

1951-15

Workshop on the original of P, CP and T Violation

2 - 5 July 2008

CP violation and CKM measurements in B decays.

Bob Kowalewski

University of Victoria Department of Physics & Astronomy P.O. Box 3055, STN CSC Victoria BC, V8W 3P6 CANADA

Laboratoire d'Annecy-le-vieux de Physique des Particules

CP violation and CKM measurements in B decays

Bob Kowalewski University of Victoria and LAPP, Annecy

2008-07-03

Kowalewski - CPT@ICTP

1

Importance of CKM measurements

- Need to pin down "standard" physics for many "new physics" searches, e.g. $K_1 \rightarrow \pi^0 vv$:
- Improved precision translates directly into increased NP reach

■ NP signal will be more credible if seen in multiple observables → need precise measurements of many quantities

CKM in B physics

 B decays allow *direct* access to 2 elements and *indirect* access to 2 others via loops

Can determine 2 angles and the phase in CKM

 |V_{cb}| now known to ~2.5%; only sinθ_c is known better

Unitarity relation of interest

 $V_{ud}V_{ub}^{*}+V_{cd}V_{cb}^{*}+V_{td}V_{tb}^{*}=0$

Choice of parameters:

λ, A, $\overline{\rho}$ and $\overline{\eta}$ At the 1% level : $|V_{us}|$

 $\lambda = |V_{us}| = \sin \theta_c$ $\lambda = 0.2257 \pm 0.0021$ At the 3% level: $|V_{cb}|$ $A = |V_{cb}|/\lambda^2$ $A = 0.809 \pm 0.024$ $|V_{ub}|$ and $|V_{td}|$ $\rightarrow \overline{\rho} - \overline{\eta}$ plane Unitarity: $\mathbf{1} + \mathbf{R}_{t} + \mathbf{R}_{u} = \mathbf{0}$

2008-07-03

Kowalewski - CPT@ICTP

lapp

Trees and loops

Tree-dominated processes are ~free of new physics

■ New physics, even at a high mass scale, can induce effects in loop-dominated processes (e.g. W⁺ → H⁺)

Compare CKM parameters from tree and loop processes

Experimental setting: $e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}$

- 20 MeV above BB threshold; no additional pions
- B mesons have small speed $\beta \sim 0.06$ in Y(4S) frame
- Decay products of B and B overlap in detector
- $e^+e^- \rightarrow q\bar{q}$ continuum decays also produced
- At asymmetric B factories, B vertices differ by 260µm

BB

2008-07-03

Belle and BaBar

 World's highest luminosities corresponds to 800 (500) 10⁶
 BB events for Belle (BaBar)

XUU

Belle –

CP violation in B decay

Need interference between competing amplitudes B⁰ Decay to CP eigenstate + BB mixing Only neutral B mesons Clean CKM info if 1 decay amplitude dominates CP violation in interfering decay amplitudes Need strong interaction phase shift information Can exploit D⁰ decays to CP eigenstates, DCSD CP violation in BB mixing process – tiny in SM Several mechanisms can be present

CP Violation in Mixing

$$CP \text{ violation in the interference} between mixing and decay}$$

$$\lambda_{f_{CP}} = \eta_{f_{CP}} \stackrel{q}{p} \cdot \overline{A_{f_{CP}}}_{A_{f_{CP}}} amplitude ratio
$$\lambda_{f_{CP}} = \eta_{f_{CP}} \stackrel{q}{p} \cdot \overline{A_{f_{CP}}}_{A_{f_{CP}}} amplitude ratio
$$D^{0} = e^{-iMt} e^{-\Gamma t/2} \left[\cos(\Delta mt/2) | \overline{B}^{0} \right] + i(p/q) \sin(\Delta mt/2) | B^{0} \right]$$

$$\lambda_{f_{CP}} \neq \pm 1 \Rightarrow Prob(\overline{B}_{phys}^{0}(t) \rightarrow f_{CP}) \neq Prob(\overline{B}_{phys}^{0}(t) \rightarrow f_{CP})$$

