

1950-11

School and Workshop on Dynamical Systems

30 June - 18 July, 2008

From dynamics to group theory via examples

A. Navas Universidad de Chile, Santiago, Chile

From dynamics to group theory via examples

Andrés Navas

Univ. of Santiago, Chile

July 2008

Entropy of group actions

G: group acting on a compact metric space X;

 Γ : finite system of generators

Entropy of group actions

G: group acting on a compact metric space X;

 Γ : finite system of generators

x, y in X are (n, ε) -separated if there exsits $f \in G$ such that

$$\|g\| \le n$$
 and $dist(g(x), g(y)) \ge \varepsilon$.

Entropy of group actions

G: group acting on a compact metric space X;

Γ: finite system of generators

x, y in X are (n, ε) -separated if there exsits $f \in G$ such that

$$\|g\| \le n$$
 and $dist(g(x), g(y)) \ge \varepsilon$.

 $s(n,\varepsilon)$: maximal cardinality for an (n,ε) - separated set.

$$h_{top}(G, \varepsilon) = \limsup_{n \to \infty} \frac{\log(s(n, \varepsilon))}{n}.$$

$$h_{top}(G) = \lim_{\varepsilon \to 0} h_{top}(G, \varepsilon).$$

Theorem (GLW, Hurder). A group $G \subset \operatorname{Diff}^1_+([0,1])$ has positive topological entropy iff it "contains" 1-dimensional horseshoes.

Theorem (GLW, Hurder). A group $G \subset \operatorname{Diff}^1_+([0,1])$ has positive topological entropy iff it "contains" 1-dimensional horseshoes.

Question.
$$h_{top}(G) = h_{top}(G|_{\Omega G})$$
?

 μ : probability measure on G; $\Sigma = (G^{\mathbb{N}}, \mu^{\mathbb{N}})$.

$$T: X \times \Sigma \to X; \qquad T(x,(g_i)) = (g_1(x),(g_{i+1})).$$

 μ : probability measure on G; $\Sigma = (G^{\mathbb{N}}, \mu^{\mathbb{N}})$.

$$T: X \times \Sigma \to X;$$
 $T(x,(g_i)) = (g_1(x),(g_{i+1})).$

– A probability measure ν on X is stationary if $\nu \times \mu^{\mathbb{N}}$ is T-invariant.

 μ : probability measure on G; $\Sigma = (G^{\mathbb{N}}, \mu^{\mathbb{N}})$.

$$T: X \times \Sigma \to X;$$
 $T(x,(g_i)) = (g_1(x),(g_{i+1})).$

– A probability measure ν on X is stationary if $\nu \times \mu^{\mathbb{N}}$ is T-invariant.

This is equivalent to that, for every $A \subset X$,

$$\nu(A) = \sum_{g \in G} \mu(g) \ g(\nu)(A).$$

 μ : probability measure on G; $\Sigma = (G^{\mathbb{N}}, \mu^{\mathbb{N}})$.

$$T: X \times \Sigma \to X;$$
 $T(x,(g_i)) = (g_1(x),(g_{i+1})).$

– A probability measure ν on X is stationary if $\nu \times \mu^{\mathbb{N}}$ is T-invariant.

This is equivalent to that, for every $A \subset X$,

$$\nu(A) = \sum_{g \in G} \mu(g) \ g(\nu)(A).$$

Theorem. Stationary measures always exist.

An application

Theorem. Every homeomorphism of a compact manifold is topologically conjugate to a homeomorphism which is absolutely continuous with respect to the Lebesgue measure.

Groups of circle homeomorphisms

G: finitely generated subgroup of $Homeo_+(S^1)$

 $\mu \! :$ probability measure on a finite system of generators of G

Groups of circle homeomorphisms

G: finitely generated subgroup of $Homeo_+(S^1)$

 μ : probability measure on a finite system of generators of G

Main hypothesis: there is no invariant probability measure for the action.

Groups of circle homeomorphisms

G: finitely generated subgroup of $Homeo_+(S^1)$

 μ : probability measure on a finite system of generators of G

Main hypothesis: there is no invariant probability measure for the action.

Theorem (Antonov, Deroin-Kleptsyn-N). The stationary measure (with respect to μ) is unique.

Stationary vs Lebesgue measure

Classical fact (Kakutani). If the stationary measure is unique, then the action with respect to this measure is ergodic.

Stationary vs Lebesgue measure

Classical fact (Kakutani). If the stationary measure is unique, then the action with respect to this measure is ergodic.

Conjecture. If a group action on S^1 by smooth (C^2 ?) diffeomorphisms is minimal, then it is ergodic with respect to the Lebesgue measure.

Stationary vs Lebesgue measure

Classical fact (Kakutani). If the stationary measure is unique, then the action with respect to this measure is ergodic.

Conjecture. If a group action on S^1 by smooth (C^2 ?) diffeomorphisms is minimal, then it is ergodic with respect to the Lebesgue measure.

Question. If the action is minimal and smooth enough, is it possible to choose a probability μ on G so that the corresponding stationnary measure is absolutely continuous with respect to the Lebesgue measure ?

Theorem (Guivarch-Le Jan, Deroin-Kleptsyn-N). For every probability measure on $\mathrm{PSL}(2,\mathbb{Z})$ with finite support, the corresponding stationary measure on the circle is singular.

$$\lambda_{max}(x) = \limsup_{n \to \infty} \frac{1}{n} \max\{log(g'(x)) \colon \|g\| \le n\}$$

$$\lambda_{\max}(x) = \limsup_{n \to \infty} \frac{1}{n} \max \{ \log(g'(x)) \colon \|g\| \le n \}$$

– The function $x \mapsto \lambda(x)$ is measurable and invariant by the action.

$$\lambda_{max}(x) = \limsup_{n \to \infty} \frac{1}{n} \max\{log(g'(x)) \colon \|g\| \le n\}$$

- The function $x \mapsto \lambda(x)$ is measurable and invariant by the action.
- In class $C^{1+\alpha}$, $\alpha > 0$, this number λ is a.e. constant.

$$\lambda_{\max}(x) = \limsup_{n \to \infty} \frac{1}{n} \max\{ \log(g'(x)) \colon \|g\| \le n \}$$

- The function $x \mapsto \lambda(x)$ is measurable and invariant by the action.
- In class $C^{1+\alpha}$, $\alpha > 0$, this number λ is a.e. constant.
- If $\lambda > 0$, then the action is ergodic w.r.t. Lebesgue measure.

$$\lambda_{\max}(x) = \limsup_{n \to \infty} \frac{1}{n} \max\{ \log(g'(x)) \colon \|g\| \le n \}$$

- The function $x \mapsto \lambda(x)$ is measurable and invariant by the action.
- In class $C^{1+\alpha}$, $\alpha > 0$, this number λ is a.e. constant.
- If $\lambda > 0$, then the action is ergodic w.r.t. Lebesgue measure.

Theorem. For the action of $PSL(2, \mathbb{Z})$ one has $\lambda = 0$.

$$\lambda_{max}(x) = \limsup_{n \to \infty} \frac{1}{n} \max\{log(g'(x)) \colon \|g\| \le n\}$$

- The function $x \mapsto \lambda(x)$ is measurable and invariant by the action.
- In class $C^{1+\alpha}$, $\alpha > 0$, this number λ is a.e. constant.
- If $\lambda > 0$, then the action is ergodic w.r.t. Lebesgue measure.

Theorem. For the action of $\mathrm{PSL}(2,\mathbb{Z})$ one has $\lambda=0$. The action is however ergodic w.r.t. the Lebesgue measure.

G: finitely generated group of C^1 circle diffeomorphisms μ : probability measure on G which is "integrable"

G: finitely generated group of C^1 circle diffeomorphisms μ : probability measure on G which is "integrable"

$$\lambda(\mu) = \int_G \int_{S^1} \log(g'(x)) d\nu(x) d\mu(g)$$

G: finitely generated group of C^1 circle diffeomorphisms μ : probability measure on G which is "integrable"

$$\lambda(\mu) = \int_G \int_{\mathrm{S}^1} \log(g'(x)) d\nu(x) d\mu(g)$$

Theorem (Baxendale, Deroin-Kleptsyn-N). If there is no probability measure on S^1 which is invariant by G, then $\lambda(\mu) < 0$

G: finitely generated group of C^1 circle diffeomorphisms μ : probability measure on G which is "integrable"

$$\lambda(\mu) = \int_G \int_{\mathrm{S}^1} \log(g'(x)) d\nu(x) d\mu(g)$$

Theorem (Baxendale, Deroin-Kleptsyn-N). If there is no probability measure on S^1 which is invariant by G, then $\lambda(\mu) < 0$

Corollary. For ν -almost every point $x \in S^1$, one has

$$\lambda_{max}(x) > 0.$$