	The Abdus Salam International Centre for Theoretical Physics
--	---

1950-8

School and Workshop on Dynamical Systems

30 June - 18 July, 2008

From dynamics to group theory via examples

A. Navas
Universidad de Chile, Santiago, Chile

From dynamics to group theory via examples

Andrés Navas

Univ. of Santiago, Chile

July 2008

Orderable groups

- An order relation \prec on a group G is *left-invariant* if for every $f \prec g$ and h in G one has $hf \prec hg$.
- A group G is said to be *left-orderable* if it admits a left-invariant total order relation.
- A group G is said to be *bi-orderable* if it admits a total order relation which is invariant by the left and by the right simultaneously.

Orderable groups

- An order relation \prec on a group G is *left-invariant* if for every $f \prec g$ and h in G one has $hf \prec hg$.
- A group G is said to be *left-orderable* if it admits a left-invariant total order relation.
- A group G is said to be bi-orderable if it admits a total order relation which is invariant by the left and by the right simultaneously.

Remark. For a left-orderable group,

$$f \succ g \implies f^{-1} \prec g^{-1},$$

Orderable groups

- An order relation \prec on a group G is *left-invariant* if for every $f \prec g$ and h in G one has $hf \prec hg$.
- A group G is said to be *left-orderable* if it admits a left-invariant total order relation.
- A group G is said to be bi-orderable if it admits a total order relation which is invariant by the left and by the right simultaneously.

Remark. For a left-orderable group,

$$f \succ g \quad \Rightarrow \quad f^{-1} \prec g^{-1},$$

but

$$f \succ id \iff f^{-1} \prec id$$
.

$$P^+ = \{g \in G : g \succ id\}, \qquad P^- = \{g^{-1} : g \in P^+\}$$

$$P^+ = \{g \in G : g \succ id\}, \qquad P^- = \{g^{-1} : g \in P^+\}$$

$$G = P^+ \cup P^- \cup \{id\}$$

$$P^+ = \{g \in G : g \succ id\}, \qquad P^- = \{g^{-1} : g \in P^+\}$$

$$G = P^+ \cup P^- \cup \{id\}$$

 P^+ is a *semigroup* : $gh \in P^+$ for every g, h in P^+

$$P^{+} = \{g \in G : g \succ id\}, \qquad P^{-} = \{g^{-1} : g \in P^{+}\}$$

$$G = P^{+} \cup P^{-} \cup \{id\}$$

$$P^+$$
 is a *semigroup*: $gh \in P^+$ for every g, h in P^+

 $-P^+$ is invariant under congugacy, that is $gP^+g^{-1}=P^+$ for every $g\in G$, if and only if the corresponding left-ordering is a bi-ordering.

Some consequences

- Left-orderable groups are torsion-free.

Some consequences

- Left-orderable groups are torsion-free.
- In a bi-orderable group, no non-trivial element is conjugate to its inverse.

Some consequences

- Left-orderable groups are torsion-free.
- In a bi-orderable group, no non-trivial element is conjugate to its inverse.
- Bi-orderable groups have the *unique root property*: for $n \in \mathbb{N}$,

$$f^n = g^n \implies f = g$$

- Torsion free Abelian groups (bi-orderable)

 $\mathbb{Z}^n\subset (\mathbb{R},+)$ with the induced ordering

- Torsion free Abelian groups (bi-orderable)

$$\mathbb{Z}^n\subset (\mathbb{R},+)$$
 with the induced ordering

 \mathbb{Z}^n with the lexicographic order

- Torsion free nilpotent groups (bi-orderable) (Malcev)

- Torsion free Abelian groups (bi-orderable)

$$\mathbb{Z}^n\subset (\mathbb{R},+)$$
 with the induced ordering

- Torsion free nilpotent groups (bi-orderable) (Malcev)
- Non-Abelian free groups (bi-orderable) (Magnus)

- Torsion free Abelian groups (bi-orderable)

$$\mathbb{Z}^n\subset (\mathbb{R},+)$$
 with the induced ordering

- Torsion free nilpotent groups (bi-orderable) (Malcev)
- Non-Abelian free groups (bi-orderable) (Magnus)
- Fundamental groups of orientable closed surfaces (bi-orderable) (Magnus)