$$a_{f_{CP}} (t) = \frac{\Gamma(\overline{B}_{phys}^{0}(t) \rightarrow f_{CP}) - \Gamma(B_{phys}^{0}(t) \rightarrow f_{CP})}{\Gamma(\overline{B}_{phys}^{0}(t) \rightarrow f_{CP}) + \Gamma(B_{phys}^{0}(t) \rightarrow f_{CP})}$$

$$C_{f_{CP}} = \frac{1 - |\lambda_{f_{CP}}|^{2}}{1 + |\lambda_{f_{CP}}|^{2}}$$

$$S_{f_{CP}} = \frac{2im\lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^{2}}$$
We have $|q/p| \approx 1$. If one amplitude dominates, $|\overline{A}/A| \approx 1$, but $Im(\lambda) \neq 0$$$$$

2008-07-03

β (ϕ_1) determination

- Time-dependent CP asymmetries in $b \rightarrow c$ transitions
- Golden mode for theory and experiment: $B^0 \rightarrow X_{cc}K_{S,L}$
- Tree amplitude dominates
 - ~no additional weak phases
 - error on S=sin2 β : estimates from 0.001 to 0.017
- Charmonium X_{cc} decays to lepton pairs
 - Easy to reconstruct; good definition of decay vertex
 - ~all K⁰_s decays can be reconstructed
 - Even K⁰_L can be used due to kinematic constraints

Other β measurements

- Many other modes exhibit Time-dependent CP violation (TDCPV) yielding β:
 - $B^0 \rightarrow D\overline{D}K_S$, $D_{CP}h^0$, $D_{Dalitz}h^0$, $K^+K^-K^0$, ...
- Analyses of decays involving different spin or Dalitz amplitudes give sensitivity to $\cos 2\beta$: rules out mirror solution for β

 Too many measurements to mention here; significant (>3σ) CP asymmetries in 11 individual modes

Penguin modes for $\beta (\phi_1)/\phi_1$

- TDCPV in b→qq̄s penguin decays measures $β_{eff}$ in SM; e.g. modes B⁰→φK⁰, $η^{(\prime)}$ K⁰, $π^{0}$ K⁰, f^{0} K⁰, K⁰K⁰K⁰, etc.
- $β_{eff} \neq β$ due to additional EW phase; δβ varies per mode
- Interest in b→qq̄s continues, consistency with golden modes depends on data selection, estimate of theory uncertainties

lapp

(**\$**1

Prospects for β (ϕ_1)

- Super-B with 10³⁶ luminosity (assume 75 ab⁻¹ dataset) [projections taken from arXiv:0709.0451]
 - sin2β from charmonium: ±0.005 (detector syst)
 - Uncertainties of few % in $b \rightarrow c\overline{u}d$ modes (stat)
 - Uncertainties of few % in $b \rightarrow s\bar{s}s$ modes (theory)
- Self-consistency of above modes constrains NP
- Highly accurate knowledge of β pins down CKM

Measuring $\alpha(\phi_2)$

- TDCPV in $b \rightarrow u$ transitions
- Many final states have contributions from >1 amplitude (tree, Penguin, color-suppressed tree)
- Asymmetries proportional to α_{eff}; differs from α by a mode-dependent offset
- Full isospin amplitude analysis needed to determine $\delta \alpha$
- Most useful modes in practice:

B⁰ → ρ⁰ρ⁰, ρ⁺ρ⁻, B⁺ → ρ⁺ρ⁰
B⁰ → π⁰π⁰, π⁺π⁻, B⁺ → π⁺π⁰
B⁰ → π⁺π⁻π⁰ Dalitz

 $B^0 \rightarrow \pi\pi$

No TDCPV

- B $\rightarrow \pi\pi$; easy experimentally (except $\pi^0\pi^0$, for which time-dependent asymmetry can't readily be measured)
- In each case need isospin analysis (Gronau, London PRL**65**:3381(1990)) to determine $\delta \alpha$; hope for $A_{hh}^{00} \ll A_{hh}^{+-}$
- 8-fold ambiguities in solution for α

