

1951-19

Workshop on the original of P, CP and T Violation

2 - 5 July 2008

Prospects for CP Violation Studies @ LHCb

Stephanie HANSMANN-MENZEMER

Universitat Heidelberg, Physikalisches Institut Philosophenweg 12, 69120 Heidelberg Germany

Prospects for CP Violation Studies @ LHCb

Stephanie Hansmann-Menzemer

Physikalisches Institut, Heidelberg

for the LHCb Collaboration

Workshop on the origins of P, CP & T violation, July 2008

CMS & ATLAS: Higgs searches & direct searches for NP ALICE: Quark-Gluon-Plasma in Heavy Ion Collisions

Large Hadron Collider Beauty Experiment Precision Measurements of CP Violation & Rare Decays $\begin{array}{l} pp \ \text{collision} @ \sqrt{s} = 14 \ \text{TeV} \\ \sigma_{b\bar{b}} = 500 \ \mu\text{b} \\ \sigma_{inel}/\sigma_{b\bar{b}} \sim 200 \\ \text{LHCb:} \ \mathcal{L} = 2\text{-}5 \times 10^{32} \ \text{cm}^{-2}\text{s}^{-1} \\ \Rightarrow 1 \ \text{``year''} = 2 \ \text{fb}^{-1} \end{array}$

CIMS

LHCb

ATLAS

ALICE

Some Facts about LHCb

- Single arm forward spectrometer BB production correlated, peaks in forward-backward direction
- B mesons in acceptance are highly boosted
 - ► average B momentum \sim 80 GeV
 - ▶ typical lifetime resolution 40 fs (\sim 3 % τ_B)
 - typical mass resolution 14-18 MeV
- Access to all flavours of B hadrons, $B_s, B_c, \Lambda_b, \dots$
- ▶ in average 0.5 interactions per bunch crossing; \sim 150 tracks per event

LHCb: Dedicated B physics experiment

The LHCb Experiment

The LHCb Experiment

Installation of major components completed!

Time Scale of LHCb

- Currently cooling down of magnets commissioning of the experiments with cosmics
- End of July, closure of the experiments
- First collisions autumn this year, only low level trigger \sim 5 pb⁻¹ \rightarrow detector alignment & calibration
- ► 2009: design lumi = 2×10^{32} cm⁻²s⁻¹; $\rightarrow \sim 0.5$ fb⁻¹, *B* physics data, high level triggers on calibration measurements: $\Delta m_{d/s}$, $\sin(2\beta)$, τ_B , ...
- ► from 2010 on: $\mathcal{L} = 2-5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$; ~ 2 fb⁻¹, full B physics programme
- **by end of 2013 about 10** fb^{-1}
- then upgrade?

Definition of CKM Angles

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} \\ V_{cd} & V_{cs} \\ V_{td} & V_{ts} \end{pmatrix} \begin{bmatrix} V_{ub} \\ V_{cb} \\ V_{tb} \end{bmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3 e^{-i\gamma} \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3 e^{-i\beta_d} & -A\lambda^2 e^{i\beta_s} & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

$$B_d \text{ triangle:} \qquad B_s \text{ triangle:} \qquad (\lambda \sim 0.22)$$

$$\alpha = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right);$$

$$\beta = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right);$$

$$\gamma = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right);$$

$$V_{us}V_{ub}^{*} \qquad V_{cs}V_{cb}^{*} \qquad \beta_{s}$$

$$\beta_{s} = \arg\left(-\frac{V_{ts}V_{tb}^{*}}{V_{cs}V_{cb}^{*}}\right);$$

$$\beta_{s} = \arg\left(-\frac{V_{ts}V_{tb}^{*}}{V_{cs}V_{cb}^{*}}\right);$$

$$\frac{b}{B_{s}} \qquad \frac{V_{tb}}{s} \qquad \frac{V_{ts}}{t} \qquad B_{s} \qquad \frac{b}{b} \qquad \frac{V_{tb}}{V_{ts}} \qquad \frac{V_{ts}}{b} \qquad \frac{V_{tb}}{b} \qquad \frac{V_{t$$

- $2\beta_s = \phi_s (B_s \text{ mixing phase (SM)})$ $2\beta = \phi_d (B_d \text{ mixing phase (SM)})$

Status of Unitarity Triangle

Am, & Am,

α

∆m_d

1.5

2

Plot and precisions taken from CKM Fitter Summer 2007 update

Is CKM picture fully consistent for trees, boxes and penguins? Do measurements of angles and sides give consistent results?