- Torsion free Abelian groups (bi-orderable)

$$\mathbb{Z}^{\textit{n}} \subset \left(\mathbb{R},+\right)$$
 with the induced ordering

- Torsion free nilpotent groups (bi-orderable) (Malcev)
- Non-Abelian free groups (bi-orderable) (Magnus)
- Fundamental groups of orientable closed surfaces (bi-orderable)
 (Magnus)
- Thompson group F (bi-orderable)

- Fundamental group of the Klein's bottle:

$$\langle a, b : aba^{-1} = b^{-1} \rangle$$

- Fundamental group of the Klein's bottle:

$$\langle a, b : aba^{-1} = b^{-1} \rangle$$

$$-\langle a, b, c : a^2 = b^3 = c^7 = abc \rangle$$
 (Thurston)

- Fundamental group of the Klein's bottle:

$$\langle a, b : aba^{-1} = b^{-1} \rangle$$

$$-\langle a, b, c : a^2 = b^3 = c^7 = abc \rangle$$
 (Thurston)

- Braid groups (Dehornoy, Thurston (Nielsen))

- Fundamental group of the Klein's bottle:

$$\langle a, b : aba^{-1} = b^{-1} \rangle$$

$$-\langle a, b, c : a^2 = b^3 = c^7 = abc \rangle$$
 (Thurston)

- Braid groups (Dehornoy, Thurston (Nielsen))
- Fundamental groups of some 3-manifolds (Boyer, Calegari, Dunfield, Rolfsen, Rourke, Wiest...)

G: left-orderable group, $\mathcal{LO}(\Gamma)$: set of left-orderings on G.

G: left-orderable group, $\mathcal{LO}(\Gamma)$: set of left-orderings on G.

 $\Gamma = \{f_1, \dots, f_k\}$: finite system of generators for G.

$$dist(\preceq,\leq)=2^{-N},$$

where N is the maximum integer such that \leq and \leq are N-close.

G: left-orderable group, $\mathcal{LO}(\Gamma)$: set of left-orderings on G.

 $\Gamma = \{f_1, \dots, f_k\}$: finite system of generators for G.

$$dist(\preceq, \leq) = 2^{-N},$$

where N is the maximum integer such that \leq and \leq are N-close.

-LO(G) is compact and totally disconnected.

G: left-orderable group, $\mathcal{LO}(\Gamma)$: set of left-orderings on G.

 $\Gamma = \{f_1, \dots, f_k\}$: finite system of generators for G.

$$dist(\preceq,\leq)=2^{-N},$$

where N is the maximum integer such that \leq and \leq are N-close.

- -LO(G) is compact and totally disconnected.
- The subespace of bi-invariant orderings is closed (perhaps empty).

– card
$$(\mathcal{LO}(\mathbb{Z}))=2$$

- card $(\mathcal{LO}(\mathbb{Z}))=2$
- $-\;\mathsf{card}(\mathcal{LO}(\mathsf{Klein}\;\mathsf{bottle}\;\mathsf{group})) = 4$

- $-\operatorname{card}\ (\mathcal{LO}(\mathbb{Z}))=2$
- $-\operatorname{card}(\mathcal{LO}(\mathsf{Klein}\ \mathsf{bottle}\ \mathsf{group})) = 4$

Theorem: (Linnel,N) If $\mathcal{LO}(G)$ is infinite, then it is uncountable.

- card $(\mathcal{LO}(\mathbb{Z}))=2$
- $-\operatorname{card}(\mathcal{LO}(\mathsf{Klein}\ \mathsf{bottle}\ \mathsf{group})) = 4$

Theorem: (Linnel,N) If $\mathcal{LO}(G)$ is infinite, then it is uncountable.

- $\mathcal{LO}(\mathbb{Z}^n)$ ∼ Cantor set $(n \ge 2)$ (Sikora)

- card $(\mathcal{LO}(\mathbb{Z}))=2$
- $-\operatorname{card}(\mathcal{LO}(\mathsf{Klein}\;\mathsf{bottle}\;\mathsf{group}))=4$

Theorem: (Linnel,N) If $\mathcal{LO}(G)$ is infinite, then it is uncountable.