HFAG BF(B⁰ $\rightarrow \pi^{+}\pi^{-}$)=(5.2±0.2)x10⁻⁶

 $^{\bullet} BF(B^{0} \rightarrow \pi^{0}\pi^{0}) = (1.3 \pm 0.2) \times 10^{-6} \text{ (big!)}$

 $B^0 \rightarrow \rho \rho$

Kowalewski - CPT@ICTP

- $B \rightarrow \rho\rho$; polarization determines CP eigenvalue
 - experiment: ~full longitudinal polarization (CP even)
- Isospin analysis as for $\pi\pi$, but $\rho^0\rho^0$ easier, smaller

HFAG $BF(B^0 \rightarrow \rho^+ \rho^-) = (24.2 \pm 3.2) \times 10^{-6}$ BF(B⁰ $\rightarrow \rho^0 \rho^0) = (1.1 \pm 0.4) \times 10^{-6}$

Main input for α (ϕ_2)

Iapp

 $\alpha (\phi_2)$

Constraints on α (ϕ_2)

Isospin analyses on ππ, ρρ; Dalitz analysis on ρπ

Direct CP violation

- Interference between competing amplitudes (e.g. tree and penguin) involve strong phase shifts → uncertainty
- Important special case: CP eigenstates or doubly CKMsuppressed decays lead to same final state of D⁰ and D
 ⁰.

Accessing $\gamma(\phi_3)$

- Need interference \rightarrow common final state for D⁰ and \overline{D}^0
 - CP eigenstates (GronauLondonWyler): $D^0 \rightarrow K^+K^-$, $\pi^+\pi^-$, $K_S\pi^0$...
 - Double CKM-suppressed (Atwood DunietzSoni): $D^0 \rightarrow K^+\pi^-$...
 - **3-body Dalitz (GiriGrossmanSofferZupan, Bondar):** $K_s \pi^+ \pi^-$...
- Measure asymmetries between B⁺ and B⁻ decays and ratios of average decay rates to gain sensitivity to magnitude (r_B) and phase (δ_B) of amplitude ratio
- These are tree-level decays \rightarrow insensitive to NP
- Self-tagging $B^0 \rightarrow D^{(*)0}K^{*0}$ ($K^{*0} \rightarrow K^+\pi^-$) also measure γ
- TDCPV in $B^0 \rightarrow D^{(*)+h^-}$ and $D^{(*)-h^+}$ measures sin(2 β + γ)

Observables for $\gamma(\phi_3)$

 $\mathcal{F}_{B'} \ \delta_{B'} \ \gamma \qquad \qquad \mathcal{A}_{CP\pm} = \frac{\Gamma(B^- \to D_{\pm}K^-) - \Gamma(B^+ \to D_{\pm}K^+)}{\Gamma(B^- \to D_{\pm}K^-) + \Gamma(B^+ \to D_{\pm}K^+)} = \frac{\pm 2r_B \sin \delta_B \sin \gamma}{1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma}$ 8-fold $\mathcal{R}_{CP\pm} = \frac{\Gamma(B^- \to D_{\pm}K^-) + \Gamma(B^+ \to D_{\pm}K^+)}{\Gamma(B^- \to D^0K^-) + \Gamma(B^+ \to \overline{D}^0K^+)} = 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma$ ambiguity on γ ADS: DCSD $r_{B'} \delta_{B'} r_{D'} \delta_{D'} \gamma \qquad \text{amplitude} \qquad \frac{A(B^{-} \rightarrow \overline{D}[K^{+}\pi^{-}]K^{-})}{A(B^{-} \rightarrow D[K^{+}\pi^{-}]K^{-})} = r_{B} e^{i\delta_{B}} e^{-i\gamma} / r_{D} e^{-i\delta_{D}}$ $\mathcal{A}_{ADS} = \frac{\Gamma(B^- \to [K^+\pi^-]K^-) - \Gamma(B^+ \to [K^-\pi^+]K^+)}{\Gamma(B^- \to [K^+\pi^-]K^-) + \Gamma(B^+ \to [K^-\pi^+]K^+)} = \frac{2r_B r_D \sin(\delta_B + \delta_D) \sin\gamma}{\mathcal{R}_{ADS}}$ $\mathcal{R}_{ADS} = \frac{\Gamma\left(B^{-} \rightarrow \begin{bmatrix} K^{+}\pi^{-} \end{bmatrix} K^{-}\right) + \Gamma\left(B^{+} \rightarrow \begin{bmatrix} K^{-}\pi^{+} \end{bmatrix} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow \begin{bmatrix} K^{-}\pi^{+} \end{bmatrix} K^{-}\right) + \Gamma\left(B^{+} \rightarrow \begin{bmatrix} K^{+}\pi^{-} \end{bmatrix} K^{+}\right)} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos\left(\delta_{B} + \delta_{D}\right)\cos\gamma$

