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LECTURE 1: ERGODIC THEOREMS AND AMENABLE
GROUPS

VITALY BERGELSON AND ALEXANDER GORODNIK

Preliminary version

The standard set-up of ergodic theory consists of a measurable space
(X,B) equipped with a probability measure µ and a measurable trans-
formation T : X → X. Usually we assume that the transformation is
measure-preserving, that is, µ(T−1B) = µ(B) for all B ∈ B. In ergodic
theory, one is interested in statistical properties of the orbits {T nx}n≥0.
Origins of this subject can be traced back to the works of Boltzmann,
Gibbs and Poincare, and the word “ergodic” comes from so-called er-
godic hypothesis in statistical physics. A function f : X → R is con-
sidered as an observable, which we can sample along the trajectory
{T nx}n≥0 to compute its time average 1

N

∑N−1
n=0 f(T nx). The ergodic

hypothesis of Boltzmann roughly stated that if the space does not split
into invariant pieces, then the time average should converge to the
space average

∫
X
f dµ. A rigorous version of the ergodic hypothesis is

the mean ergodic theorem, which was proved by von Neumann in 40s.
We formulate this result in a more general setting of operators on a
Hilbert space:

Theorem 0.1 (von Neumann). Let U be a unitary operator on a
Hilbert space H and PU denotes the orthogonal projection on the space
U-invariant vectors. Then for every v ∈ H

(0.1)
1

N

N−1∑
n=0

Unv
‖·‖−→ PUv as n→∞,

where P denotes the orthogonal projection on the space of U-invariant
vectors.

Proof. We will use the following decomposition:

(0.2) H = ker(U∗ − I) ⊥ Im(U − I),

which is valid for an operator which is not necessarily unitary. To prove
this, we observe that for v, w ∈ H,

〈v, (U − I)w〉 = 〈(U∗ − I)v, w〉 .
1
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So if v is orthogonal to Im(U − I), it follows that (U∗ − I)v = 0.
Conversely, if v ∈ ker(U∗ − I), then v is orthogonal to Im(U − I).

Since U is unitary, ker(U − I) = ker(U∗ − I). For v ∈ ker(U − I),
(0.1) is obvious, and for v = Uw − w, we have∥∥∥∥∥ 1

N

N−1∑
n=0

Unv

∥∥∥∥∥ =

∥∥∥∥ 1

N
(UNw − w)

∥∥∥∥ ≤ 2‖w‖
N
→ 0 as N →∞.

Hence, it follows from (0.2) that (0.1) holds for a dense family of vec-
tors. The convergence for general vectors is easy to deduce with a help
of the triangle inequality. �

To apply Theorem 0.1 to the study of the dynamical systems, we
observe that a measure-preserving transformation T : X → X defines
a unitary operator UT on the Hilbert space L2(X):

(0.3) (UTf)(x) = f(Tx), f ∈ L2(X).

This simple observation provides a fundamental connection between
ergodic theory and harmonic analysis, and it will be crucial for our
purposes.

The transformation T is called ergodic if L2(X) contains no noncon-
stant UT -invariant functions. Note that in this case, the projection map
PUT

is given by PUT
f =

∫
X
f dµ, and we have the following corollary:

Corollary 0.2 (von Neumann mean ergodic theorem). Let T be an
ergodic measure-preserving transformation of a probability space (X,µ).
Then for every f ∈ L2(X),

1

N

N−1∑
n=0

f(T nx)
L2

−→
∫
X

f dµ as n→∞

in L2-norm.

Here we consider some generalizations of this classical mean ergodic
theorem and applications in number theory, Diophantine approxima-
tion, and combinatorics.

In these lectures G denotes a topological group. We always assume
that

G is locally compact and compactly generated.

A reader might think about some concrete examples: Rd, the group of
upper triangular matrices, SLd(R), etc.

The group G supports a right invariant (regular) Borel measure m,
which is called Haar measure:

m(Bg) = m(B) for every g ∈ G and Borel B ⊂ G.
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Moreover, this measure is unique up to a scalar multiple. It follows
from uniqueness that there exists a function ∆ : G → R+, which is
called the modular function, such that

m(gB) = ∆(g)m(B) for every Borel B ⊂ G.

This measure satisfies

m(U) > 0 for open U ⊂ G,

m(K) <∞ for compact K ⊂ G.

We note that in most examples such measure can be given explicitly.
It is easy to construct for Lie groups by integrating a nonzero invariant
differential form of top degree.

