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1. Introduction

The standard set-up of ergodic theory consists of a measurable space
(X,B) equipped with a probability measure µ and a measure-preserving
transformation T : X → X, that is, µ(T−1B) = µ(B) for all B ∈ B. In
ergodic theory, one is interested in statistical properties of the orbits
{T nx}n≥0. Origins of this subject can be traced back to the works
of Boltzmann, Gibbs and Poincare, and the word “ergodic” comes
from so-called ergodic hypothesis in statistical physics. A function
f : X → R is considered as an observable, which we can sample along
the trajectory {T nx}n≥0 to compute its time average 1

N

∑N−1
n=0 f(T nx).

The ergodic hypothesis of Boltzmann roughly stated that if the space
does not split into invariant pieces, then the time average should con-
verge to the space average

∫
X
f dµ. A rigorous version of the ergodic

hypothesis is the mean ergodic theorem, which was proved by von
Neumann in 40s. We formulate this result in a more general setting of
operators on a Hilbert space:

Theorem 1.1 (von Neumann). Let U be a contraction (i.e., ‖U‖ ≤ 1)
operator on a Hilbert space H and PU denotes the orthogonal projection

1
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on the space U-invariant vectors. Then for every v ∈ H

(1.1)
1

N

N−1∑
n=0

Unv
‖·‖−→ PUv as n→∞,

where P denotes the orthogonal projection on the space of U-invariant
vectors.

Proof. We will use the following decomposition:

(1.2) H = ker(U∗ − I) ⊥ Im(U − I),

which is valid for an operator which is not necessarily unitary. To prove
this, we observe that for v, w ∈ H,

〈v, (U − I)w〉 = 〈(U∗ − I)v, w〉 .

So if v is orthogonal to Im(U − I), it follows that (U∗ − I)v = 0.
Conversely, if v ∈ ker(U∗ − I), then v is orthogonal to Im(U − I).

Now we claim that ker(U − I) = ker(U∗ − I). For v ∈ ker(U − I),
we have 〈v, U∗v〉 = 〈Uv, v〉 = ‖v‖2. Hence, by the equality case of the
Cauchy-Schwartz inequality, U∗v = v. The other inclusion is proved
similarly.

For v ∈ ker(U − I), (1.1) is obvious, and for v = Uw − w, we have∥∥∥∥∥ 1

N

N−1∑
n=0

Unv

∥∥∥∥∥ =

∥∥∥∥ 1

N
(UNw − w)

∥∥∥∥ ≤ 2‖w‖
N
→ 0 as N →∞.

Hence, it follows from (1.2) that (1.1) holds for a dense family of vec-
tors. The convergence for general vectors is easy to deduce with a help
of the triangle inequality. �

To apply Theorem 1.1 to the study of the dynamical systems, we
observe that a measure-preserving transformation T : X → X defines
a contraction operator UT on the Hilbert space L2(X):

(1.3) (UTf)(x) = f(Tx), f ∈ L2(X).

This simple observation provides a fundamental connection between
ergodic theory and harmonic analysis, and it will be crucial for our
purposes.

The transformation T is called ergodic if L2(X) contains no noncon-
stant UT -invariant functions. Note that in this case, the projection map
PUT is given by PUT f =

∫
X
f dµ, and we have the following corollary:
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Corollary 1.2 (von Neumann mean ergodic theorem). Let T be an
ergodic measure-preserving transformation of a probability space (X,µ).
Then for every f ∈ L2(X),

1

N

N−1∑
n=0

f(T nx)
L2

−→
∫
X

f dµ as n→∞

in L2-norm.

Here we consider some generalizations of this classical mean ergodic
theorem and applications in number theory, Diophantine approxima-
tion, and combinatorics.

2. Notation and preliminaries

In these lectures G denotes a topological group. We always assume
that

G is locally compact and compactly generated.

A reader might think about some concrete examples: Rd, the group of
upper triangular matrices, SLd(R), etc.

The group G supports a right invariant (regular) Borel measure m,
which is called Haar measure:

m(Bg) = m(B) for every g ∈ G and Borel B ⊂ G.

Moreover, this measure is unique up to a scalar multiple. It follows
from uniqueness that there exists a function ∆ : G → R+, which is
called the modular function, such that

m(gB) = ∆(g)m(B) for every Borel B ⊂ G.

This measure satisfies

m(U) > 0 for open U ⊂ G,

m(K) <∞ for compact K ⊂ G.

We note that in most examples such measure can be given explicitly.
It is easy to construct for Lie groups by integrating a nonzero invariant
differential form of top degree.

Example 2.1. The Lebesgue measure on Rd is a Haar measure.

Exercise 2.2. (1) Show that left/right Haar measure on GLd(R)
is given by

det(g)−d
∏
i,j

dgij
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(2) Show that left and right Haar measure on

SL2(R) =

{(
x y
z t

)
: xt− yz = 1

}
is given by 1

x
dxdydz.

(3) Compute left and right Haar measures for the affine group

(2.1)

{(
a b
0 1

)
: a ∈ R+, b ∈ R

}
.

Compute the function ∆.
(4) Prove that ∆ is a continuous homomorphism.
(5) Prove that if the Haar measure is finite, then G is compact.

A group G is called unimodular if Haar measure is both left and right
invariant

Exercise 2.3. (1) Every compact group is unimodular.
(2) SLd(R) is unimodular.

3. Amenable groups

We consider a measure-preserving action of a group G on a probabil-
ity space (X,µ) and aim to prove an ergodic theorem for such actions.
As a natural generalization of the von Neumann ergodic theorem, we
consider the averages

(3.1) Anf(x) :=
1

m(Bn)

∫
Bn

f(g−1x) dm(g)

defined for f ∈ L2(X) and a sequence of measurable sets Bn such
that 0 < m(Bn) < ∞. Similarly to (1.3), we can introduce a unitary
representation πX of G on the space L2(X):

πX(g)f(x) = f(g−1x), g ∈ G, f ∈ L2(X).

The averaging operators (3.1) can be defined for a general unitary
representation of G on a Hilbert space H. The operators An : H → H
are defined by

(3.2) 〈Anv, w〉 :=
1

m(Bn)

∫
Bn

〈π(g)v, w〉 dm(g), v, w ∈ H.

After a short contemplation on the proof of Theorem 1.1, one realizes
that the key ingredient was the asymptotic invariance of the intervals
[0, N − 1] under translations. This leads to the notion of a Følner
sequence. We say that a sequence of measurable sets Bn such that
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0 < m(Bn) < ∞ is a Følner sequence if for a compact generating set
Q of G, we have

sup
g∈Q

m(Bn4Bng)

m(Bn)
→ 0 as n→∞.

A group G is called amenable if such a sequence exists.

Exercise 3.1. Prove that for every Følner sequence Bn,

m(Bn4Bng)

m(Bn)
→ 0 as n→∞

uniformly on g in compact sets. (Hint: use the inclusion A4C ⊂
(A4B) ∪ (B4C) and invariance of the measure.)

Exercise 3.2. (1) Show that a sequence of boxes [a
(1)
n , b

(1)
n ]× · · ·×

[a
(d)
n , b

(d)
n ] is a Følner sequence iff mini(b

(i)
n − a(i)

n )→∞.
(2) Construct a Følner sequence for the affine group (2.1).

The original argument of von Neumann easily generalizes to prove

Theorem 3.3. Let Bn be a Følner sequence in a group G and π a
unitary representation of G on a Hilbert space H. Then for the sequence
of operators An defined in (3.2) and every v ∈ H,

(3.3) Anv
‖·‖−→ PGv as n→∞,

where PG is the orthogonal projection on the space of G-invariant func-
tions.

In particular, we immediately obtain the following

Corollary 3.4. Let Bn be a Følner sequence in a group G that acts
ergodically on a probability space (X,µ). Then for every f ∈ L2(X),

(3.4)
1

m(Bn)

∫
Bn

f(g−1x) dm(g)
L2

−→
∫
X

f dµ as n→∞.