LHCb CP programme:

 γ from trees & penguins; β_s from mixing box & penguins;

Measurements of the CKM angle γ :

▶ in tree diagrams - not sensitive to New Physics:

$$\blacktriangleright \ B^{\pm} \to D^0 K^{\pm}$$

$$\blacktriangleright \ B_s \to D_s K^{\pm}$$

including loop diagrams - sensitive to New Physics:

$$\blacktriangleright \ B_{(s)} \to hh$$

Different results in both approaches \rightarrow sign of New Physics

Current knowledge on CKM triangle mainly from loop diagrams, γ from tree level is important cross check

γ from Trees: B ightarrow DK

► $D^0/\overline{D^0}$ decay in common flavour state $(K^+\pi^-, K^+3\pi ...)$ 5 param.: $r_B = |\frac{A(B^- \to D^0K^-)}{A(B^- \to \overline{D^0K^-})}|, \delta_B, \gamma, \delta_D^{\pi}, \delta_D^{3\pi}$ (r_D from CLEO-c) Low event rate; large interference

Atwood-Dunietz-Soni Method

γ from Trees: B o DK

► $D^0/\overline{D^0}$ decay in common CP eigenstate ($K^+K^-, \pi^+\pi^-, ...$) 3 parameters: r_B, δ_B, γ Large event rate; small interference (r_B small)

> Both analyses are decay time independent, no flavour tagging needed!

γ from Trees: $B \to DK$

$2 \mathrm{fb}^{-1}$	Signal Yield	Background Yield
$B ightarrow D(K\pi)K$, favoured	56k	35k
$B ightarrow D(K\pi)K$, suppressed	0.7k	1.5k
$B ightarrow D(K\pi\pi\pi)K$, favoured	62k	40k
$B \rightarrow D(K\pi\pi\pi)K$, suppressed	0.8k	2.4k
$B \to D(hh)K$	7.8k	14k

numbers depend on r_B

- ► $\sigma(\gamma) \sim$ 5-13° (2fb⁻¹), depend on strong phases in D decays
- Additional channels under study for global analysis complete list in the backup Expect a combined precision of ~ 5° with 2 fb⁻¹ of data

γ from Trees: $B_{(s)} ightarrow D_{(s)} K$

Time dependent CPV in interference of $b \rightarrow c$ and $b \rightarrow u$ decays:

 $A_{D_s^{\mp}K^{\pm}}^{B_s/\bar{B}_s} = \frac{(1-|\lambda|^2)\cos(\Delta m_s t) - 2|\lambda|\sin(\delta_s \mp (\gamma + \phi_s))\sin(\Delta m_s)}{(1+|\lambda|^2)\cosh\frac{\Delta\Gamma t}{2} - 2|\lambda|\cos(\delta_s \mp (\gamma + \phi_s))\sinh\frac{\Delta\Gamma t}{2}}$

γ from Trees: $B_{(s)} ightarrow D_{(s)} K$

- Combine $B_s \to D_s K$, $B_s \to D_s \pi$ to fit for Δm_s , $\Delta \Gamma_s$, mis-tag rate & CP phase $\gamma + \phi_s$
- Use $\Delta\Gamma_s$ to resolve some ambiguities (2 remain)

γ including Loops: $B_{(s)} ightarrow hh$

Sensitive to New Physics contribution in penguin diagram!

r_B(*r'_B*), *δ_B*(*δ'_B*): strength & strong phase of penguins vs. tree diagram
 5 parameters (*φ_d* & *φ_s* from external input), 4 measurements

Exploiting U-Spin Symmetry

- ► U-spin symmetrie: no change in strong parameters by exchange of $d \leftrightarrow s$ (approximative symmetry) $\Rightarrow r_B \sim r_B^{'}, \delta_B \sim \delta_B^{'}$
- Only one of the assumptions needed, e.g. constraint $r_B = r_B^{'} \pm 20\%$ fit for δ_B and $\delta_B^{'}$ (check for U-spin sym.)

Additional U-spin check: $A_{dir}^{KK} = A_{dir}^{\pi K}$; $A_{dir}^{\pi \pi} = A_{dir}^{K\pi}$

channel	Yield (2 fb $^{-1}$)	B/S
$B \to \pi \pi$	36k	0.5
$B_s \to KK$	36k	0.15
$B \to K\pi$	138k	<0.06
$B_s \to \pi K$	10k	1.9

Particle Identification

Combined PID of RICH detectors & calorimeters allow clean separation of different $B \rightarrow hh$ mass peaks

no PID, assuming pion hypothesis

(preselection cuts only)

 $B_s
ightarrow \pi K, \, B_d
ightarrow K \pi$ $\sigma(m) \sim 16 MeV
ightarrow B_d/B_s$ separation

Sensitivity on γ

Sensitivity to CP violation parameters $2 fb^{-1}$

$$\sigma(A_{dir}^{\pi\pi})$$
 $\sigma(A_{mix}^{\pi\pi})$ $\sigma(A_{dir}^{KK})$ $\sigma(A_{mix}^{KK})$ 0.0430.0370.0420.044

•
$$\sigma(\gamma) = 10^{\circ}$$
 with 2 fb⁻¹

►
$$\sigma(\gamma)$$
 = 5° with 10 fb⁻¹

Including weak U-spin assumption $r_B^{'}$ = $r_B \pm 20\%$

 B_s system is uniquely accessible at hadron colliders!

 B_s mixing described by three quantities: Δm_s , $\Delta \Gamma_s$, ϕ_s

 Δm_s precisely measured at the Tevatron, consistent with SM

 $\Delta\Gamma_s$ not yet well measured, however no New Physics expected.