- $\mathcal{LO}(\mathbb{Z}^n)$ ∼ Cantor set $(n \ge 2)$ (Sikora)
- $\mathcal{LO}(F_n)$ \sim Cantor set ($n \ge 2$) (N)

- $-\operatorname{card}\left(\mathcal{LO}(\mathbb{Z})\right)=2$
- $-\operatorname{card}(\mathcal{LO}(\mathsf{Klein}\ \mathsf{bottle}\ \mathsf{group})) = 4$

Theorem: (Linnel,N) If $\mathcal{LO}(G)$ is infinite, then it is uncountable.

- $\mathcal{LO}(\mathbb{Z}^n)$ \sim Cantor set ($n \geq 2$) (Sikora)
- $\mathcal{LO}(F_n)$ \sim Cantor set $(n \ge 2)$ (N)
- $-\mathcal{LO}(B_n)$ is uncountable but has isolated points $(n \ge 3)$ (D-D)

- $-\operatorname{card}\ (\mathcal{LO}(\mathbb{Z}))=2$
- $-\operatorname{card}(\mathcal{LO}(\mathsf{Klein}\;\mathsf{bottle}\;\mathsf{group}))=4$

Theorem: (Linnel,N) If $\mathcal{LO}(G)$ is infinite, then it is uncountable.

- $\mathcal{LO}(\mathbb{Z}^n)$ ∼ Cantor set $(n \ge 2)$ (Sikora)
- $\mathcal{LO}(F_n)$ \sim Cantor set $(n \ge 2)$ (N)
- $-\mathcal{LO}(B_n)$ is uncountable but has isolated points $(n \geq 3)$ (D-D)

Question: Is $HD(\mathcal{LO}(F_n)) > 0$?

The action of G on $\mathcal{LO}(G)$

-G acts on $\mathcal{LO}(G)$ by conjugacy (equivalently, by right multiplication): given an ordering \preceq , its image under $f \in G$ is the ordering \preceq_f defined by

$$g \prec_f h \iff fgf^{-1} \prec fhf^{-1} \iff gf^{-1} \prec hf^{-1}.$$

The action of G on $\mathcal{LO}(G)$

-G acts on $\mathcal{LO}(G)$ by conjugacy (equivalently, by right multiplication): given an ordering \preceq , its image under $f \in G$ is the ordering \prec_f defined by

$$g \prec_f h \iff fgf^{-1} \prec fhf^{-1} \iff gf^{-1} \prec hf^{-1}.$$

Problem. Find a criterion to ensure that an ordering is accumulated by its conjugates.

A group G is amenable if and only if:

-G has a Følner sequence.

A group G is amenable if and only if:

- G has a Følner sequence.
- The regular representation of G has almost invariant vectors.

A group G is amenable if and only if:

- G has a Følner sequence.
- The regular representation of G has almost invariant vectors.
- G has an invariant mean.

A group G is amenable if and only if:

- G has a Følner sequence.
- The regular representation of G has almost invariant vectors.
- G has an invariant mean.
- Every action of G by homeomorphisms of a compact metric space admits an invariant probability measure.

If G is amenable and left-orderable, then its action on $\mathcal{LO}(G)$ has an invariant probability measure μ .

If G is amenable and left-orderable, then its action on $\mathcal{LO}(G)$ has an invariant probability measure μ .

Question: How a μ -generic point of $\mathcal{LO}(G)$ looks like ?

If G is amenable and left-orderable, then its action on $\mathcal{LO}(G)$ has an invariant probability measure μ .

Question: How a μ -generic point of $\mathcal{LO}(G)$ looks like ?

Exercise: for a μ -generic point \leq , the following property holds:

$$f \succ id, g \succ id \implies g^{-n}fg^n \succ id$$
 for some $n \in \mathbb{N}$

If G is amenable and left-orderable, then its action on $\mathcal{LO}(G)$ has an invariant probability measure μ .

Question: How a μ -generic point of $\mathcal{LO}(G)$ looks like ?

Exercise: for a μ -generic point \leq , the following property holds:

$$f \succ id, g \succ id \quad \Rightarrow \quad g^{-n}fg^n \succ id \quad \text{ for some } n \in \mathbb{N}$$

(right-recurrent ordering)