Workshop on the original of $\mathbf{P}, \mathbf{C P}$ and T Violation

2-5 July 2008

Bs Mixing and CP Violation at Tevatron

Marco RESCIGNO
Universita' degli Studi di Roma "La Sapienza"
INFN Dipt. di Fisica
Piazzale Aldo Moro 2
0185 Roma
Italy

B_{s} Mixing and CP Violation at Tevatron

Marco Rescigno
 INFN/Roma

Workshop on the Origin oc P, CP, T Violation
ICTP July $5^{\text {th }} 2008$

Topics

- B_{s} mixing
\lrcorner First measurement of $\sin 2 \beta_{\mathrm{s}}$ at TeVatron
\lrcorner Other B_{s} mixing phase related measurement
- Outlook
- More B_{s} physics
- Direct CP violation
- Semileptonic asymmetry

The TeVatron

- $p \bar{p}$ collisions at 1.96 TeV
- Excellent Performance
- Peak Initial Luminosity recent record: 3.15
x $10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- Challenge for Detectors, Triggers and Reconstructions

- The analyses presented in this talk span from 1.35 to $2.8 \mathrm{fb}^{-1}$
- Currently on tape $>3.5 \mathrm{fb}^{-1}$
- Plan to accumulate up $6 \mathrm{fb}^{-1}$ in 2009, $8 \mathrm{fb}^{-1}$ possible if 2010 extension approved
- x4 - x5 current dataset

TeVEicon ys Y(4S) Уs Y(5S)

- Cross section of $O(\mu \mathrm{~b})$ in typical detector acceptance
- Pair produce (uncorrelated) all sort of b-hadrons ($B_{u, d}, B_{s}, B_{c}$, $\Lambda_{b} \ldots$.
- Significant Lorentz Boost: $<\beta \gamma\rangle=P_{b} / M_{b} \sim 2$
- Hadronic enivronment :
$\sigma(\mathrm{pp})_{\text {tot }}=60 \mathrm{mb}$
- Multi purpose detector

Tevaicron Detectors

D \varnothing Detector

- New LOO instenlled in 2006!
- Solenoid: 2T, weekly reversed polarity
- Excellent Calorinneiry enicl electiron ID
- Muon Coverage (Trigger) $|\eta|<2.2$

CDF II Detector

-Trecker: - Silicon Vertex Detector - Drijit Charsibers

- Excellent Momentum Resolution
- Particle ID: TOF and dE/dx
- Muon Coverage (Trigger) $|\mathrm{r}|<1$
- Displaced vertex trigger (SVT)

Triggering ait collider

- Cannot over-enphasize
- Physics analysis at colliders start from triggering the data!
- B-physics program at CDF/Tevatron practically run off the:
- Displaced track trigger
- Track reconstruction at Level1
- Silicon Vertex Tracker at Level2
- Kinematic selection \rightarrow select hadronic B-decays
\lrcorner Di-muon trigger
- Two identified muon identified at L1/L2/L3
- Select inculusive bbbar events and events with $\mathrm{J} / \mathrm{psi}$

Dinnuon Triggers

- CDF:
\lrcorner di-muon triggered data

」 Two rapidity ranges: CMU $|\eta|<0.6$, CMX 0.6 $<|\eta|<1$
$-P_{T}(\mu)>1.5$ or 2.0 GeV/c

Dø:

」 Similar thresholds

Sillicon Vertex Tracker

- Triggering on displaced vertex at CDF using SVT, main novelty in Run II, the hall-mark of CDF Run II physics program:
\lrcorner Discovery of B_{s} mixing
\lrcorner Charmless decays
$\lrcorner \Sigma_{\mathrm{B}}$ discovery
- The necessary tool to get fully reconstructed decays hadronic b decays useful for mixing (and other good stuff...)