There can be potential NP involved in phase ϕ_s . Extremely precise theoretical prediction $\phi_s = 0.04 \pm 0.001$ (SM)

Measurements from CDF & D0 from this winter indicate both a 2 σ deviation (see M. Rescigno's talk)!

$$B_s
ightarrow J/\psi \phi$$

no CP violation in mixing, no CP violation in decay \rightarrow plain CP violation in interference of mixing+decay & decay

Final state $J/\psi\phi$ is linear combination of CP eigenstates.

relative angular momentum of J/ψ and ϕ : L=0,2 \rightarrow CP even relative angular momentum of J/ψ and ϕ : L=1 \rightarrow CP odd

Use relative angular distribution of J/ψ and ϕ daughters to disentangle statistically CP even and CP odd contribution.

Angular Analysis

 \rightarrow 3 angles define rel. angular distribution of 4 daughter tracks.

Combined likelihood of mass, lifetime & angular distributions:

Results

1. Admixture of CP eigenstates "Golden mode": $B_s \rightarrow J/\psi\phi$ Large yield, nice signature However requires angular analysis to disentangle CP-even and CP-odd

Pure CP eigenstates:
 Low yield, high background

Decay	Yield (2fb $^{-1}$)	$\sigma(\phi_s)$
$J/\psi\phi$	130k	0.023
$J/\psi\eta_{\gamma\gamma}$	8.5 k	0.109
$J/\psi\eta_{\pi\pi\pi}$	3k	0.142
$J/\psi\eta_{\pi\pi\eta}^{'}$	2.2k	0.154
$J/\psi\eta_{ ho\gamma}^{'}$	4.2k	0.008
$\eta_c \phi$	3k	0.108
$D_s^+ D_s^-$	4k	0.133
All CP eig	-	0.046
All	-	0.021

Input: ϕ_s = 0.04, $\Delta \Gamma_s$ =0.1 ps⁻¹; δ_1 = 0; δ_s = π ; R_0 =0.6; R_{\perp} =0.2;

Penguin Decay: $B_s o \phi \phi$

No CP violation in the standard model, phases chancel out (no theoretical uncertainties).

Any phase would be sign of New Physics.

Angular analysis similar to $B_s \rightarrow J/\psi \phi$

20k expected candidates per year Lower yield rel. to $B_s \rightarrow J/\psi\phi$ due to penguin suppression. $\sigma(\phi_s)$: 0.08

Summary

LHCb will see first collisions in autumn 2008

- ► Possible early significant measurement of ϕ_s if New Physics contributions are large!
- Will achieve a precision of few degrees on γ with first year of nominal running

Many more tests for New Physics will be performed at LHCb:

- ▶ Branching ratio of $B_s \to \mu^+ \mu^-$
- ► Forward-backward asymmetrie in $B_d \to K^* \mu^+ \mu^-$
- Asymmetry measurements in decays including $b \to s \gamma$ transitions

U-spin Symmetric Modes

- Not all exactly U-spin symmetric, E and PA contributions missing from flavour specific decays
- E and PA contributions expected to be relatively small, and can be experimentally probed by measuring the still unobserved B_s →π⁺π⁻ and B_d→K⁺K⁻ branching ratios (BR~10⁻⁸)

	Measurement	Precision after	Precision after
	Channel	$2 \mathrm{fb}^{-1}$	$10 \mathrm{fb}^{-1}$
α	$B^0 \to \pi^+ \pi^- \pi^0$	8.5°	$\sim 5^{\circ}$
$\sin(2\beta)$	$B^0 \to J/\psi K_s$	0.020*	0.010

* Compare to 0.019 expected from B factories after 2 ab^{-1}

- ► $B^{\pm} \to DK^{\pm}$, with $D \to K_s \pi \pi$ (Dalitz analysis) σ (
- $\blacktriangleright B^{\pm} \to DK^{\pm}$, with $D \to KK\pi\pi$ (Dalitz analysis) $\sigma(\gamma) = 18^{\circ}$
- $\blacktriangleright B^{\pm} \rightarrow D^* K^{\pm}$, with $D \rightarrow KK, K\pi, \pi\pi$
- $\blacktriangleright B^0 \rightarrow DK^{*0}$, with $D \rightarrow KK, K\pi, \pi\pi$

 $\sigma(\gamma) = 8-12^{\circ}$ $\sigma(\gamma) = 18^{\circ}$ (high background) $\sigma(\gamma) = 6-12^{\circ}$

Necessary Tool: Flavour Tagging

wrong tag probability: ω dilution: $\mathcal{D} = 1-2\omega$ effective tagging power: $\epsilon_{eff} = \epsilon_{tag} \mathcal{D}^2$ Same Side Tagging

 \blacktriangleright fragmentation pion/kaon near B

Opposite Side Tagging

- lepton
- kaon
- ► vertex charge

tag	ϵ_{tag} [%]	ω [%]	ϵ_{eff} [%]
muon	11	35	1.0
electron	5	36	0.4
kaon	17	31	2.4
vertex charge	24	40	1.0
frag. kaon $\left(B_{s} ight)$	18	33	2.1
Σ			\sim 6