Proof of Theorem 3.4. As in the proof of Theorem 1.1, one checks the
orthogonal decomposition

H = Hinv ⊥ Herg

where

Hinv = {v ∈ H : π(g)v = v for all g ∈ G},

Herg = span{π(g)w − w : g ∈ G, w ∈ H}.



6 VITALY BERGELSON AND ALEXANDER GORODNIK

For v ∈ Hinv, (3.4) is obvious, and for v = π(g0)w − w,

‖Anv‖ =

∣∣∣∣ 1

m(Bn)

∫
Bn

π(gg0)w dm(g)− 1

m(Bn)

∫
Bn

π(g)w dm(g)

∣∣∣∣
=

1

m(Bn)

∣∣∣∣∫
Bng0

π(g)w dm(g)−
∫
Bn

π(g)w dm(g)

∣∣∣∣
≤ 1

m(Bn)
m(Bng04Bn)‖w‖ → 0 as n→∞.

Taking linear combinations, we obtain a dense family of vectors for
which (3.4) holds. Since ‖An‖ ≤ 1 and ‖PG‖ ≤ 1, the general case
follows by triangle inequality. �

Amenable groups were introduced by von Neumann in relation to
the Banach–Tarski paradox. Since then the notion of amenability has
found an amazing number of applications. We mention only several
characterizations of amenability which appear naturally in our context:

• Existence of invariant means,
• Existence of almost invariant vectors (this will lead to the notion

of Kazhdan groups in Section 5),
• Bounds on the spectrum of the averaging operators (this will

lead to the notion of spectral gap).

The important property of amenable groups (which, in fact, charac-
terizes amenability) is existence of invariant measures.

Theorem 3.5 (Bogolubov, Krylov). Consider a continuous action of
an amenable group G on a compact space X. Then X support a G-
invariant probability measure.

Proof. By the Riesz representation theorem, the spaceM(X) of Borel
measures on X can be identified with the dual of the space C(X)
of continuous functions. We equip M(X) with the weak∗ topology.
Namely, µn → µ if∫

X

f dµn →
∫
X

f dµ for every f ∈ C(X).

The key ingredient of the proof is the compactness of the spaceM1(X)
of probability measures, which is a special case of the Banach–Alaoglu
theorem. Consider the sequence of the probability measures µn defined
by ∫

X

f dµn =
1

m(Bn)

∫
Bn

f(g−1x) dm(g), f ∈ C(X),

where Bn is a Følner sequence. By compactness, we have convergence
µni → µ along a subsequence to a probability measure µ. We claim
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that µ is G-invariant. As in the proof of Theorem 3.4, we have, for
g0 ∈ G and f ∈ C(X),∣∣∣∣∫

X

f(g−1
0 x) dµn(x)−

∫
X

f(x) dµn(x)

∣∣∣∣
=

1

m(Bn)

∣∣∣∣∫
Bn

f(g−1
0 g−1x) dm(g)−

∫
Bn

f(g−1x) dm(g)

∣∣∣∣
≤ 1

m(Bn)
m(Bng04Bn)‖f‖∞ → 0 as n→∞.

Hence, ∫
X

f(g−1
0 x) dµ(x) =

∫
X

f(x) dµ(x)

for every g0 ∈ G and f ∈ C(X), as claimed. �

Exercise 3.6. (1) Consider the action of SL2(R) on the space X =
R ∪ {∞} defined by(

a b
c d

)
· x =

ax+ b

cx+ d
.

Show that there are no finite SL2(R)-invariant measureX. (Hint:
the north-south pole dynamics of the diagonal subgroup.)

Note that it follows from Theorem 3.5 that SL2(R) is not
amenable.

(2) Show that a nonabelean free group, equipped with the discrete
topology, is not amenable.

Let π be a unitary representation of a group G on a Hilbert space H.
Given subset Q ⊂ G and ε > 0, we call a vector v a (Q, ε)-invariant if

‖π(g)v − v‖ ≤ ε‖v‖ for every g ∈ Q.

We say that π has almost invariant vectors if for every compact subset
Q and ε > 0, there exists a nonzero (Q, ε)-invariant vector.

Another characterization of amenability is in terms of almost invari-
ant vectors for the regular representation. The regular representation
λ of a group G is defined by

λ(g)f(x) = f(xg), g ∈ G, f ∈ L2(G).

Theorem 3.7 (Hulanicki, Reiter). A group G is amenable if the regular
representation of G has almost invariant vectors.

Note that L2(G) contains no invariant vectors when G is not com-
pact.
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Lemma 3.8. Let φ, ψ be nonnegative functions in L1(G). Then for
Et = {g ∈ G : φ(g) ≥ t} and Ft = {g ∈ G : ψ(g) ≥ t},

‖φ− ψ‖1 =

∫ ∞
0

m(Et4Ft)dt.

Exercise 3.9. Prove this lemma. (Hint: Observe that by the Fubini
theorem, φ(x) =

∫∞
0
χEt(x)dt.)

Proof of Theorem 3.7. Let Bn be a Følner sequence in G and fn =
χBn

m(Bn)1/2
. Then ‖fn‖2 = 1 and

‖λ(g)fn − fn‖2 =
m(Bng

−14Bn)1/2

m(Bn)1/2
→ 0,

uniformly on g in compact sets. Hence, L2(G) contains almost invariant
vectors.

Conversely, let Q be a compact generating set of G and fn be a
sequence of vectors in L2(G) such that ‖fn‖ = 1 and

‖λ(g)fn − fn‖2 → 0

uniformly on g ∈ Q. Consider φn = f 2
n ∈ L1(G). By the Cauchy-

Schwartz inequality,

‖λ(g)φn − φn‖1 ≤ ‖λ(g)fn + fn‖2‖λ(g)fn − fn‖2

≤ 2‖λ(g)fn − fn‖2 → 0.

Let Bn,t = {g ∈ G : φn(g) ≥ t}. Then by Lemma 3.8, we have

‖λ(g)φn − φn‖1 =

∫ ∞
0

m(Bn,tg
−14Bn,t)dt

and for every compact K ⊂ G,

αn :=

∫ ∞
0

m(Bn,t)

(∫
K

m(Bn,tg
−14Bn,t)

m(Bn,t)
dm(g)

)
dt→ 0.

Since
∫∞

0
m(Bn,t)dt = ‖φn‖1 = 1, the measure dνn(t) = m(Bn,t)dt is a

probability measure. For the set

Ωn =

{
t > 0 :

∫
K

m(Bn,tg
−14Bn,t)

m(Bn,t)
dm(g) ≥ α1/2

n

}
,

we have νn(Ωn) ≤ α
1/2
n → 0. Hence, there exists tn such that for

Bn = Bn,tn , we have 0 < m(Bn) <∞ and∫
K

m(Bng
−14Bn)

m(Bn)
dm(g)→ 0.
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This already implies convergence in measure, but we need to prove the
uniform convergence!

Let ε > 0, and

Kn,ε = {k ∈ K :
m(Bnk

−14Bn)

m(Bn)
≤ ε}.

Note that for g ∈ G, we have

(3.5) m(Kn,εg ∩Kn,ε)→ m(Kg ∩K) as n→∞,

uniformly on g ∈ G, and

K−1
n,ε ·Kn,ε ⊂ Kn,2ε.

Now we assume that Q is a compact symmetric generating set that
contains identity, m(Q) > 0, and K = Q2. Then for g ∈ Q, we have
m(Kg ∩K) ≥ m(Q). Then it follows from (3.5) that for n > n0(ε), we
have Kn,εg ∩Kn,ε 6= ∅. Hence, g ∈ Kn,2ε. This proves that

m(Bng
−14Bn)

m(Bn)
≤ 2ε

for every g ∈ Q and n ≥ n0(ε) as required. �

It would be convenient to generalise definition (3.2). Given a proba-
bility Borel measure µ on G and a unitary representation π of G on a
Hilbert space H, we define an operator π(µ) : H → H:

〈π(µ)v, w〉 :=

∫
G

〈π(g)v, w〉 dµ(g), v, w ∈ H.