Main Trigger requires:
>2 opposite charge tracks,
$>\mathrm{P}_{\mathrm{t}} \geq 2 \mathrm{GeV} / \mathrm{c}$,
$>$ impact parameter $\left|\mathrm{d}_{0}\right|>120 \mu \mathrm{~m}$
$>$ Scalar pt sum $>5.5 \mathrm{GeV} / \mathrm{c}$
$>$ Projected decay length $\mathrm{L}_{\mathrm{xy}}>200 \mu \mathrm{~m}$
$>2^{\circ}<\Delta \phi<90^{\circ}$
Add a dynamically prescaled LOWPT trigger with no opposite charge and no Pt sum to fill available bandwidth at low luminosity

Difíerent 「ypes of Cp yiolaiton

- All three types of CP violation can be tested at Tevatron:
\lrcorner Direct CP violation in beauty (and charm!) decays
$\lrcorner \mathrm{CP}$ violation through interference of mixing and decays in $B_{s} \rightarrow J / \psi \phi$
\lrcorner CP violation in mixing (semileptonic asymmetry)
- Highlight result for the B_{s} sector in the following (but $\mathrm{B}_{\mathrm{d}, \mathrm{u}}$ result are as good or better than at B factories for several channels)

Direct CP violation in $E_{d, s} \rightarrow$ K π

Figure 1: Tree and penguin topologies contributing to the U-spin-related $B_{d}^{0} \rightarrow \pi^{+} \pi^{-}$, $B_{s}^{0} \rightarrow K^{+} K^{-}$and $B_{d}^{0} \rightarrow \pi^{-} K^{+}, B_{s}^{0} \rightarrow \pi^{+} K^{-}$decays $\left(q, q^{\prime} \in\{d, s\}\right)$.

- Tree - Penguin amplitudes may generate sizeable direct CP violation
- Sensitive to CKM angle γ
- Theory predictions uncertain (strong phases)
- Useful combining B_{d} and B_{s} to test/use flavour symmetries (U-spin, SU(3) etc.)

$$
B_{d s} \rightarrow \text { rin' Signal }
$$

- Large signal selected through the displaced track trigger
- Superposition of $B_{d} \rightarrow K \pi, B_{d} \rightarrow \pi \pi$, $B_{s} \rightarrow K K, B_{s} \rightarrow K \pi+\Lambda_{b}(p \pi / K)$
- Need multidimensional unbinned likelihood fit to kinematics $+\mathrm{dE} / \mathrm{dx}$ information to disentangle various component
- Signal yield and resolution comparable to B -factories (with $1 \mathrm{fb}^{-1}$ of Tevatron data)
- High precision measurement:
$\lrcorner C P V$ in $B_{d} \rightarrow K \pi \quad A_{C P}=-0.086 \pm 0.023 \pm 0.006$ (4050 ev.)
- Compare to:
\lrcorner Babar $A_{c p}=-0.107 \pm 0.018+0.007-0.004$ (4400 ev .)
- Belle $A_{C P}=-0.086 \pm 0.018 \pm 0.008$ (4100 ev .)
- Systematics/detector asymmetries kept under control using also huge samples of kinematically similar $D^{0} \rightarrow$ h h^{\prime} decays

Direct CP violation in Es (d) decays

- With $1 \mathrm{fb}^{-1}$ first observation of $\mathrm{B}_{\mathrm{s}} \rightarrow K_{\pi}$ mode:

$$
N\left(B_{s}^{0} \rightarrow K^{-} \mathrm{p}^{+}\right)=230 \pm 34(\text { stat }) \pm 16(\text { syst })[8 \mathrm{~s} \text { signif }]
$$

- First measurement of direct CP violation:
$A_{C P}=\frac{N\left(\bar{B}_{s}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{p}\right)-N\left(B_{s}^{0} \rightarrow K \cdot \mathrm{p}^{+}\right)}{N\left(\bar{B}_{s}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{p}\right)+N\left(B_{s}^{0} \rightarrow K \cdot \mathrm{p}^{+}\right)}$
$A_{C P}\left(B_{s}^{0} \rightarrow K^{-} \mathrm{p}^{+}\right)=0.39 \pm 0.15($ stat $) \pm 0.08($ syst $)$
- $A_{C P}$ is 2.5σ different from 0

