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A folklore principle

A countable group is orderable if and only if it admits a faithful
action by orientation preserving homeomorphisms of the real line.

– Given G ⊂Homeo+(R) we may fix a dense sequence (xn) of
points in the real line and define f ≺ g if and only if the first n ≥ 1
for which f (xn) 6= g(xn) is such that f (xn) < g(xn) (a “dynamical
lexicographic ordering”).

– Given an ordering � on a countable group G , let t : G → R be
any order preserving map (with t(id) = 0). Define the action of G

on the set t(G ) by letting g(t(h)) = t(gh). This action may be
extended continuously to the whole line... (dynamical realization).
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Many actions on the line do not appear as dynamical realizations

Exercise: this is the case of the actions of non-Abelian groups of
piecewise affine homeomorphisms of the closed interval.

In fact, none of the preceding procedures is canonical. However,
this is not a “problem”. In fact, this may be used to create many
new orderings on a given orderable group !

Example. Two “generic” homeomorphisms of the real line
generate a free group. Thus, F2 is left-orderable...
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Example: LO(Fn) is a Cantor set

– Given an ordering � on Fn, let us consider the corresponding
dynamical realization.

– Perturb slightly the homeomorphisms corresponding to the
generators of Fn, and induce a new ordering on the group
generated by the new homeomorphisms via the “dynamically
lexicographical” procedure.

– In general, the new group is still free (generically, two
homeomorphisms satisfy no non trivial relation).

– Therefore, the new ordering “lives” on Fn. Clearly, if the
topological perturbation was small then the new ordering is very
close to the original one.

– On the other hand, the new ordering does not coincide with the
original one if the dynamical realization is “non structurally stable”
(which holds for free group actions).
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Archimedean orders and free actions

Definition. An ordering � on a group G is Archimedean if for
every f ≻ id and g in G there exists n ∈ N such that f n ≻ g .

Theorem (Hölder). Every group endowed with an Archimedean
ordering is order isomorphic to a subgroup of (R,+).

– Dynamical realizations of Archimedean orderings are free actions
(i.e., no non-trivial element has fixed points).

Theorem (Hölder). Every free action by homeomorphisms of the
real line is topologically semiconjugate to an action by translations.
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Bi-invariant orderings and essentially free actions

– The action of a group G of orientation preserving homeo-
morphisms of the real line is essentially free if for each f 6= id one
has either

f (x) ≥ x for every x ∈ R

or
f (x) ≤ x for every x ∈ R.

– The action of the dynamical realization of a bi-invariant ordering
is essentially free.

– Every subgroup of Homeo+(R) whose action is essentially free is
bi-orderable.



Dynamical realizations Relevant properties Local indicability

Conradian orderings and 1-dimensional horseshoes

The Conrad property

– An ordering � on a group G satisfy the Conrad property if for
every f ≻ id and g ≻ id there exists n∈N such that fgn ≻ g .



Dynamical realizations Relevant properties Local indicability

Conradian orderings and 1-dimensional horseshoes

The Conrad property

– An ordering � on a group G satisfy the Conrad property if for
every f ≻ id and g ≻ id there exists n∈N such that fgn ≻ g .

Exercise. For a Conradian ordering � one has fg2 ≻ g for all
positive elements f , g .



Dynamical realizations Relevant properties Local indicability

Conradian orderings and 1-dimensional horseshoes

The Conrad property

– An ordering � on a group G satisfy the Conrad property if for
every f ≻ id and g ≻ id there exists n∈N such that fgn ≻ g .

Exercise. For a Conradian ordering � one has fg2 ≻ g for all
positive elements f , g .

– Dynamical realizations of Conradian orderings have no
1-dimensional horseshoes. Dynamical lexicographic orderings
induced from actions without 1-dimensional horseshoes are
Conradian.
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Regular invariant measures

– For a non-trivial finitely generated group of homeomorphisms of
the real line either there exists a discrete orbit which is unbounded
(from both sides), or it is semiconjugate to a group of translations.

– In particular, such a group preserves a measure on the line which
is finite on compact sets.
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Group homomorphisms for Conrad-orderable groups

Theorem (Conrad). Every finitely generated group with a
Conradian ordering has a non-trivial homomorphism into (R,+).

– One can also characterize the Conrad orderability for a group in
this way... (Brodskii, Rhemtulla-Rolfsen, N).
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