Note that we always have ‖π(µ)‖ ≤ 1, and nontrivial upper bounds are
very useful.

Theorem 3.10 (Kesten). Let µ be a probability measure on G which
is absolutely continuous with respect to Haar measure, and supp(µ)
generates a dense subgroup of G. Then G is amenable iff the spectrum
of the operator λ(µ) contains 1 (i.e., the operator λ(µ) − I does not
have a bounded inverse).

Proof. We will prove that the condition on the spectrum is equivalent
to the condition from Theorem 3.7. Assume that the regular repre-
sentation λ contains almost invariant vectors. Let Qn be a compact
subset of G such that µ(Qn) ≥ 1 − 1/n. There exists a sequence of
unit vectors vn ∈ L2(G) such that ‖λ(g)vn − vn‖ ≤ 1/n for all g ∈ Qn.
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Then it follows that

‖λ(µ)vn − vn‖ ≤
∫
G

‖λ(g)vn − vn‖dµ(g)

≤
∫
Qn

‖λ(g)vn − vn‖dµ(g) +
2

n
≤ 3

n
→ 0.

This implies that λ(µ)− I does not have a bounded inverse.
Now we assume that 1 ∈ spec(π(µ)). We first claim that there exists

a sequence of unit vectors vn ∈ L2(G) such that

(3.6) ‖λ(µ)vn − vn‖ → 0.

It suffices to consider the case when Ker(λ(µ)−I) = 0. If Im(λ(µ)−I)
is dense in L2(G), then the inverse of λ(µ) − I should be unbounded,
and this implies (3.6). Otherwise, it follows from (1.2) that there exists
v ∈ Ker(λ(µ)∗ − I), v 6= 0, such that

〈λ(µ)v, v〉 = 〈v, λ(µ)∗v〉 = ‖v‖2,

i.e., we have equality in the Cauchy-Schwartz inequality. Hence λ(µ)v =
v. This proves (3.6).

Since µ is absolutely continuous, dµ(g) = φ(g)dm(g) for some φ ∈
L1(G), so

λ(µ)vn(x) =

∫
G

vn(xy)φ(y)dm(y)

and

λ(g)λ(µ)vn(x) =

∫
G

vn(xy)φ(g−1y)∆(g)−1dm(y).

This implies that for every ε > 0, there exists a neighborhood U of
identity in G such that

(3.7) ‖λ(g)λ(µ)vn − λ(µ)vn‖ < ε for all g ∈ U and n ≥ 0.

We set wn = λ(µ)vn/‖λ(µ)vn‖. Since ‖λ(µ)‖ ≤ 1, it follows from (3.6)
that

‖λ(µ)wn − wn‖ → 0,

and

| 〈λ(µ)wn, wn〉 − 1| = | 〈λ(µ)wn − wn, wn〉 | ≤ ‖λ(µ)wn − wn‖ → 0.

Hence, ∫
G

(1− 〈λ(g)wn, wn〉)dm(g)→ 0,

i.e., 〈λ(g)wn, wn〉 → 1 in measure. Passing to a subsequence, we may
assume that convergence holds almost everywhere. Since

‖λ(g)wn − wn‖2 = 2− 2Re 〈λ(g)wn, wn〉 ,
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the set

H = {g ∈ G : ‖λ(g)wn − wn‖ → 0}
has full measure. Then supp(µ) ⊂ H̄, and by the assumption on µ,
H̄ = G.

Let ε > 0 and Q be a compact generating set of G. It follows from
(3.8) that for a suitable neighborhood U of identity in G,

(3.8) ‖λ(u)wn − wn‖ < ε for all u ∈ U and n ≥ n0.

Since H is dense, there exist h1, . . . , hk ∈ H such that Q ⊂ ∪ki=1hiU .
Note that for all sufficiently large n,

‖λ(hi)wn − wn‖ < ε for all i = 1, . . . , k.

Writing g ∈ Q as g = hiu for some i = 1, . . . , k and u ∈ U , we get

‖λ(g)wn − wn‖ ≤ ‖λ(hiu)wn − λ(hi)wn‖+ ‖λ(hi)wn − wn‖
≤ ‖λ(u)wn − wn‖+ ‖λ(hi)wn − wn‖ < 2ε.

This shows that L2(G) contains almost invariant vectors, and completes
the proof of the theorem. �

Theorem 3.10 implies in particular that for amenable groups, we
always have

‖λ(µ)‖ = 1.

This hints that there is no rate of convergence in the mean ergodic the-
orem. The situation is quite different for semisimple Kazhdan groups
such as SLd(R), d ≥ 3, as we will see later.

We say that the unitary representation π of a group G has a spectral
gap if 1 /∈ spec(π(µ)) for some absolutely continuous probability mea-
sure µ on G whose support generates G topologically. The action of
G on a probability space has a spectral gap if the representation π0

X on
the space L2

0(X), the subspace of functions orthogonal to the constant,
has spectral gap.

Exercise 3.11. Show that the notion of spectral gap does not depend
on a choice of the measure µ.

Exercise 3.12. (1) Consider the rotation T : x 7→ x + α mod 1

on the circle X = R/Z and the measures µn = 1
N

∑N−1
n=0 δT i

where δx denotes the Dirac measure. Show that the spectrum
of πX(µn) contains one for all n.

(2∗) Let T be an invertible measure-preserving transformation of a
general probability measure space (X,µ) and µn is defined as
above. Show that ‖πX(µn)‖ = 1. (Hint: One can use the
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notion of Rohklin tower (see, for instance, Halmos’ book on
ergodic theory).

Exercise 3.13. Let G be a free group with generators a, b and µ =
1
2
δa + 1

2
δb. Prove that ‖λ(µ)‖ = 1, but 1 /∈ spec(π(µ)).

Although the regular representation of an amenable group never has
a spectral gap, there are many natural examples of actions of amenable
groups with spectral gap.

Exercise 3.14. Consider the action of G = R2 on X = R2/Z2 by
translations. Show that this action has a spectral gap.

4. Decay of matrix coefficients

A measure-preserving action of a group G on a probability space
(X,µ) is called mixing if for every f1, f2 ∈ L2(X), we have

〈πX(g)f1, f2〉 →
(∫

X

f1 dµ

)(∫
X

f2 dµ

)
as g →∞ (“g →∞” means that the sequence g has no accumulation
points).

Exercise 4.1. (1) Consider the measure-preserving transformation
T of a probability space (X,µ). If L2(X) has non-constant
eigen-functions, then the action is not mixing. In particular, an
ergodic rotation on the torus is not mixing.

(2) Let T be a hyperbolic matrix in SL2(Z). Then the correspond-
ing Z-action on the torus R2/Z2 is mixing. (Hint: consider what
happens for characters first.)

(3) Generalise the previous example to automorphisms of d-dimensional
torus.

The following theorem implies any ergodic action of the group G =
SLd(R) is mixing.

Theorem 4.2 (Howe, Moore). Consider a unitary representation π of
G = SLd(R) on a Hilbert space H such that H contains no nonzero
vectors fixed by G. Then for every v, w ∈ H,

〈π(g)v, w〉 → 0 as g →∞.
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We will use the following notation:

K = SO(d) = the orthogonal group,

A = {diag(a1, . . . , ad) :
∏
i

ai = 1, ai > 0},

A+ = {diag(a1, . . . , ad) :
∏
i

ai = 1, a1 ≥ · · · ≥ ad > 0},

N = the group of unipotent upper triangular matrices.

We also set

kθ =

(
cos θ − sin θ
sin θ cos θ

)
, at =

(
t 0
0 t−1

)
, us =

(
1 s
0 1

)
.