Example 0.3. The Lebesgue measure on Rd is a Haar measure.

Exercise 0.4. (1) Show that left/right Haar measure on GLd(R)
is given by

det(g)−d
∏
i,j

dgij

(2) Show that left and right Haar measure on

SL2(R) =

{(
x y
z t

)
: xt− yz = 1

}
is given by 1

x
dxdydz.

(3) Compute left and right Haar measures for the affine group

(0.4)

{(
a b
0 1

)
: a ∈ R+, b ∈ R

}
.

Compute the function ∆.
(4) Prove that ∆ is a continuous homomorphism.
(5) Prove that if the Haar measure is finite, then G is compact.

A group G is called unimodular if Haar measure is both left and right
invariant

Exercise 0.5. (1) Every compact group is unimodular.
(2) SLd(R) is unimodular.

We consider a measure-preserving action of a group G on a probabil-
ity space (X,µ) and aim to prove an ergodic theorem for such actions.
As a natural generalization of the von Neumann ergodic theorem, we
consider the averages

(0.5) Anf(x) :=
1

m(Bn)

∫
Bn

f(g−1x) dm(g)
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defined for f ∈ L2(X) and a sequence of measurable sets Bn such
that 0 < m(Bn) < ∞. Similarly to (0.3), we can introduce a unitary
representation πX of G on the space L2(X):

πX(g)f(x) = f(g−1x), g ∈ G, f ∈ L2(X).

The averaging operators (0.5) can be defined for a general unitary
representation of G on a Hilbert space H. The operators An : H → H
are defined by

(0.6) 〈Anv, w〉 :=
1

m(Bn)

∫
Bn

〈π(g)v, w〉 dm(g), v, w ∈ H.

After a short contemplation on the proof of Theorem 0.1, one realizes
that the key ingredient was the asymptotic invariance of the intervals
[0, N − 1] under translations. This leads to the notion of a Følner
sequence. We say that a sequence of measurable sets Bn such that
0 < m(Bn) < ∞ is a Følner sequence if for a compact generating set
Q of G, we have

sup
g∈Q

m(Bn4Bng)

m(Bn)
→ 0 as n→∞.

A group G is called amenable if such a sequence exists.

Exercise 0.6. Prove that for every Følner sequence Bn,

m(Bn4Bng)

m(Bn)
→ 0 as n→∞

uniformly on g in compact sets. (Hint: use the inclusion A4C ⊂
(A4B) ∪ (B4C) and invariance of the measure.)

Exercise 0.7. (1) Show that a sequence of boxes [a
(1)
n , b

(1)
n ]× · · ·×

[a
(d)
n , b

(d)
n ] is a Følner sequence iff mini(b

(i)
n − a(i)

n )→∞.
(2) Construct a Følner sequence for the affine group (0.4).

The original argument of von Neumann easily generalizes to prove

Theorem 0.8. Let Bn be a Følner sequence in a group G and π a
unitary representation of G on a Hilbert space H. Then for the sequence
of operators An defined in (0.6) and every v ∈ H,

(0.7) Anv
‖·‖−→ PGv as n→∞,

where PG is the orthogonal projection on the space of G-invariant func-
tions.

In particular, we immediately obtain the following
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Corollary 0.9. Let Bn be a Følner sequence in a group G that acts
ergodically on a probability space (X,µ). Then for every f ∈ L2(X),

(0.8)
1

m(Bn)

∫
Bn

f(g−1x) dm(g)
L2

−→
∫
X

f dµ as n→∞.

Proof of Theorem 0.9. As in the proof of Theorem 0.1, one checks the
orthogonal decomposition

H = Hinv ⊥ Herg

where

Hinv = {v ∈ H : π(g)v = v for all g ∈ G},

Herg = span{π(g)w − w : g ∈ G, w ∈ H}.

For v ∈ Hinv, (0.8) is obvious, and for v = π(g0)w − w,

‖Anv‖ =

∣∣∣∣ 1

m(Bn)

∫
Bn

π(gg0)w dm(g)− 1

m(Bn)

∫
Bn

π(g)w dm(g)

∣∣∣∣
=

1

m(Bn)

∣∣∣∣∫
Bng0

π(g)w dm(g)−
∫
Bn

π(g)w dm(g)

∣∣∣∣
≤ 1

m(Bn)
m(Bng04Bn)‖w‖ → 0 as n→∞.

