

1950-10

School and Workshop on Dynamical Systems

30 June - 18 July, 2008

From dynamics to group theory via examples

A. Navas
Universidad de Chile, Santiago, Chile

From dynamics to group theory via examples

Andrés Navas

Univ. of Santiago, Chile

July 2008

General principle

Theorem (Thurston): The group $\mathcal{G}er^1_+(\mathbb{R},0)$ is locally indicable.

General principle

Theorem (Thurston): The group $\mathcal{G}er^1_+(\mathbb{R},0)$ is locally indicable.

If a group is too complicated and acts (smoothly) on a compact manifold, then the dynamics of the action should be relatively simple (perhaps trivial).

Distortion elements

An element $f \in G$ is distorted if it has infinite order and its growth is sublinear:

$$\lim_{n\to\infty}\frac{\|f^n\|}{n}=0.$$

An element $f \in G$ is distorted if it has infinite order and its growth is sublinear:

$$\lim_{n\to\infty}\frac{\|f^n\|}{n}=0.$$

Example. The Heisenberg group:

$$\langle a, b, c : [a, b] = c, [a, c] = [b, c] = id \rangle$$

An element $f \in G$ is distorted if it has infinite order and its growth is sublinear:

$$\lim_{n\to\infty}\frac{\|f^n\|}{n}=0.$$

Example. The Heisenberg group:

$$\langle a,b,c:[a,b]=c,[a,c]=[b,c]=id\rangle \implies c^{n^2}=[a^n,b^n]$$

An element $f \in G$ is distorted if it has infinite order and its growth is sublinear:

$$\lim_{n\to\infty}\frac{\|f^n\|}{n}=0.$$

Example. The Heisenberg group:

$$\langle a,b,c:[a,b]=c,[a,c]=[b,c]=id\rangle \implies c^{n^2}=[a^n,b^n]$$

Theorem (Franks-Handel, Le Calvez). Finitely generated groups of area-preserving diffeomorphisms (homeomorphisms) of 2-dimensional manifolds do not contain distorted elements.

An element $f \in G$ is distorted if it has infinite order and its growth is sublinear:

$$\lim_{n\to\infty}\frac{\|f^n\|}{n}=0.$$

Example. The Heisenberg group:

$$\langle a,b,c:[a,b]=c,[a,c]=[b,c]=id\rangle \implies c^{n^2}=[a^n,b^n]$$

Theorem (Franks-Handel, Le Calvez). Finitely generated groups of area-preserving diffeomorphisms (homeomorphisms) of 2-dimensional manifolds do not contain distorted elements.

Question. Can an irrational rotation be distorted inside some finitely generated group of C^2 circle diffeomorphisms?

Triviality of actions

Question. Is every finitely generated Burnside group of homeomorphisms of a compact manifold necessarily finite ? For S^1 , this is an exercise; unknown for 2-dimensional manifolds.

Triviality of actions

Question. Is every finitely generated Burnside group of homeomorphisms of a compact manifold necessarily finite? For S^1 , this is an exercise; unknown for 2-dimensional manifolds.

Conjecture (Zimmer). No finite index subgroup of $SL(n, \mathbb{Z})$ acts faithfully by homeomorphisms of a compact (n-2)-dimensional manifold.

For n = 3, this is another (non trivial) theorem by Morris-Witte.

Triviality of actions

Question. Is every finitely generated Burnside group of homeomorphisms of a compact manifold necessarily finite? For S^1 , this is an exercise; unknown for 2-dimensional manifolds.

Conjecture (Zimmer). No finite index subgroup of $SL(n, \mathbb{Z})$ acts faithfully by homeomorphisms of a compact (n-2)-dimensional manifold.

For n = 3, this is another (non trivial) theorem by Morris-Witte.

Theorem (N). Every finitely generated group of $C^{3/2+}$ circle diffeomorphisms satisfying Kazhdan's property (T) is finite.

Kazhdan groups

Definition. A group G has Kazhdan's property (T) if every action of G by isometries of a Hilbert space admits an invariant point (vector).

Kazhdan groups are finitely generated (exercise).

- Kazhdan groups are finitely generated (exercise).
- Kazhdan groups are non-amenable (in particular, non-Abelian) unless finite (exercise).

- Kazhdan groups are finitely generated (exercise).
- Kazhdan groups are non-amenable (in particular, non-Abelian) unless finite (exercise).
- Kazhdan property is stable under finite extentions.

- Kazhdan groups are finitely generated (exercise).
- Kazhdan groups are non-amenable (in particular, non-Abelian) unless finite (exercise).
- Kazhdan property is stable under finite extentions.
- Kazhdan groups do not admit non-trivial homomorphisms into $(\mathbb{R},+).$

 $-SL(n,\mathbb{Z})$ for $n \geq 3$ (and finite index subgroups inside).

- $-SL(n,\mathbb{Z})$ for $n \geq 3$ (and finite index subgroups inside).
- Groups acting on some buildings.

- $-SL(n,\mathbb{Z})$ for $n \geq 3$ (and finite index subgroups inside).
- Groups acting on some buildings.
- Generic groups in $\mathcal{G}r$.

- $-SL(n,\mathbb{Z})$ for $n \geq 3$ (and finite index subgroups inside).
- Groups acting on some buildings.
- Generic groups in Gr.
- Generic random groups with density bigger than 1/3.