Kowalewski - CPT@ICTP

lapp

 $\alpha (\phi_2)$

Dalitz method for $\gamma(\phi_3)$

- Most precise results from Dalitz method: $B^{-} \rightarrow [K_{S}\pi^{+}\pi^{-}]K^{(*)-};$ also use $D^{*0} \rightarrow D^{0}\pi^{0}$, $D^{0}\gamma$
- Amplitude $(m_+ \leftrightarrow m_- \rightarrow D^0 \leftrightarrow \overline{D}^0)$

$$A_{\pm} = f(m_{+}^{2}, m_{-}^{2}) + r_{B}e^{\pm i\gamma}e^{i\delta_{B}}f(m_{-}^{2}, m_{+}^{2})$$

- at point $m_{+}^{2} \Rightarrow m^{2}(K_{s}\pi^{\pm})$
- Determine *f* in flavor-tagged $D^{*+} \rightarrow D^0 \pi^+$ decays
- need D⁰ decay model (~18 quasi-2-body states)
- Can remove modeling error using $\psi(3770) \rightarrow D\overline{D}$ data (CLEOc, BES)
- BaBar also analyze $D^0 \rightarrow K_S K^+ K^-$

Events / 12.5 MeV

0 ∆E (GeV)

0.3

0.2

0 ∆E (GeV)

lapp

 $\alpha (\phi_{2})$

Dalitz method results

lapp

Combined results for γ (ϕ_3)

Three methods (ADS, GLW and Dalitz) can be combined for each of $B^- \rightarrow D^0 K^-$, $B^- \rightarrow D^{*0} K^-$ and $B^- \rightarrow D^0 K^{*-}$

Kowalewski - CPT@ICTP

r(DK)

lapp

0.8

0.6

r(DK)

The left side - $|V_{ub}| / |V_{cb}|$

- The determination of the $|V_{ub}|$ and $|V_{cb}|$ relies on semileptonic decays \rightarrow only one hadronic current
- Tree decays like γ , insensitive to NP
- Two complementary approaches:
 - Exclusive: X fully reconstructed
 - Need form factor normalization (non-perturbative)
 - Inclusive: sum over many X states, with at most partial reconstruction of the X system
 Use OPE in (1/m_b)ⁿ

ap

• Conceptually simple – measure $F(q^2)|V_{cb}|$

QCD uncertainties enter calculation of form-factors F

One form-factor per Lorentz structure in amplitude

- Shapes versus q^2 can be measured
- Normalization from theory \rightarrow uncertainty (~2% now)

lapp

form factors

$|V_{cb}|$ from $B \rightarrow D^* \ell v$

- Measure decay rate versus
 4-velocity transfer w and
 determine F(1)|V_{cb}| and FF slope
 F(w) = F(1)* [1 p²(w-1)+...]
- Many experiments have done so; average has P(χ²) = 2.6%
 → scale errors by √χ²/ndf=1.5 so F(1)|V_{cb}| = (35.9 ± 0.8)×10⁻³
- Latest lattice value is^[1]
 F(1) = 0.930 ± 0.023
 Laiho et al., arXiv:0710.1111
- Determine