The following decompositions hold:

G = NAK (Iwasawa decomposition),

G = KA+K (Cartan decomposition).

Exercise 4.3. Check these decompositions. (Hint: you already know
them from a linear algebra course. Review the Gramm-Schmidt or-
thogonalization and canonical forms of quadratic forms.)

Proof. We prove the theorem by contradiction. Suppose that for some
sequence gn → ∞ and v, w ∈ H, we have 〈π(gn)v, w〉 9 0. We write
gn = knanln in terms of the Cartan decomposition. Then clearly, an →
∞, and after passing to a subsequence, we may assume that lnv → v′

and k−1
n w → w′ for some v′, w′ ∈ H. It is easy to check that

〈π(gn)v, w〉 − 〈π(an)v′, w′〉 → 0.

Hence, 〈π(an)v′, w′〉9 0.
Let’s consider G = SL2(R). Our intermediate aim is to show that

there exists a nonzero vector fixed by {us}. From the previous para-
graph, we have vectors v, w ∈ H and tn → +∞ such that 〈π(atn)v, w〉9
0. After passing to a subsequence, we may assume that lim π(atn)v =
v′, where the limit is in the weak! topology. Then 〈π(atn)v, w〉 →
〈v′, w〉, so v′ 6= 0. We have

π(us)v
′ = limπ(usatn)v = limπ(atnus/t2n)v.

Since
‖π(atnus/t2n)v − π(atn)v‖ → 0,

it follows that

π(us)v
′ = limπ(atn)v = v′,

which proves the claim.
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Exercise 4.4. Generalize this argument to SLd(R). Namely, show
that there exists a nonzero vector fixed by the subgroups of the form(
id ∗
0 id

)
.

Now we fix a nonzero vector v which is invariant underN = {us}, and
consider the function φ(g) = 〈π(g)v, v〉, which N -biinvariant. Consider
the action of G on R2. Since StabG(e1) = N and the action is trivial,
we have identification

R2 − {0} = G/N,

and φ can be consider as an N -invariant function on R2−{0}. Note the
N -orbits in R2 are the horizontal lines, except the x-axis, and single
points on the x-axis. The function φ is constant on horizontal lines
y = c, c 6= 0. Hence, by continuity, it is constant on the line y = 0. We
have

〈π(at)v, v〉 = φ(t, 0) = φ(0, 0) = ‖v‖2.

By the equality case, of the Cauchy-Schwartz inequality, π(at)v = v.
This implies that the function φ is biinvariant under AN . Since AN
has a dense orbit in R2, φ is constant, i.e., 〈π(g)v, v〉 = ‖v‖2. As above,
this implies that v is G-invariant, which is a contradiction.

Exercise 4.5. Complete the proof for SLd(R): using Exercise 4.4, de-
duce that there exists a nonzero vector which is invariant under copies
of SL2(R) which generate SLd(R).

�

Now we observe that decay of matrix coefficient implies a mean er-
godic theorem:

Corollary 4.6. Consider an ergodic action of G = SLd(R) on a prob-
ability space (X,µ). Let Bn be a sequence of Borel subsets of G such
that 0 < m(Bn) <∞ and m(Bn)→∞. Then for every f ∈ L2(X),

1

m(Bn)

∫
Bn

f(g−1x) dm(g)→
∫
X

f dµ as n→∞

in L2-norm.

Proof. It suffices to consider a function f with
∫
X
f dµ = 0.

Let ε > 0 and Q be a compact subset of G such that

| 〈πX(g)f, f〉 | < ε for all g /∈ Q.
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Then we have∥∥∥∥ 1

m(Bn)

∫
Bn

πX(g)f dm(g)

∥∥∥∥2

=
1

m(Bn)2

∫
Bn×Bn

〈
πX(g−1

2 g1)f, f
〉

≤ (m⊗m)({(g1, g2) ∈ Bn ×Bn : g−1
2 g1 ∈ Q})

m(Bn)2
‖f‖2 + ε.

Making a change of variable (g1, g2) 7→ (g1, g
−1
2 g1), we deduce that

(m⊗m)({(g1, g2) ∈ Bn ×Bn : g−1
2 g1 ∈ Q}) ≤ m(Bn)m(Q).

Since m(Bn)→∞, the corollary follows. �

5. Rates of decay of matrix coefficients and Kazhdan
property

In this section, we prove a quantitative version of Theorem 4.2. A
vector v is called K-finite if the span of Kv is finite. Then we set
d(v) = dim 〈Kv〉.

Theorem 5.1 (Howe, Tan, Oh). Let G = SLd(R), d ≥ 3, and π be a
unitary representation of G on a Hilbert space H such that H contains
no nonzero invariant vectors. Then for every K-finite vectors v, w ∈ H,

| 〈π(a)v, w〉 | ≤ c(ε)d(v)1/2d(w)1/2‖v‖‖w‖
(

max
i<j

ai
aj

)−1/4+ε

for every a ∈ A+ and ε > 0.

We note that the set of K-finite vectors is always dense in the am-
bient space (this is the Peter–Weyl theorem).

Remark 5.2. With a little more work, the rate can be improved by a
factor of two, but the aim of this notes is to give a proof with minimal
technology.

We note that an analogue of this theorem fails for SL2(R), and there
is no uniform general rate in this case. This is related to the fact that
SL2(R) does not have Kazhdan property (see Corollary 5.12 below).
Nonetheless, uniform rates have been established for some special fam-
ilies of representations of SL2(R) of number-theoretic significance. This
is related to the Selberg conjecture and property τ , which we don’t have
time to discuss in these lectures.

The proof of Theorem 5.1 uses copies of subgroups SL2(R) n R2

embedded in SLd(R). In fact, the crucial step is the following
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Proposition 5.3. Let π be a unitary representation of the group G =
SL2(R)nR2 on a Hilbert space H. Assume that H contains no nonzero
vectors fixed by R2. Then for v, w in a dense subset of H consisting of
SO(2)-eigenvectors, we have

| 〈π(at)v, w〉 | ≤ c(v, w) t−1 for every t > 1.

where at = diag(t, t−1).

Proof. We identify the space R̂2 of unitary characters of R2 with R2

by setting χu,v(x, y) = ei(vx−uy). The group SL2(R) acts on R̂2 by
(g ·χ)(v) = χ(g−1v), and under such identification, this is the standard
action on R2 (note that SL2(R) preserves the symplectic form vx−uy).
Note also that these actions agree with the action of SL2(R) on R2 by
conjugations as a subgroup of G.

Although the group of unitary operators π(R2) may not have a basis
consisting of eigenvectors as in the finite-dimensional case, there is a
natural substitute — a projection-valued measure PB, B is a Borel
subset of R2, such that

π(r) =

∫
R2

χz(r)dPz, r ∈ R2.

This equality means that for v, w ∈ H,

〈π(r)v, w〉 =

∫
R2

χz(r) d 〈Pzv, w〉 .

We have equivarience relation:

(5.1) π(g)PBπ(g)−1 = PgB for Borel B ⊂ R2.