- Compatible with expectation [H.J.Lipkin, Phys. Lett. B 621, 126 (2005)]

$$
\begin{aligned}
& \left|A\left(B_{s} \rightarrow \pi^{+} K^{-}\right)\right|^{2}-\left|A\left(\bar{B}_{s} \rightarrow \pi^{-} K^{+}\right)\right|^{2}=\left|A\left(\bar{B}_{d} \rightarrow \pi^{+} K^{-}\right)\right|^{2}-\left|A\left(B_{d} \rightarrow \pi^{-} K^{+}\right)\right|^{2} \\
& A_{C P}\left(\bar{B}_{s}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{p}^{-}\right)=-A_{C P}\left(\bar{B}_{d}^{0} \rightarrow \mathrm{~K}^{-} \mathrm{p}^{+}\right) \cdot \frac{B R\left(\bar{B}_{d}^{0} \rightarrow \mathrm{~K}^{-} \mathrm{p}^{+}\right)}{B R\left(\bar{B}_{s}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{p}^{-}\right)} \cdot \frac{\tau_{B_{s}}}{\tau_{B_{d}}} \approx 0.37
\end{aligned}
$$

$\Lambda_{t} \rightarrow$ ph results

Observation of charmless Λ_{b} decays:

$$
\begin{aligned}
& \operatorname{BR}\left(\Lambda_{\mathrm{b}}{ }^{0} \rightarrow \mathrm{pK}\right)=(5.0 \pm 0.7 \pm 1.0) \times 10^{-6} \\
& \operatorname{BR}\left(\Lambda_{\mathrm{b}}^{0} \rightarrow \mathrm{p} \pi\right)=(3.1 \pm 0.6 \pm 0.7) \times 10^{-6}
\end{aligned}
$$

(Assuming PDG value $\mathrm{f}_{\text {baryon }} / \mathrm{f}_{\mathrm{d}}=0.25 \pm 0.04$)
Predicted:

$$
\begin{aligned}
& \mathrm{BR}\left(\Lambda_{\mathrm{b}}{ }^{0} \rightarrow \mathrm{pK}\right)=2 \times 10^{-6} \\
& \mathrm{BR}\left(\Lambda_{\mathrm{b}}{ }^{0} \rightarrow \mathrm{p} \pi\right)=1 \times 10^{-6}
\end{aligned}
$$

- First hints of DCPV in barion decays (2 σ)?

$$
\begin{aligned}
& A_{C P}\left(\Lambda_{b} \rightarrow p \mathrm{p}\right)=0.03 \pm 0.17(\text { stat }) \pm 0.05(\text { syst }) \\
& A_{C P}\left(\Lambda_{b} \rightarrow p K\right)=0.37 \pm 0.17(\text { stat }) \pm 0.03(\text { syst })
\end{aligned}
$$

M. Rescigno-CPT@lCT「 7/5/08

Liferime and $A_{\mathrm{gp}} \mathrm{B}_{\mathrm{s}} \rightarrow \boldsymbol{K}^{K+K}$

- CDF has $1300 \mathrm{~B}_{\mathrm{s}} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$events in $1 \mathrm{fb}^{-1}$
- Expect $25 \mu \mathrm{~m}$ in $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$ lifetime determination (measure τ_{L} in SM)
- May reach $O(30 \%) A C P_{\text {mix }}$ at the end of Run II

$$
\begin{aligned}
& \text { Fleischer:0705.1121[hep-ph] } \\
& \text { I } \\
& =0.6 \\
& = \\
& 0
\end{aligned}
$$