$$V_{cb} = (38.6 \pm 0.9_{exp} \pm 1.0_{th}) \times 10^{-3}$$

$|V_{ub}|$ from $B \rightarrow \pi \ell v$

- Use analyticity and unitarity constraints plus measured dΓ/dq² to fit FF shape; then normalize at any q²
- Fit determines $|V_{ub}| f_+(q^2=0) = (91 \pm 3_{BF} \pm 6_{shape})*10^{-5}$
- FF normalizations \rightarrow $|V_{ub}|$ values

		<i>f</i> ₊ (0)	V _{ub} *10 ⁴
Choose	LCSR	0.26 ± 0.04	$35 \pm 3 {}^{+6}_{-5}$
$ V_{ub} = (3.5 + 0.6)_{-0.5} \times 10^{-3}$	LQCD (FNAL)	0.25 ± 0.03	$36 \pm 3 {}^{+5}_{-4}$
	LQCD (HPQCD)	0.27 ± 0.03	$33 \pm 3 {}^{+4}_{-3}$
008-07-03	Kowalewski - CPT@ICTP		32

Theoretical tool: Heavy Quark Expansion (OPE)

 $\Gamma(B \to X) = \frac{1}{2m_B} \sum (2\pi)^4 \delta^4 (p_B - p_X) |\langle X | L_{eff} | B \rangle|^2$ = $\frac{G_F^2 m_b^5}{192\pi^3} (1 + A_{EW}) A^{pert} \left\{ 1 + 0 - \frac{(\mu_\pi^2 + 3\mu_G^2)}{2m_b^2} + \dots \right\}$

Simplified form for massless X

Quark model result

First correction $O((\Lambda/m_b)^2)$

- Express decay rate as double expansion in α_s and $1/m_b$
 - Perturbative corrections are calculable
 - Non-perturbative matrix elements (e.g. μ_{π}^2) arise at each order in $1/m_b$; determine in fits moments

|V_{cb}| from inclusive decays

• Calculate moments (M_x^n, E_e^n) of inclusive processes $b \rightarrow c \ell v$ and $b \rightarrow s \gamma$ for various cuts on lepton (photon) energy:

$$\left\langle M_{x}^{n}\right\rangle_{E_{l}>E_{0}}=\tau_{B}\int_{E_{0}}M_{X}^{n}d\Gamma=f_{n}^{x}(E_{0},m_{b},m_{c},\mu_{G}^{2},\mu_{\pi}^{2},\rho_{D}^{3},\rho_{LS}^{3})$$

e or γ energy cut b-quark mass

c-quark mass Matrix elements appearing at order $1/m_b^2$ and $1/m_b^3$

Kinetic scheme Benson, Bigi, Gambino, Mannel, Uraltsev (several papers) 1S scheme Bauer, Ligeti, Luke, Manohar, Trott PRD 70:094017 (2004)

 Fit ~60 measured moments from DELPHI, CLEO, BABAR, BELLE, CDF to determine ~6 parameters

Global moment fit results

Scheme	V _{cb} (10 ⁻³)	
Kinetic	$41.68 \pm 0.39 \pm 0.58_{\text{FSL}}$	
1S	$41.56 \pm 0.39 \pm 0.08 \tau_{B}$	
Choose $ V_{cb} = (41.6 \pm 0.6) \times 10^{-3}$		

Source	m _b (GeV)
m _{b[kin]} (global fit)	4.61 ± 0.03
$m_{b[kin]}$ (global fit, no b \rightarrow s γ)	4.68 ± 0.05
m _{b[kin]} (bb̄ threshold)	4.56 ± 0.06
m _{b[1S]} (global fit)	4.70 ± 0.03
$m_{b[1S]}$ (global fit, no b \rightarrow s γ)	4.75 ± 0.06
m _{b[1S]} (bb threshold)	4.69 ± 0.03