For s > 1, we consider

Ωs = {x ∈ R2 : s−1 ≤ ‖x‖ ≤ s}.
Note that it follows from (5.1) that PΩs commutes if π(kθ). SinceH has
no vectors fixed by R2, P{(0,0)} = 0, and by continuity of the measure,
PΩsv → v as s → ∞ for every v ∈ H. Hence, ∪s>1Im(PΩs) is dense
in H. It is a classical result that SO(2)-eigenvectors are dense in any
unitary representation. In particular, each space Im(PΩs) contains a
dense family of eigenvectors. Hence, it remains to prove the estimate
for v, w ∈ Im(PΩs). Setting a = diag(t, t−1), we have

〈π(a)v, w〉 = 〈π(a)PΩsv, PΩsw〉 = 〈PaΩsπ(a)v, PΩsw〉
= 〈π(a)v, PaΩsPΩsw〉 = 〈PΩsπ(a)v, PaΩs∩Ωsw〉
= 〈π(a)Pa−1Ωsv, PaΩs∩Ωsw〉 = 〈π(a)Pa−1ΩsPΩsv, PaΩs∩Ωsw〉
= 〈π(a)Pa−1Ωs∩Ωsv, PaΩs∩Ωsw〉 .
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Hence, by the Cauchy-Schwartz inequality,

(5.2) | 〈π(a)v, w〉 | ≤ ‖Pa−1Ωs∩Ωsv‖‖PaΩs∩Ωsw‖.
Note that the sets a−1

t Ωs ∩ Ωs are contained in the strip around the
x-axis of size s/t, so we expect that the norm ‖Pa−1Ωs∩Ωsv‖ decay as
t → ∞. We prove that this is the case when v is an eigenfunction of
{kθ}. Let π(kθ)v = e2πinθv. We decompose R2 into disjoint sectors S1,
. . . , Sm of equal size θ = 2π/m. Then

π(kθ)PSiv = PkθSiπ(kθ)v = e2πinθPSi+1
v.

This shows that the vectors PS1v, . . . , PSmv have the same norms.
Since we have orthogonal decomposition

v =
m∑
i=1

PSiv.

It follows that ‖PSiv‖ =
√

1
m
‖v‖ =

√
θ

2π
‖v‖. This implies that

‖Pa−1Ωs∩Ωsv‖ ≤
√

2 sin−1(s2/t)

2π
‖v‖,

and a similar estimate holds for ‖PaΩs∩Ωsw‖. Now the proposition
follows from (5.2). �

The main draw-back of Proposition 5.3 is that the bound is not
explicit in terms of v and w. This problem is rectified in Proposition
5.10 below. The proof will be carried out in several steps. With the help
of Proposition 5.3, we show that the tensor square of π|SL2(R) embeds in
a sum of the regular representations, and for the regular representation,
we establish explicit estimate in terms of the Harish-Chandra function.

Exercise 5.4. Prove the following formulas for the Haar measure on
G = SL2(R):∫

G

f(g) dm(g) =

∫
R×(0,∞)×[0,2π)

f(usatkθ)t
−2dθ

dt

t
ds,∫

G

f(g) dm(g) =

∫
[0,2π)××[1,∞)×[0,2π)

f(kθ1atkθ2)(t
2 − 1/t2)dθ1

dt

t
dθ2.

Exercise 5.5. Prove the formula for the Haar measure on G = SLd(R):∫
G

f(g) dm(g) =

∫
N×A×K

f(nak)∆(a)dndadk

where ∆ is the modular function on NA, and dn, da, dk denote Haar
measures on corresponding subgroups.
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A unitary representation π of a group G is called Lp here if for vectors
v, w in a dense subspace, one has 〈π(g)v, w〉 ∈ Lp(G).

Exercise 5.6. Prove that under the assumptions of Proposition 5.3,
the representation π|SL2(R) is Lp for p > 2.

We will need the following characterization of the L2-representations:

Theorem 5.7 (Godement). A representation π of a group G is L2 iff
it can be embedded as a subrepresentation of the sum ⊕∞n=1λG where λG
is the regular representation.

Proof. (sketch) Suppose that there exists a dense subset H0 of H such
that 〈v, π(g)w〉 ∈ L2(G). Without loss of generality, we may assume
that H0 is countable. Consider the map T : H0 → ⊕H0L

2(G) defined
by

Tw = ⊕v∈H0 〈v, π(g)w〉 , w ∈ H0.

It is clear that it is injective, and satisfies the equivarience relation:

T ◦ π(g) = (⊕H0λ(g)) ◦ T, g ∈ G.
To finish the proof, we need to show that the map T extends to the
whole space H. . . �

A remarkable property of semisimple groups is that the matrix coef-
ficients of K-invariant vectors in the regular representation L2(G) can
be bounded by an explicit decaying function — the Harish-Chandra
function Ξ, which we now introduce. Recall that for G = SLd(R), we
have the Iwasawa decomposition G = NAK. For g ∈ G, we denote
by a(g) its A-component. Let ∆ be the modular function of the upper
triangular group NA. The Harish-Chandra function is defined by

Ξ(g) =

∫
K

∆(a(kg))−1/2 dk.

Note that Ξ is K-biinvariant.

Exercise 5.8. Prove that the Harish-Chandra function for SL2(R) is
given by

Ξ(at) =
1

2π

∫ 2π

0

(t−2 cos2 θ + t2 sin2 θ)−1/2dθ,

and for every ε > 0,

Ξ(at) ≤ c(ε)t−1+ε, t > 1.

We note that the asymptotic behavior of the Harish-Chandra func-
tion is well-understood. It is known that Ξ ∈ L2+ε(G) for every ε > 0,
and there are very sharp pointwise bounds on decay of Ξ.
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Theorem 5.9. Let G = SLd(R) and φ, ψ ∈ L2(G) be K-eigenfunction.
Then

| 〈λ(g)φ, ψ〉 | ≤ ‖φ‖2‖ψ‖2 Ξ(g), g ∈ G.

Proof. Taking absolute values, we may assume that φ and ψ are K-
invariant.

The proof is based on the Herz’s “principe de majoration”. Clearly,
we only need to prove the estimate for g = a ∈ A. Using Exercise 5.5
and Fubini theorem, we obtain

〈λ(g)φ, ψ〉 =

∫
G

φ(ga)ψ(g)dm(g)

=

∫
N×A×K

φ(nbka)ψ(nb)∆(b)dndbdk

≤
∫
K

(∫
N×A

φ2(nbka)∆(b)dndb

)1/2(∫
N×A

ψ2(nbk)∆(b)dndb

)1/2

dk,

where the last estimate is the Cauchy-Schwartz inequality in L2(NA).
Since ψ is K-invariant,∫

N×A
ψ2(nbk)∆(b)dndb =

∫
N×A×K

ψ2(nbk)∆(b)dndbdk = ‖ψ‖2
2.

In terms of the Iwasawa decomposition, ka = n(ka)a(ka)k(ka), and

nbka = nbn(ka)a(ka)k(ka) = (nbn(ka)b−1)(ba(ka))k(ka).

Then using invariance of the measures, we get∫
N×A

φ2(nbka)∆(b)dndb =

∫
N×A

φ2((nbn(ka)b−1)(ba(ka)))∆(b)dndb

= ∆(a(ka))−1

∫
N×A

φ2(nb)∆(b)dndb

= ∆(a(ka))−1‖φ‖2.

This implies the theorem. �

Now we can prove a more explicit form of Proposition 5.3 for SO(2)-
finite vectors:

Proposition 5.10. Let notation be as in Proposition 6. Then for every
v, w ∈ H which are SO(2)-finite,

(5.3) | 〈π(at)v, w〉 | ≤ c(ε)d(v)1/2d(w)1/2‖v‖‖w‖ t−
1
2

+ε, t > 1,

for every ε > 0.
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Proof. First, we reduce the proof to the case when v and w are SO(2)-
eigenfunctions. Every SO(2)-finite vector v can be written as v =∑n

i=1 vi where vi’s are orthogonal SO(2)-eigenfunctions. Then by the
Cauchy–Schwartz inequality,

n∑
i=1

‖vi‖ = d(v)1/2

(
n∑
i=1

‖vi‖2

)1/2

= d(v)1/2‖v‖.

Hence, estimate (5.3) follows from the estimate for SO(2)-eigenfunctions
by linearity.

It follows from the estimate in Proposition 5.3 and Exercise 5.4 that
the matrix coefficients 〈π(g)v, w〉 belong to L4(SL2(R)) for v, w in a
dense subspace H0 of H.