- Significant number of $B^{ \pm} \rightarrow D K^{\ddagger}$ events (this analysis $\sim 120 B \rightarrow D_{C P} K$ events)
- Cabibbo suppressed D^{0} decays (CP+) firmly established: kinematics + PID separation, resolution as Babar/Belle

CDF Run II Preliminary $L_{i n t}=2.4 \mathrm{fb}^{-1}$

CDF contributing to " γ " via GLW method, now looking also for double Cabibbo suppressed D^{0} modes for ADS method

Flayor mixing

- Flavor eigenstate \neq Hamiltonian eigenstate
- transition between meson and anti-meson exists
- Simplified Schroedinger equation describing mixing and decay

$$
i \frac{d}{d t}\binom{B_{q}^{0}(t)}{\overline{B_{q}^{0}}(t)}=\left(M-\frac{i}{2} \Gamma\right)\binom{B_{q}^{0}}{B_{q}^{0}} \quad\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{12}^{*} & M_{22}
\end{array}\right) ;\left(\begin{array}{ll}
\Gamma_{11} & \Gamma_{12} \\
\Gamma_{12}^{*} & \Gamma_{22}
\end{array}\right)
$$

- The mass and lifetime eigenstates (with $\Gamma_{12} / M_{12} \ll 1$)
$\left|B_{L}\right\rangle=p\left|B_{q}^{0}>+q\right| \bar{B}_{q}^{0}>\quad \Delta m_{q}=m_{H}-m_{L}=2\left|M_{12}^{q}\right|$
$\left.\left|B_{H}>=p\right| B_{q}^{0}>-q\left|\bar{B}_{q}^{0}>\Delta \Gamma_{q}=\Gamma_{L}-\Gamma_{H} \cong-2\right| \Gamma_{12}^{q}\left|\operatorname{Re}\left(\frac{\Gamma_{12}^{q}}{M_{12}^{q}}\right)=2\right| \Gamma_{12}^{q} \right\rvert\, \cos \left(\varphi_{s}\right)$
M_{12} and Γ_{12} are the focus of CDF \& D D experiments in the B_{s} system

$\left|\left|\mathrm{M}_{12}\right|\right.$ and $\Delta \mathrm{mI} \mathrm{s}_{\mathrm{s}}$

- Oscillation observed at CDF in 2006 with $1 \mathrm{fb}^{-1}$ of data
- Δm_{s} known with great precision:

$$
\begin{aligned}
& \Delta m_{s}=17.77 \pm 0.10(\text { stat }) \pm 0.07 \mathrm{ps}^{-1} \\
& \frac{\left|V_{t d}\right|}{\left|V_{t s}\right|}=0.2060 \pm 0.0007(\exp)_{-0.0060}^{+0.0081}(\text { theor })
\end{aligned}
$$

- Comparision with SM prediction limited by lattice QCD uncertainty!

- 3σ significance (stat. only) obtained at DD ($2.4 \mathrm{fb}^{-1}$)
- DØ note 5618:
$\Delta m_{s}=18.53 \pm 0.90($ stat $) \pm 0.30($ syst $) p s^{-1}$
- Consistent with CDF result

What abour Mixing phase?

- In the SM phase of the mixing amplitude connected to the phase of CKM elements:

$$
\Phi_{\mathrm{M}}=\arg \left(\mathrm{Vtb} V \mathrm{ts}^{*}\right)^{2}
$$

- In the Wolfenstain Parametrization (expanding in terms of $\lambda=\sin \left(\theta_{c}\right) \sim 0.23$ to $O\left(\lambda^{5}\right)$
- η responsible for CP Violation $\Rightarrow \eta \neq 0$
 implies CPV

$$
V_{\text {CKM }}=\left[\begin{array}{cc}
1-\frac{1}{2} \lambda^{2}-\frac{1}{8} \lambda^{4} & \lambda \\
-\lambda+\frac{1}{2} A^{2} \lambda^{5}[1-2(\rho+i \eta)] & 1-\frac{1}{2} \lambda^{2}-\frac{1}{8} \lambda^{4}\left(1+4 A^{2}\right) \\
A \lambda^{3}\left[1-\left(1-\frac{1}{2} \lambda^{2}\right)(\rho-i \eta)\right] & -A \lambda^{2}+\frac{1}{2} A \lambda^{4}[1-2(\rho+i \eta)) \\
\text { Large CPV } & \text { Suppressed CPV }
\end{array}\right.
$$