Taking linear combinations, we obtain a dense family of vectors for
which (0.8) holds. Since ‖An‖ ≤ 1 and ‖PG‖ ≤ 1, the general case
follows by triangle inequality. �

Amenable groups were introduced by von Neumann in relation to
the Banach–Tarski paradox. Since then the notion of amenability has
found an amazing number of applications. We mention only several
characterizations of amenability which appear naturally in our context:

• Existence of invariant means,
• Existence of almost invariant vectors (this will lead to the notion

of Kazhdan groups),
• Bounds on the spectrum of the averaging operators (this will

lead to the notion of spectral gap).

The important property of amenable groups (which, in fact, charac-
terizes amenability) is existence of invariant measures.

Theorem 0.10 (Bogolubov, Krylov). Consider a continuous action
of an amenable group G on a compact space X. Then X support a
G-invariant probability measure.
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Proof. By the Riesz representation theorem, the spaceM(X) of Borel
measures on X can be identified with the dual of the space C(X)
of continuous functions. We equip M(X) with the weak∗ topology.
Namely, µn → µ if∫

X

f dµn →
∫
X

f dµ for every f ∈ C(X).

The key ingredient of the proof is the compactness of the spaceM1(X)
of probability measures, which is a special case of the Banach–Alaoglu
theorem. Consider the sequence of the probability measures µn defined
by ∫

X

f dµn =
1

m(Bn)

∫
Bn

f(g−1x) dm(g), f ∈ C(X),

where Bn is a Følner sequence. By compactness, we have convergence
µni
→ µ along a subsequence to a probability measure µ. We claim

that µ is G-invariant. As in the proof of Theorem 0.9, we have, for
g0 ∈ G and f ∈ C(X),∣∣∣∣∫

X

f(g−1
0 x) dµn(x)−

∫
X

f(x) dµn(x)

∣∣∣∣
=

1

m(Bn)

∣∣∣∣∫
Bn

f(g−1
0 g−1x) dm(g)−

∫
Bn

f(g−1x) dm(g)

∣∣∣∣
≤ 1

m(Bn)
m(Bng04Bn)‖f‖∞ → 0 as n→∞.

Hence, ∫
X

f(g−1
0 x) dµ(x) =

∫
X

f(x) dµ(x)

for every g0 ∈ G and f ∈ C(X), as claimed. �

Exercise 0.11. (1) Consider the action of SL2(R) on the space
X = R ∪ {∞} defined by(

a b
c d

)
· x =

ax+ b

cx+ d
.

Show that there are no finite SL2(R)-invariant measureX. (Hint:
the north-south pole dynamics of the diagonal subgroup.)

Note that it follows from Theorem 0.10 that SL2(R) is not
amenable.

(2) Show that a nonabelean free group, equipped with the discrete
topology, is not amenable.
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Let π be a unitary representation of a group G on a Hilbert space H.
Given subset Q ⊂ G and ε > 0, we call a vector v a (Q, ε)-invariant if

‖π(g)v − v‖ ≤ ε‖v‖ for every g ∈ Q.

We say that π has almost invariant vectors if for every compact subset
Q and ε > 0, there exists a nonzero (Q, ε)-invariant vector.

Another characterization of amenability is in terms of almost invari-
ant vectors for the regular representation. The regular representation
λ of a group G is defined by

λ(g)f(x) = f(xg), g ∈ G, f ∈ L2(G).

Theorem 0.12 (Hulanicki, Reiter). A group G is amenable if the reg-
ular representation of G has almost invariant vectors.

Note that L2(G) contains no invariant vectors when G is not com-
pact.

Lemma 0.13. Let φ, ψ be nonnegative functions in L1(G). Then for
Et = {g ∈ G : φ(g) ≥ t} and Ft = {g ∈ G : ψ(g) ≥ t},

‖φ− ψ‖1 =

∫ ∞
0

m(Et4Ft)dt.

Exercise 0.14. Prove this lemma. (Hint: Observe that by the Fubini
theorem, φ(x) =

∫∞
0
χEt(x)dt.)

Proof of Theorem 0.12. Let Bn be a Følner sequence in G and fn =
χBn

m(Bn)1/2 . Then ‖fn‖2 = 1 and

‖λ(g)fn − fn‖2 =
m(Bng

−14Bn)1/2

m(Bn)1/2
→ 0,

uniformly on g in compact sets. Hence, L2(G) contains almost invariant
vectors.

Conversely, let Q be a compact generating set of G and fn be a
sequence of vectors in L2(G) such that ‖fn‖ = 1 and

‖λ(g)fn − fn‖2 → 0

uniformly on g ∈ Q. Consider φn = f 2
n ∈ L1(G). By the Cauchy-

Schwartz inequality,

‖λ(g)φn − φn‖1 ≤ ‖λ(g)fn + fn‖2‖λ(g)fn − fn‖2
≤ 2‖λ(g)fn − fn‖2 → 0.

Let Bn,t = {g ∈ G : φn(g) ≥ t}. Then by Lemma 0.13, we have

‖λ(g)φn − φn‖1 =

∫ ∞
0

m(Bn,tg
−14Bn,t)dt
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and for every compact K ⊂ G,

αn :=

∫ ∞
0

m(Bn,t)

(∫
K

m(Bn,tg
−14Bn,t)

m(Bn,t)
dm(g)

)
dt→ 0.

Since
∫∞

0
m(Bn,t)dt = ‖φn‖1 = 1, the measure dνn(t) = m(Bn,t)dt is a

probability measure. For the set

Ωn =

{
t > 0 :

∫
K

m(Bn,tg
−14Bn,t)

m(Bn,t)
dm(g) ≥ α1/2

n

}
,

we have νn(Ωn) ≤ α
1/2
n → 0. Hence, there exists tn such that for

Bn = Bn,tn , we have 0 < m(Bn) <∞ and∫
K

m(Bng
−14Bn)

m(Bn)
dm(g)→ 0.

This already implies convergence in measure, but we need to prove the
uniform convergence!

Let ε > 0, and

Kn,ε = {k ∈ K :
m(Bnk

−14Bn)

m(Bn)
≤ ε}.

Note that for g ∈ G, we have

(0.9) m(Kn,εg ∩Kn,ε)→ m(Kg ∩K) as n→∞,

uniformly on g ∈ G, and

K−1
n,ε ·Kn,ε ⊂ Kn,2ε.

Now we assume that Q is a compact symmetric generating set that
contains identity, m(Q) > 0, and K = Q2. Then for g ∈ Q, we have
m(Kg ∩K) ≥ m(Q). Then it follows from (0.9) that for n > n0(ε), we
have Kn,εg ∩Kn,ε 6= ∅. Hence, g ∈ Kn,2ε. This proves that

m(Bng
−14Bn)

m(Bn)
≤ 2ε

for every g ∈ Q and n ≥ n0(ε) as required. �

It would be convenient to generalize definition (0.6). Given a prob-
ability Borel measure µ on G and a unitary representation π of G on
a Hilbert space H, we define an operator π(µ) : H → H:

〈π(µ)v, w〉 :=

∫
G

〈π(g)v, w〉 dµ(g), v, w ∈ H.

Note that we always have ‖π(µ)‖ ≤ 1, and nontrivial upper bounds are
very useful.
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Theorem 0.15 (Kesten). Let µ be a probability measure on G which
is absolutely continuous with respect to Haar measure, and supp(µ)
generates a dense subgroup of G. Then G is amenable iff the spectrum
of the operator λ(µ) contains 1 (i.e., the operator λ(µ) − I does not
have a bounded inverse).

Proof. We will prove that the condition on the spectrum is equivalent
to the condition from Theorem 0.12. Assume that the regular repre-
sentation λ contains almost invariant vectors. Let Qn be a compact
subset of G such that µ(Qn) ≥ 1 − 1/n. There exists a sequence of
unit vectors vn ∈ L2(G) such that ‖λ(g)vn − vn‖ ≤ 1/n for all g ∈ Qn.
Then it follows that

‖λ(µ)vn − vn‖ ≤
∫
G

‖λ(g)vn − vn‖dµ(g)

≤
∫
Qn

‖λ(g)vn − vn‖dµ(g) +
2

n
≤ 3

n
→ 0.

This implies that λ(µ)− I does not have a bounded inverse.
Now we assume that 1 ∈ spec(π(µ)). We first claim that there exists

a sequence of unit vectors vn ∈ L2(G) such that

(0.10) ‖λ(µ)vn − vn‖ → 0.

It suffices to consider the case when Ker(λ(µ)−I) = 0. If Im(λ(µ)−I)
is dense in L2(G), then the inverse of λ(µ) − I should be unbounded,
and this implies (0.10). Otherwise, it follows from (0.2) that there
exists v ∈ Ker(λ(µ)∗ − I), v 6= 0, such that

〈λ(µ)v, v〉 = 〈v, λ(µ)∗v〉 = ‖v‖2,

i.e., we have equality in the Cauchy-Schwartz inequality. Hence λ(µ)v =
v. This proves (0.10).