Let ρ = π|SL2(R). Consider the tensor square ρ⊗ ρ of the representa-
tion ρ. For v1, v2, w1, w2 ∈ H0, we have

〈(ρ⊗ ρ)(g)(v1 ⊗ v2), (w1 ⊗ w2)〉 = 〈ρ(g)v1, w1〉 〈ρ(g)v2, w2〉 ,

and it follows from the Cauchy-Schwartz inequality that this expression
is in L2(G). Since linear combinations of vectors v1⊗v2 with v1, v2 ∈ H0

form a dense subspace of H ⊗ H, we conclude that ρ ⊗ ρ is an L2

representation. Hence, by Theorem 5.7, ρ ⊗ ρ is a subrepresentation
of a direct sum of regular representations. Applying Theorem 5.9 (it
is easy to check that it extends to direct sums), we get that for every
SO(2)-invariant vectors v, w ∈ H,

| 〈ρ(g)v, w〉 |2 ≤ ‖v‖2‖w‖2Ξ(g).

Now the proposition follows from Exercise 5.8. �

Proof of Theorem 5.1. We use various embedded copies of SL2(R)nR2

sitting in SLd(R). For simplicity, we carry out the computation for the
subgroup  SL2(R) R2 0

0 1 0
0 0 I

 .

Note that H contains no nonzero R2-invariant vectors because of The-
orem 4.2. Hence, Proposition 5.10 applies. For a = diag(a1, . . . , ad) ∈
A+, we write a = a′a′′ where

a′ = diag

((
a1

a2

)1/2

,

(
a2

a1

)1/2

, 1, . . . , 1

)
,

a′′ = diag((a1a2)1/2, (a1a2)1/2, a3, . . . , ad).
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Note that a′′ commutes with SL2(R). In particular, π(a′′)v is SO(2)-
finite, and

dim 〈SO(2)π(a′′)v〉 = dim 〈SO(2)v〉 ≤ d(v).

It is also clear that dim 〈SO(2)w〉 ≤ d(w). By Proposition 5.10,

| 〈π(a)v, w〉 | = | 〈π(a′)π(a′′)v, w〉 | ≤ c(ε)d(v)1/2d(w)1/2‖v‖‖w‖
(
a1

a2

)−1/4+ε

for every ε > 0. Using similar estimate for other copies of SL2(R) n R2

embedded in SLd(R), we finally deduce that

| 〈π(a)v, w〉 | ≤ c(ε)d(v)1/2d(w)1/2‖v‖‖w‖
(

max
i<j

ai
aj

)−1/4+ε

for every ε > 0, as required. �

Corollary 5.11. There exists p(d) > 0 such that every unitary rep-
resentation of SLd(R), d ≥ 3, without fixed vectors is Lp for every
p > p(d).

Proof. This is just a computation. The main ingredient is the estimate
from Theorem 5.1. �

A group G is called Kazhdan group if every unitary representation
of G which contains almost invariant vectors also contains invariant
vectors.

This should be compared with the notion of amenable groups. Note
that it follows from Theorem 3.7 that if a group is both amenable and
has Kazhdan property, then it is compact.

Corollary 5.12. The group SLd(R), d ≥ 3, has Kazhdan property.

Proof. Let π be a representation of G on a Hilbert space H which has
no invariant vectors, but has a sequence vn of almost invariant vectors,
namely,

‖π(g)vn − vn‖ → 0

uniformly on compact sets. Let wn =
∫
K
π(k)vn dk. Then

‖wn − vn‖ ≤
∫
K

‖π(k)vn − vn‖ dk → 0.

This implies that the sequence wn is also almost invariant and ‖wn‖ →
1, but wn’s are K-invariant, so we can apply the estimate from Theorem
5.1 to get a contradiction. For a ∈ A+,

‖π(a)wn − wn‖2 = 2− 2Re 〈π(a)wn, wn〉 ≥ 2− 2σ(a)‖wn‖2
2

σ is an explicit decaying function. Since ‖π(a)wn−wn‖ → 0 uniformly
on compact sets, this is impossible. �
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6. Quantitative mean ergodic theorems

In this section, we work with the group G = SLd(R), d ≥ 3. The
goal is to prove the quantitative mean ergodic theorem for G (Theorem
6.5 below).

For a finite Borel measures µ and ν on G, we define

(µ ∗ ν)(B) = (µ⊗ ν)({(x, y) : xy ∈ B})

and

µ∗(B) = µ(B−1)

where B is a Borel set.
Given a unitary representation π of G on a Hilbert space H, we

define the operator π(µ) on H by

〈π(µ)v, w〉 :=

∫
G

〈π(g)v, w〉 dµ(g), v, w ∈ H.

Exercise 6.1. Check that

(1) π(µ ∗ ν) = π(µ) ∗ π(ν).
(2) π(µ∗) = π(µ)∗.

Theorem 6.2 (Nevo’s transfer principle). Consider a measure-preserving
action of G on a probability space (X,µ), and assume that the repre-
sentation π on L2

0(X) is L4k for some k ∈ N, and ν a Borel probability
measure on G. Then

‖π(ν)‖ ≤ 2‖λ(ν)‖
1
2k .

Proof. We consider the tensor power representation π⊗2k. Note that
it is an L2-representation, and hence, by Theorem 5.7, a subrepresen-
tation of a direct sum of the regular representations λ. In particular,
‖π⊗2k(ν)‖ ≤ ‖λ(ν)‖. For a real-valued function f ∈ L2

0(X), we have
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by the Jensen inequality,

‖π(ν)f‖4k =

(∫
G×G
〈π(g1)f, π(g2)f〉 dν(g1)dν(g2)

)2k

=

(∫
G

〈π(g)f, f〉 d(ν∗ ∗ ν)(g)

)2k

≤
∫
G

〈π(g)f, f〉2k d(ν∗ ∗ ν)(g)

=

∫
G

〈
π⊗2k(g)f⊗k, f⊗k

〉
d(ν∗ ∗ ν)(g)

=

∫
G×G

〈
π⊗2k(g1)f⊗2k, π⊗2k(g2)f⊗2k

〉
dν(g1)dν(g2)

= ‖π⊗2k(ν)f⊗2k‖2 ≤ ‖π⊗2k(ν)‖2‖f⊗2k‖2

≤ ‖λ(ν)‖2‖f‖4k.

For general functions f , we write f = f1 + if2 where f1 and f2 are
real-valued, and it follows from the previous estimate that

‖π(ν)f‖ ≤ ‖λ(ν)‖
1
2k (‖f1‖+ ‖f2‖) ≤ 2‖λ(ν)‖

1
2k ‖f‖.

This implies the theorem. �

Similarly to measures, one defines convolutions of functions:

(f1 ∗ f2)(x) =

∫
G

f1(xy−1)f2(y) dm(y).

Theorem 6.3 (Kunze–Stein inequality; Cowling). For p ∈ [1, 2), φ ∈
L2(G) and f ∈ L1(G) ∩ Lp(G),

‖φ ∗ f‖2 ≤ cp‖φ‖2‖f‖p.

Proof. We give a proof in the case when f is K-biinvariant, but some
parts of the argument will be general.

We need to check that for every ψ ∈ L2(G),∣∣∣∣∫
G

(φ ∗ f)ψ dm

∣∣∣∣ ≤ cp‖f‖p‖φ‖2‖ψ‖2.
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Using the Cauchy-Schwartz inequality, we obtain∣∣∣∣∫
G

(∫
G

φ(xy−1)f(y) dm(y)

)
ψ(x) dm(x)

∣∣∣∣
≤
∫
G

|f(y)|
(∫

G

|φ(xy−1)||ψ(x)| dm(x)

)
dm(y)

=

∫
G

|f(y)|
(∫

K

∫
P

|φ(pky−1)||ψ(pk)| dpdk
)
dm(y)

≤
∫
G

∫
K

|f(y)|
(∫

P

|φ(pky−1)|2dp
)1/2(∫

P

|ψ(pk)|2 dp
)1/2

dk dm(y)

=

∫
G

|f(y)|
(∫

K

φ̃(ky−1)ψ̃(k)dk

)
dm(y).

where we use the notation:

φ̃(g) =

(∫
P

|φ(pg)|2 dp
)1/2

and ψ̃(g) =

(∫
P

|ψ(pg)|2 dp
)1/2

.

Note that for n ∈ N , a ∈ A, and g ∈ G, we have

φ̃(nag) = ∆(a)−1/2φ̃(g)(6.1)

(see the computation in the Herz principe de majoration from the pre-
vious lecture).

Note that by the Jensen inequality,

(6.2)

∫
K

ψ̃(k)dk ≤
(∫

K

∫
P

|ψ(pk)|2 dpdk
)1/2

= ‖ψ‖2.

Now we assume that f is right K-invariant. Then using invariance
of the measures and (6.2), we obtain∫

G

|f(y)|
(∫

K

φ̃(ky−1)ψ̃(k)dk

)
dm(y)

=

∫
K

∫
G

|f(yk1)|
(∫

K

φ̃(ky−1)ψ̃(k)dk

)
dm(y)dk1

=

∫
G

|f(y)|
(∫

K×K
φ̃(kk1y

−1)ψ̃(k) dkdk1

)
dm(y)

=

∫
G

|f(y)|
(∫

K

φ̃(k1y
−1)dk1

)(∫
K

ψ̃(k) dk

)
dm(y)

≤
∫
G

|f(y)|
(∫

K

φ̃(k1y
−1)dk1

)
dm(y) · ‖ψ‖2.
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Recall that we use the notation g = n(g)a(g)k(g) for the Iwasawa
decomposition.

Next, we assume that f is right K-invariant. Then using invariance
of the measures, (6.1) and (6.2),∫

G

|f(y)|
(∫

K

φ̃(k1y
−1)dk1

)
dm(y)

=

∫
K

∫
G

|f(k2y)|
(∫

K

φ̃(k1y
−1)dk1

)
dm(y)dk2

=

∫
G

|f(y)|
(∫

K×K
φ̃(k1y

−1k2)dk1dk2

)
dm(y)

=

∫
G

|f(y)|
(∫

K×K
∆(a(k1y

−1))−1/2φ̃(k(k1y
−1)k2)dk1dk2

)
dm(y)

=

∫
G

|f(y)|
(∫

K

∆(a(k1y
−1))−1/2dk1

)(∫
K

φ̃(k2)dk2

)
dm(y)

≤
∫
G

|f(y)|Ξ(y−1)dm(y) · ‖φ‖2.

To complete the proof, we use that the Harish-Chandra function is in
Lq(G) for q > 2. Take p ∈ [1, 2) and let q be the reciprocal of p. Then
by the Hölder inequality,∫

G

|f(y)|Ξ(y−1) dm(y) ≤ ‖f‖p‖Ξ‖q.

This completes the proof.
If the reader does not want to use the fact that Ξ ∈ Lq(G) for q > 2,

we also indicate an alternative approach which shows that Ξ ∈ Lq(G)
for sufficiently large q. Then it follows that the Kunze–Stein inequality
holds for some p > 1, which is sufficient for our purposes.

In fact, one can show that Ξ is a matrix coefficient of so-called quasi-
regular representation. This representation is defined on the space of
functions F on G such that

F (nax) = ∆(a)−1/2F (x), n ∈ N, a ∈ A, x ∈ G,

where the action is given by

(ρ(g)F )(x) = F (xg), g, x ∈ G,

and the scalar product is

〈F1, F2〉 =

∫
K

F1(k)F2(k)dk.
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For F (g) = ∆(a(g))−1/2, we have

Ξ(g) = 〈ρ(g)F, F 〉 .

Hence, Ξ is a matrix coefficient and we can use Corollary 5.11 to con-
clude that Ξ ∈ Lq(G) for sufficiently large q. �

Exercise 6.4. (1) Check that for every group, one has

‖φ ∗ f‖2 ≤ ‖φ‖2‖f‖1.

(2) Prove that if G = Rd, then the Kunze–Stein inequality fails for
every p > 1.

Let Bt, t > 0, be a family of measurable subsets of G such that
0 < m(Bt) < ∞. We say that the family is coarsely admissible if the
following conditions hold:

(1) For every compact subset Q ⊂ G, there exists c > 0 such that
QBtQ ⊂ Bt+c for every t > t0.

(2) There exists α > 0 such that m(Bt+1) ≤ αm(Bt) for every
t > t0.

For instance, given any norm on the space of matrices Matd(R), one
can show that the family of sets

Bt = {g ∈ G : log ‖g‖ < t}

is coarsely admissible.
Now we prove a mean ergodic theorem with a rate, which would be

unthinkable in the amenable world.

Theorem 6.5. Let Bt be a coarsely admissible family of subsets of
G = SLd(R), d ≥ 3. Then for every ergodic action of G on a probability
space (X,µ) and f ∈ L2(X),∥∥∥∥ 1

m(Bt)

∫
Bt

f(g−1x)−
∫
X

f dµ

∥∥∥∥
2

≤ cm(Bt)
−δ‖f‖2

where δ > 0 depends only on G.

Proof. Consider the probability measure

dνt(g) =
1

m(Bt)
χBt(g)dm(g).

We need to show that for the representation π of G on L2
0(X), we have

‖π(νt)‖ ≤ cm(Bt)
−δ.
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Since the action of G on (X,µ) is ergodic, the representation G on
L2

0(X) has no fixed vectors. Hence, by Corollary 5.11, it is L4k for
some sufficiently large k ∈ N. Hence, by Theorem 6.2,

‖π(νt)‖ ≤ 2‖λ(νt)‖
1
2k .

Let’s set B̃t = KBtK and consider the probability measure

dν̃t(g) =
1

m(B̃t)
χB̃t(g)dm(g).

Using that the sets are coarsely well-rounded, we deduce that

‖λ(νt)‖ ≤ const ‖λ(ν̃t)‖.
Hence, we may assume that the sets Bt are K-biinvariant.

Finally, by Theorem 6.3, for φ ∈ L2(G),

‖λ(νt)φ‖2 =
1

m(Bt)
‖φ ∗ χB−1

t
‖2 ≤

1

m(Bt)
cp‖φ‖2‖χB−1

t
‖p

= cpm(Bt)
−(1− 1

p
)‖φ‖2.

This proves the theorem. �

We note that Theorem 6.5 also hold without the assumption that the
family Bt is coarsely admissible, but this requires the general version of
the Kunze–Stein inequality, which we haven’t proven in these lectures.

7. Application I: counting lattice points

The classical Gauss circle problem asks about the asymptotic of

|{(x, y) ∈ Z2 :
√
x2 + y2 < t}|

as t→∞. It is easy to observe in this case by “counting squares” that
this number is asymptotic to

Area({(x, y) ∈ Z2 :
√
x2 + y2 < t}).

More generally, we consider a locally compact group G and a discrete
subgroup Γ of G such that m(G/Γ) <∞. For a family of domains Bt

in G, we are interested in the asymptotic of |Γ ∩ Bt| as t → ∞. It
is natural to conjecture that under some regularity conditions on the
domains, we should have

|Γ ∩Bt| ∼ m(Bt) as t→∞.

We show that this is indeed the case provided that one can establish
the mean ergodic theorem for averages along Bt.

In particular, we are interested in the asymptotics of

|{γ ∈ SLd(Z) : ‖γ‖ < T}|
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for a given norm ‖·‖ on Matd(R). Note that SLd(Z) has finite covolume
in SLd(R). This is a classical fact proved by Minkowski. It follows from
Theorem 7.1 below that this number is asymptotic to the volume

1

m(SLd(R)/SLd(Z))
m({g ∈ SLd(R) : ‖g‖ < T}).

(The asymptotic of the volume can be computed as well: it is v0 T
d2−d

for some v0 > 0.) We note that all these estimates can be made quan-
titative.

In fact, the mean ergodic theorem give a solution for the lattice point
counting problem in a general group G. We fix a basis of symmetric
neighborhoods of identity Oε, ε > 0, of G. An increasing family of
Borel subsets Bt, t > 0, of G with positive measure is admissible if
there exists c > 0 such that

Oε ·Bt · Oε ⊂ Bt+cε,

m(Bt+ε) ≤ (1 + cε) ·m(Bt)

for all t ≥ t0 and 0 < ε < ε0.

Theorem 7.1 (Gorodnik, Nevo). Let Γ be a discrete subgroup of G
such that m(G/Γ) < ∞. Let Bt be an admissible family of subsets of
G, and assume that the mean ergodic theorem holds for the action of
G on G/Γ and the averages along Bt’s. Then

lim
t→∞

|Γ ∩Bt|
m(Bt)

=
1

m(G/Γ)
.

Moreover, if the mean ergodic theorem holds with a rate, then∣∣∣∣|Γ ∩Bt| −
m(Bt)

m(G/Γ)

∣∣∣∣ ≤ cm(Bt)
ρ

for some c > 0 and ρ ∈ (0, 1).

Proof. We only prove the first part of the theorem. The proof of the
second part is more elaborate, but follows the same idea.

We normalize the Haar measure so that m(G/Γ) = 1, and consider
the functions

χε =
χOε
m(Oε)

and χ̄ε(gΓ) =
∑
γ∈Γ

χε(gγ).

Note that χ̄ε is a measurable bounded function on G/Γ with compact
support, and ∫

G

χε dm =

∫
G/Γ

χ̄ε dm = 1.



ERGODIC THEOREMS, RECURRENCE, AND APPLICATIONS 29

The main idea of the proof is the following observation: for x ∈ Oε,

(7.1)

∫
Bt−cε

χ̄ε(g
−1xΓ) dm(g) ≤ |Bt ∩ Γ| ≤

∫
Bt+cε

χ̄ε(g
−1xΓ) dm(g).

To prove this observation, we note that∫
Bt

χ̄ε(g
−1xΓ) dm(g) ≤

∑
γ∈Γ

∫
Bt

χε(g
−1xγ) dm(g) =

∑
γ∈Γ

m(xγOε ∩Bt)

m(Oε)
.

If γ ∈ Bt−cε, then xγOε ⊂ Bt. Hence,

|Γ ∩Bt−cε| =
∑

γ∈Γ∩Bt−cε

m(xγOε ∩Bt)

m(Oε)
≤
∑
γ∈Γ

m(xγOε ∩Bt)

m(Oε)
.

On the other hand, if xγOε ∩ Bt 6= ∅, then γ ∈ x−1BtO−1
ε ⊂ Bt+cε.

Therefore,∑
γ∈Γ

m(xγOε ∩Bt)

m(Oε)
=

∑
γ∈Γ∩Bt+cε

m(xγOε ∩Bt)

m(Oε)
≤ |Γ ∩Bt+cε|.

This completes the proof of (7.1).
We use small parameters ε, δ > 0. By the mean ergodic theorem,∥∥∥∥ 1

m(Bt)

∫
Bt

χ̄ε(g
−1xΓ) dm(g)− 1

∥∥∥∥
2

→ 0

as t→∞, and hence,

m

({
xΓ :

∣∣∣∣ 1

m(Bt)

∫
Bt

χ̄ε(g
−1xΓ) dm(g)− 1

∣∣∣∣ > δ

})
→ 0

as t → ∞. In particular, it will be smaller than m(OεΓ) for large t.
Hence, there exists x ∈ Oε such that∣∣∣∣ 1

m(Bt)

∫
Bt

χ̄ε(g
−1xΓ) dm(g)− 1

∣∣∣∣ ≤ δ.

Combining this estimate with (7.1), we obtain that the estimate

|Γ ∩Bt| ≤ (1 + δ)m(Bt+cε) ≤ (1 + δ)(1 + c2ε)m(Bt)

which holds for all ε, δ > 0 and t > t0(ε, δ). The lower estimate is
proved similarly. �
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8. Application II: an equidistribution example

We consider the subset Λ = SOd(Z[1/p]) of the set X = SOd(R) of
orthogonal matrices. We assume that the equation

x2
1 + · · ·+ x2

d = 0

has a nontrivial solution modulo p. Then it is a result from number the-
ory that Λ is dense X. We would like to prove a quantitative estimate
on the distribution of this dense set.

We denote by Λn the subset of matrices with denominators at most
pn and by m the probability invariant measure on X = SOd(R).

Theorem 8.1 (Gorodnik, Nevo). For every f ∈ C1(X),∣∣∣∣∣ 1

|Λn|
∑
λ∈Λn

f(λ)−
∫
X

f dm

∣∣∣∣∣ ≤ c |Λn|−κ ‖f‖C1

for some c, κ > 0.

Proof. (sketch) We consider the action of Λ on X by right multiplica-
tion. Ergodicity of this action follows from density of Λ in X. The
proof consists of two step:

(1) prove the mean ergodic theorem with rate for the action of Λ
on X,

(2) Deduce from convergence in norm pointwise convergence.

More precisely, in step (1), we show that for every f ∈ L2(X),

(8.1)

∥∥∥∥∥ 1

|Λn|
∑
λ∈Λn

f(xλ)−
∫
X

f dm

∥∥∥∥∥
2

≤ c′‖f‖2 |Λn|−κ
′

for some c′, κ′ > 0. To prove this, we observe that Λ is a discrete
subgroup of finite covolume in G = SOd(Qp), Qp denote the p-adic
numbers. Instead of the action of Λ on X, one can consider the action
of G on (G×X)/Λ where Λ is embedded diagonally. We show that the
mean ergodic theorem for the Λ-action follows from the mean ergodic
theorem of G-action (see Gorodnik–Nevo paper for precise statement
and proof). The ergodic theorem for G is proved using the method
similar to the proof of Theorem 6.5. However, an important point here
is that G might not have the Kazhdan property, so the mean ergodic
theorem with a rate is not valid for general G-actions. The crucial
input in the proof is the deep result of Clozel on property (τ), which in
particular says that the action of G on (G×X)/Λ has a spectral gap.
This result allows us to prove a mean ergodic theorem with a rate.
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Now we explain step (2). We fix invariant metric d on X. Let ε, δ > 0
be small parameters, which will be chosen later. It follows from (8.1)
and Markov inequality that
(8.2)

m

({
x ∈ X :

∣∣∣∣∣ 1

|Λn|
∑
λ∈Λn

f(xλ)−
∫
X

f dm

∣∣∣∣∣ > δ

})1/2

≤ δ−1·c′‖f‖2 |Λn|−κ
′
.

Note that
m(Bε(e)) ≥ v0ε

D, ε ∈ (0, 1),

where v0 > 0 and D = dimX. We choose δ > 0 so that

v0ε
D = 2δ−1 · c′‖f‖2 |Λn|−κ

′
.

Then by (8.2), there exists x ∈ Bε(e) such that∣∣∣∣∣ 1

|Λn|
∑
λ∈Λn

f(xλ)−
∫
X

f dm

∣∣∣∣∣ ≤ δ.

Since the action of Λ is isometric,∣∣∣∣∣ 1

|Λn|
∑
λ∈Λn

f(xλ)− 1

|Λn|
∑
λ∈Λn

f(λ)

∣∣∣∣∣ ≤ ε‖f‖C1 .

Hence, we obtain the estimate∣∣∣∣∣ 1

|Λn|
∑
λ∈Λn

f(xλ)−
∫
X

f dm

∣∣∣∣∣ ≤ 2c′‖f‖2 |Λn|−κ
′

v0εD
+ ε‖f‖C1 .

Finally, to finish the proof, we take ε = |Λn|−ρ for sufficiently small
ρ > 0. �


