‖ = d(v)1/2

(
n∑
i=1

‖vi‖2

)1/2

= d(v)1/2‖v‖.

Hence, estimate (0.3) follows from the estimate for SO(2)-eigenfunctions
by linearity.
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It follows from the estimate in Proposition 0.3 and Exercise ?? that
the matrix coefficients 〈π(g)v, w〉 belong to L4(SL2(R)) for v, w in a
dense subspace H0 of H.

Let ρ = π|SL2(R). Consider the tensor square ρ⊗ ρ of the representa-
tion ρ. For v1, v2, w1, w2 ∈ H0, we have

〈(ρ⊗ ρ)(g)(v1 ⊗ v2), (w1 ⊗ w2)〉 = 〈ρ(g)v1, w1〉 〈ρ(g)v2, w2〉 ,

and it follows from the Cauchy-Schwarz inequality that this expression
is in L2(G). Since linear combinations of vectors v1⊗v2 with v1, v2 ∈ H0

form a dense subspace of H ⊗ H, we conclude that ρ ⊗ ρ is an L2

representation. Hence, by Theorem 0.7, ρ ⊗ ρ is a subrepresentation
of a direct sum of regular representation. Applying Theorem 0.9 (it
is easy to check that it extends to direct sums), we get that for every
SO(2)-invariant vectors v, w ∈ H,

| 〈ρ(g)v, w〉 |2 ≤ ‖v‖2‖w‖2Ξ(g).

Now the proposition follows from Exercise 0.8. �

Proof of Theorem 0.1. We use various embedded copies of SL2(R)nR2

embedded in G. For simplicity, we carry out the computation for the
subgroup  SL2(R) R2 0

0 1 0
0 0 I

 .

Note that H contains no nonzero R2-invariant vectors because of The-
orem ??. Hence, Proposition 0.10 applies. For a = diag(a1, . . . , ad) ∈
A+, we write a = a′a′′ where

a′ = diag

((
a1

a2

)1/2

,

(
a2

a1

)1/2

, 1, . . . , 1

)
,

a′′ = diag((a1a2)1/2, (a1a2)1/2, a3, . . . , ad).

Note that a′′ commutes with SL2(R). In particular, π(a′′)v is SO(2)-
finite, and

dim 〈SO(2)π(a′′)v〉 = dim 〈SO(2)v〉 ≤ d(v).

It is also clear that dim 〈SO(2)w〉 ≤ d(w). By Proposition 0.10,

| 〈π(a)v, w〉 | = | 〈π(a′)π(a′′)v, w〉 | ≤ c(ε)d(v)1/2d(w)1/2‖v‖‖w‖
(
a1

a2

)−1/4+ε
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for every ε > 0. Using similar estimate for other copies of SL2(R)nR2,
we finally deduce that

| 〈π(a)v, w〉 | ≤ c(ε)d(v)1/2d(w)1/2‖v‖‖w‖
(

max
i<j

ai
aj

)−1/4+ε

for every ε > 0, as required. �

Corollary 0.11. There exists p(d) > 0 such that every unitary rep-
resentation of SLd(R), d ≥ 3, without fixed vectors is Lp for every
p > p(d).

Proof. This is just a computation. The main ingredient is the estimate
from Theorem 0.1. �

A group G is called Kazhdan group if every unitary representation
of G which contains almost invariant vectors also contains invariant
vectors.

This should be compared with the notion of amenable groups. Note
that it follows from Theorem ?? that if a group is both amenable and
has Kazhdan property, then it is compact.

Corollary 0.12. The group SLd(R), d ≥ 3, has Kazhdan property.

Proof. Let π be a representation of G on a Hilbert space H which has
no invariant vectors, but has a sequence vn of almost invariant vectors,
namely,

‖π(g)vn − vn‖ → 0

uniformly on compact sets. Let wn =
∫
K
π(k)vn dk. Then

‖wn − vn‖ ≤
∫
K

‖π(k)vn − vn‖ dk → 0.

This implies that the sequence wn is also almost invariant and ‖wn‖ →
1, but wn’s are K-invariant, so we can apply the estimate from Theorem
0.1 to get a contradiction. For a ∈ A+,

‖π(a)wn − wn‖2 = 2− 2Re 〈π(a)wn, wn〉 ≥ 2− 2σ(a)‖wn‖2
2

σ is an explicit decaying function. Since ‖π(a)wn−wn‖ → 0 uniformly
on compact sets, this is impossible. �


