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Entropy of group actions

G : group acting on a compact metric space X ;
Γ: finite system of generators

x , y in X are (n, ε)-separated if there exsits f ∈ G such that

‖g‖ ≤ n and dist(g(x), g(y)) ≥ ε.

s(n, ε): maximal cardinality for an (n, ε)- separated set.

htop(G , ε) = lim sup
n→∞

log(s(n, ε))

n
.

htop(G ) = lim
ε→0

htop(G , ε).
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Theorem (GLW, Hurder). A group G ⊂ Diff
1
+([0, 1]) has positive

topological entropy iff it “contains” 1-dimensional horseshoes.

Question. htop(G ) = htop(G |ΩG ) ?
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Stationnary measure

µ: probability measure on G ; Σ = (GN, µN).

T : X × Σ → X ; T (x , (gi )) = (g1(x), (gi+1)).

– A probability measure ν on X is stationary if ν × µN is
T -invariant.
This is equivalent to that, for every A ⊂ X ,

ν(A) =
∑
g∈G

µ(g) g(ν)(A).

Theorem. Stationary measures always exist.
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An application

Theorem. Every homeomorphism of a compact manifold is
topologically conjugate to a homeomorphism which is absolutely
continuous with respect to the Lebesgue measure.



Topological entropy Random products Random vs deterministic process

Groups of circle homeomorphisms

G : finitely generated subgroup of Homeo+(S1)
µ: probability measure on a finite system of generators of G



Topological entropy Random products Random vs deterministic process

Groups of circle homeomorphisms

G : finitely generated subgroup of Homeo+(S1)
µ: probability measure on a finite system of generators of G

Main hypothesis: there is no invariant probability measure for the
action.



Topological entropy Random products Random vs deterministic process

Groups of circle homeomorphisms

G : finitely generated subgroup of Homeo+(S1)
µ: probability measure on a finite system of generators of G

Main hypothesis: there is no invariant probability measure for the
action.

Theorem (Antonov, Deroin-Kleptsyn-N). The stationary
measure (with respect to µ) is unique.
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Stationary vs Lebesgue measure

Classical fact (Kakutani). If the stationary measure is unique,
then the action with respect to this measure is ergodic.

Conjecture. If a group action on S1 by smooth (C 2 ?) diffeo-
morphisms is minimal, then it is ergodic with respect to the
Lebesgue measure.

Question. If the action is minimal and smooth enough, is it
possible to choose a probability µ on G so that the corresponding
stationnary measure is absolutely continuous with respect to the
Lebesgue measure ?
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Theorem (Guivarch-Le Jan, Deroin-Kleptsyn-N). For every
probability measure on PSL(2, Z) with finite support, the
corresponding stationary measure on the circle is singular.
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Expansion exponent

λmax(x) = lim sup
n→∞

1

n
max{log(g ′(x)) : ‖g‖ ≤ n}

– The function x 7→ λ(x) is measurable and invariant by the action.

– In class C 1+α, α > 0, this number λ is a.e. constant.

– If λ > 0, then the action is ergodic w.r.t. Lebesgue measure.

Theorem. For the action of PSL(2, Z) one has λ = 0. The action
is however ergodic w.r.t. the Lebesgue measure.
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Random Lyapunov exponent

G : finitely generated group of C 1 circle diffeomorphisms
µ: probability measure on G which is “integrable”

λ(µ) =

∫
G

∫
S1

log(g ′(x))dν(x)dµ(g)

Theorem (Baxendale, Deroin-Kleptsyn-N). If there is no
probability measure on S1 which is invariant by G , then λ(µ) < 0

Corollary. For ν-almost every point x ∈ S1, one has

λmax(x) > 0.
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