 $\iota(\phi_2)$

lapp

arXiv:0803.2158

 χ^2 /ndf is too good (e.g. 39/62 for kinetic, 25/63 for 1S); suggests theory errors (included in fit) may be overestimated

 m_b is crucial for $|V_{ub}|$

Use (or not) of $b \rightarrow s\gamma$ in global fit still controversial

2008-07-03

|V_{ub}| from inclusive decays

- Measurement of inclusive b→u SL rate requires cuts to suppress large b→c background
 - OPE convergence ruined in limited phase space
 - Non-perturbative distribution fⁿ needed; measure it in b→sγ
 - Other issues: large m_b dependence, weak annihilation
- Measure many partial rates (E_e, M_X, q²...) and compare with calculated rates
 - $= (4.12 \pm 0.15 \pm 0.40) \times 10^{-3}$

- Bosch, Lange, Neubert, Paz (BLNP) Phys.Rev.D73,073008(2006)
- Gambino, Giordano, Ossola, Uraltsev (GGOU) JHEP 0710:058(2007)
- Andersen and Gardi (DGE) JHEP 0601:097 (2006)
- Aglietti, Di Lodovico, Ferrera, Ricciardi (AC) arXiv:0711.0860

2008-07-03

|V_{ub}| and |V_{cb}| summary

 Determinations from inclusive and exclusive decays are independent, both experimentally and theoretically

Inclusive : $|V_{cb}| = (41.6 \pm 0.6) \times 10^{-3}$ Exclusive : $|V_{cb}| = (38.6 \pm 1.3) \times 10^{-3}$ $|V_{ub}| = (4.12 \pm 0.43) \times 10^{-3}$ $|V_{ub}| = (3.5^{+0.6}_{-0.5}) \times 10^{-3}$

■ $|V_{cb}|$ avg has P(χ^2)=3%; $|V_{ub}|$ scale error by $\sqrt{\chi^2}$ /ndf=2.1 $|V_{cb}| = (41.2 \pm 1.1) \times 10^{-3}$ $|V_{db}|$

 $|V_{ub}|$ avg has $P(\chi^2)=40\%$

 $|V_{ub}| = (3.95 \pm 0.35) \times 10^{-3}$

■ SuperB + theory improvements $\rightarrow \sim 1\%$ on $|V_{cb}|$, 2-3% on $|V_{ub}|$ for each of inclusive/exclusive determinations

The long side - $|V_{td}|$

- Constraints come from precise experimental knowledge of BB mixing:
 - $\Delta m_d = 0.507 \pm 0.005 \text{ ps}^{-1} \text{ (HFAG)}$ $\Delta m_s = 17.77 \pm 0.10 \pm 0.07 \text{ ps}^{-1} \text{ (CDF }_{PRL97:242003(2006)}\text{)}$
 - Dominant uncertainty in |V_{td}| and |V_{ts}| due to nonperturbative QCD input |V_{td}/V_{ts}| = (0.209 ± 0.006)*10⁻³ (PDG)
- Also accessible in radiative decays $B \rightarrow K^* \gamma$, $B \rightarrow \rho \gamma$
 - Need calculated ratio of form factors $|V_{td}/V_{ts}| = (0.21 \pm 0.04)^{*10^{-3}}$ (PDG)

Constraints on UT

- Putting all constraints together, we determine the apex of the UT as
 - $$\label{eq:rho_one} \begin{split} \overline{\rho} &= 0.141^{+0.029} _{-0.017} \quad \mbox{CKMfitter} \\ \overline{\eta} &= 0.343^{+0.016} _{-0.016} \end{split}$$
 - $\bar{\rho} = 0.147 \pm 0.029$ UTfit $\bar{\eta} = 0.342 \pm 0.016$
- No significant departure from SM at present

Trees and loops...

Recall that some quantities are determined in tree-level processes (e.g. |V_{ub}|) while others involve BB mixing or "penguin" amplitudes.

 Current accuracy is modest; tests NP amplitudes at the ~100% level

Unitarity triangle outlook