Since µ is absolutely continuous, dµ(g) = φ(g)dm(g) for some φ ∈
L1(G), so

λ(µ)vn(x) =

∫
G

vn(xy)φ(y)dm(y)

and

λ(g)λ(µ)vn(x) =

∫
G

vn(xy)φ(g−1y)∆(g)−1dm(y).

This implies that for every ε > 0, there exists a neighborhood U of
identity in G such that

(0.11) ‖λ(g)λ(µ)vn − λ(µ)vn‖ < ε for all g ∈ U and n ≥ 0.



10 VITALY BERGELSON AND ALEXANDER GORODNIK

We set wn = λ(µ)vn/‖λ(µ)vn‖. Since ‖λ(µ)‖ ≤ 1, it follows from (0.10)
that

‖λ(µ)wn − wn‖ → 0,

and

| 〈λ(µ)wn, wn〉 − 1| = | 〈λ(µ)wn − wn, wn〉 | ≤ ‖λ(µ)wn − wn‖ → 0.

Hence, ∫
G

(1− 〈λ(g)wn, wn〉)dm(g)→ 0,

i.e., 〈λ(g)wn, wn〉 → 1 in measure. Passing to a subsequence, we may
assume that convergence holds almost everywhere. Since

‖λ(g)wn − wn‖2 = 2− 2Re 〈λ(g)wn, wn〉 ,
the set

H = {g ∈ G : ‖λ(g)wn − wn‖ → 0}
has full measure. Then supp(µ) ⊂ H̄, and by the assumption on µ,
H̄ = G.

Let ε > 0 and Q be a compact generating set of G. It follows from
(0.12) that for a suitable neighborhood U of identity in G,

(0.12) ‖λ(u)wn − wn‖ < ε for all u ∈ U and n ≥ n0.

Since H is dense, there exist h1, . . . , hk ∈ H such that Q ⊂ ∪ki=1hiU .
Note that for all sufficiently large n,

‖λ(hi)wn − wn‖ < ε for all i = 1, . . . , k.

Writing g ∈ Q as g = hiu for some i = 1, . . . , k and u ∈ U , we get

‖λ(g)wn − wn‖ ≤ ‖λ(hiu)wn − λ(hi)wn‖+ ‖λ(hi)wn − wn‖
≤ ‖λ(u)wn − wn‖+ ‖λ(hi)wn − wn‖ < 2ε.

This shows that L2(G) contains almost invariant vectors, and completes
the proof of the theorem. �

Theorem 0.15 implies in particular that for amenable groups, we
always have

‖λ(µ)‖ = 1.

This hints that there is no rate of convergence in the mean ergodic the-
orem. The situation is quite different for semisimple Kazhdan groups
such as SLd(R), d ≥ 3, as we will see later.

We say that the unitary representation π of a group G has a spectral
gap if 1 /∈ spec(π(µ)) for some absolutely continuous probability mea-
sure µ on G whose support generates G topologically. The action of
G on a probability space has a spectral gap if the representation π0

X on
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the space L2
0(X), the subspace of functions orthogonal to the constant,

has spectral gap.

Exercise 0.16. Show that the notion of spectral gap does not depend
on a choice of the measure µ.

Exercise 0.17. (1) Consider the rotation T : x 7→ x + α mod 1

on the circle X = R/Z and the measures µn = 1
N

∑N−1
n=0 δT i

where δx denotes the Dirac measure. Show that the spectrum
of πX(µn) contains one for all n.

(2∗) Let T be an invertible measure-preserving transformation of a
general probability measure space (X,µ) and µn is defined as
above. Show that ‖πX(µn)‖ = 1. (Hint: One can use the
notion of Rohklin tower (see, for instance, Halmos’ book on
ergodic theory).

Exercise 0.18. Let G be a free group with generators a, b and µ =
1
2
δa + 1

2
δb. Prove that ‖λ(µ)‖ = 1, but 1 /∈ spec(π(µ)).

Although the regular representation of an amenable group never has
a spectral gap, there are many natural examples of actions of amenable
groups with spectral gap.

Exercise 0.19. Consider the action of G = R2 on X = R2/Z2 by
translations. Show that this action has a spectral gap.