\Rightarrow Standard Model does not predict values for CKM elements:
\Rightarrow CKM hyerarchy implies small $C P$ violation in B_{s} mixing

New Priysics in E_{s} mixing

- New Physics could likely contribute to $\Delta B=2$ transitions
- CKM fit including $\Delta \mathrm{ms} / \Delta \mathrm{md}$ (unfortunately) very successful
- But the picture is not complete until also the phase has been constrained

- Phase of the mixing amplitude is poorly determined
- Both are needed to constrain New Physics:

$$
M_{12}=\left|M_{12}\right| e^{i F M}=\left|M_{12}\right| e^{-i 2 \beta s}
$$

Large value of CP Violation phase Φ_{M} is a clear sign of New Physics!
$N B: C D F$ and $D \varnothing$ use different notations $2 \beta s(C D F)=-\phi_{s}(D \varnothing)$ M. Rescigno-CPT(C)ICTP //5/08

$\bar{E}_{\mathrm{s}}-\mathrm{J} / \Psi \phi \mathrm{P}$ C Violating Decay Rate

- CP violation in interference of decay with/without mixing in Bs decays to CP eigenstate final state」 $\sin 2 \beta$ analog
- Contrary to the $\sin 2 \beta$ case B_{s} mixes much faster \rightarrow cannot show still the asymmetry grafically
- "Signal" appears as a time and CP dependent modulation of the exponential decay
- In the SM the modulation is extremely tiny, the figure is exagerated
- Imperfect Tagging and experimental resolution on proper time makes life very hard
- (typical dilution but no proper time smearing here)

- J/Y is a mixture of CP eigenstate \rightarrow need to be statistically separated through angular analysis

Arialysis Flow

1 Reconstruct decays from stable products

- $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi\left[\mu^{+} \mu^{-}\right] \Phi\left[K^{+} K^{-}\right]$
- $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{J} / \Psi\left[\mu^{+} \mu^{-}\right] \mathrm{K}^{*}\left[K^{+} \pi^{-}\right]$(control sample)

2. Measure lifetime $c t=m_{B}{ }^{*} L_{x y} / p_{T}$

- Proper time resolution essential to resolve oscillations

3. Measure decay angles in transversity base:

$$
\vec{w}=\left(\theta_{\mathrm{T}}, \mathrm{~F}_{\mathrm{T}}, \psi\right)
$$

4. Identify B_{S} / \bar{B}_{s} at production time:

- Flavor Tagging (Tag decision ξ)

5. Perform maximum likelihood fit:

- Likelihood in m, ct, w

Signial

Signal Candidates:

Signal Candidates:

- ~ 2000 in $1.35 \mathrm{fb}^{-1}$ (Tagged analysis)
- 2000 in $2.8 \mathrm{fb}^{-1}$ (Tagged analysis)
- 2500 in $1.7 \mathrm{fb}^{-1}$ (Untagged analysis)

$$
\begin{aligned}
& \mathrm{P} \rightarrow \mathrm{~V} / \mathrm{d} \text { decay raite (I) } \\
& \left.\frac{d^{4} P(t, \vec{w})}{d t d \vec{w}} \propto A_{0}\right|^{2} T_{+} f_{1}(\vec{w})+\left|A_{\|}\right|^{2} T_{+} f_{2}(\vec{w}) \\
& +\left|A_{\perp}\right|^{2} T_{-} f_{3}(\vec{w})+\left|A_{\|}\right|\left|A_{\perp}\right| U_{+} f_{4}(\vec{w}) \\
& +\left|A_{0} \| A_{\|}\right| \cos \left(\mathrm{d}_{\|}\right) T_{+} f_{5}(\vec{w}) \\
& +\left|A_{0}\right|\left|A_{\perp}\right| V_{+} f_{6}(\vec{w})
\end{aligned}
$$

- Decay rate is a function of time, decay angles $\vec{w}=\left(\theta_{T}, F_{T}, \psi\right)$, initial B_{s} flavor and parameters $\Delta \Gamma_{\mathrm{s}}, \beta_{\mathrm{s}}$
- B_{s} decays into admixture of $C P$ eigenstates ($L=0,2 C P$ even; $L=1 C P$ odd); 3 independent decay amplitude
- Using transverse polarization basis: $\mathrm{A}_{0}, \mathrm{~A}_{/ /} \mathrm{CP}$ even ; $\mathrm{A}_{\perp} \mathrm{CP}$ odd $>$ interference terms allow sensitivity to CP violation in untagged (or poorly tagged) sample
- $f_{i}(i=1, \ldots, 6)$ encode the different angular distributions

$$
\begin{aligned}
& P \rightarrow V Y \text { decaly rate (III) } \\
& \left.\frac{d^{4} P(t, \vec{w})}{d t d \vec{w}} \propto A_{0}\right|^{2} T_{+} f_{1}(\vec{w})+\left|A_{\|}\right|^{2} T_{+} f_{2}(\vec{w}) \\
& +\left|A_{\perp}\right|^{2} T f_{3}(\vec{w})+\left|A_{\|}\right|\left|A_{\perp}\right| U_{+} f_{4}(\vec{w}) \\
& +\left|A_{0} \| A_{\|}\right| \cos \left(\mathrm{d}_{\|}\right) T_{+} f_{5}(\vec{w}) \\
& +\left|A_{0}\right|\left|A_{\perp}\right| V_{+} f_{6}(\vec{w}) \\
& \text { CP conserving strong } \\
& \text { phases } \\
& \mathrm{d}_{\|}=\arg \left(A_{\|}^{*} A_{0}\right) \\
& \mathrm{d}_{\perp}=\arg \left(A_{\perp}^{*} A_{0}\right)
\end{aligned}
$$

$$
\begin{array}{r}
\mathrm{T}_{ \pm}=\mathrm{e}^{-\alpha t} \times\left[\cosh (\Delta G t / 2) \mp \cos \left(2 \beta_{s}\right) \sinh (\Delta G t / 2)\right] \\
\mp \eta \sin \left(2 \beta_{s}\right) \sin \left(\Delta m_{s} t\right) \eta=+1(-1) \text { for } P(\bar{P})
\end{array}
$$

$$
\mathrm{U}_{ \pm}= \pm \mathrm{e}^{-\mathrm{Gt}} \times\left[\sin \left(\mathrm{d}_{\perp}-\mathrm{d}_{\|}\right) \cos \left(\Delta m_{s} t\right)\right.
$$

$$
-\cos \left(\mathrm{d}_{\perp}-\mathrm{d}_{\|}\right) \cos \left(2 \beta_{s}\right) \sin \left(\Delta m_{s} t\right)
$$

$$
\left.\pm \cos \left(d_{\perp}-\mathrm{d}_{\|}\right) \sin \left(2 \beta_{s}\right) \sinh (\Delta \Gamma t / 2)\right]
$$

$$
\mathrm{V}_{ \pm}= \pm \mathrm{e}^{-\mathrm{Gt}} \times\left[\sin \left(\mathrm{d}_{\perp}\right) \cos \left(\Delta m_{s} t\right)\right.
$$

$$
-\cos \left(\mathrm{d}_{\perp}\right) \cos \left(2 \beta_{s}\right) \sin \left(\Delta m_{s} t\right)
$$

$$
\left.\pm \cos \left(\mathrm{d}_{\perp}\right) \sin \left(2 \beta_{s}\right) \sinh (\Delta \mathrm{G} / 2)\right]
$$

Terms with $\Delta \mathrm{m}_{\mathrm{s}}$ dependence flip sign with initial B_{s} flavor

Disappear summing $B_{s}+\bar{B}_{s}$ (untagged strategy)

Sensitivity to $\left|\sin \left(2 \beta_{s}\right)\right|$ remain in $\mathrm{CP}_{\text {even }}-\mathrm{CP}_{\text {odd }}$ interference terms in triple differential decay rate

B_{3} average lifetime ($\beta_{\mathrm{s}}=0$ Case)

World Best $\Delta \Gamma_{s}, \Gamma_{s}$ PRL 100, 121803 (2008)
Lifetime:
Decav Width: $\Delta \mathrm{G}_{\mathrm{s}}=0.08 \pm 0.06$ (stat) ± 0.01 (syst) ps^{-1}

$\mathrm{t}_{\mathrm{s}}=1.52 \pm 0.08$ (stat $)_{-0.03}^{+0.01}$ (syst) ps $\Delta \mathrm{G}_{\mathrm{s}}=0.12_{-0.12}^{+0.08}$ (stat) ± 0.02 (syst) ps^{-1} Superseeded by recent $2.8 \mathrm{fb}^{-1}$ result:

$$
\begin{gathered}
\mathrm{t}_{s}=1.53 \pm 0.06(\text { stat }) \pm 0.01(\text { syst }) p s \\
\Delta \mathrm{G}_{s}=0.14 \pm 0.07(\text { stat })_{-0.02}^{+0.01}(\text { syst }) p s^{-1}
\end{gathered}
$$

Nicely consistent with $\tau_{d}(P D G)=1.530 \pm 0.009 p s$

Unitagged J/T中 result ($\beta_{\mathrm{j}} \mathrm{F} \neq 0$ C cess)

Symmetry in the likelihood 4 -fold ambiguity

$D \varnothing$ quotes a point estimate:

$$
\begin{aligned}
& \left.\Rightarrow \mathrm{F}_{\mathrm{s}}=-2 \beta_{\mathrm{s}}=-0.79 \pm 0.56 \text { (stat }\right)_{-0.01}^{+0.14} \text { (syst) rad } \\
& \Rightarrow \mathrm{G}_{\mathrm{s}}=0.17 \pm 0.09 \text { (stat) } \pm 0.02 \text { (syst) } \mathrm{ps}^{-1}
\end{aligned}
$$

- CDF observes irregular likelihood and biases in fit
\Rightarrow Feldman-Cousins confidence region: SM probability $p_{\text {value }}=22 \%(1.2 \sigma)$
PRL 100, 121803 (2008) [arXiv:0712.2348]
PRL 98, 121801 (2007)

M.Rescigno-CPT@lCTP 7/5/08

Flavor Tagging

Opposite Side Tacqainc|

- Soft Lepton Taggers
- Jet Charge Tagger

OST's perform identically in B Calibrated in high statistics $\mathrm{B}^{+} / \mathrm{B}^{0}$ data

- Combined Performance:
\checkmark Efficiency:

$$
\varepsilon=0.96 \pm 0.01
$$

\checkmark Average Dilution: $\mathrm{D}=0.11 \pm 0.02$

Same Sidle Kaon Tactaing

- Most powerful tagger available:
$\checkmark 2-3$ times more effective than combined OST

SSKT is different for $\mathrm{B}^{0}, \mathrm{~B}^{+}$and B_{s}

SST needs to rely on MC simulation

- Performance:

$$
\checkmark \text { Efficiency: } \quad \varepsilon=0.50 \pm 0.01
$$

\checkmark Average Dilution: $D=0.27 \pm 0.04$

OST and SST combined independently Overall $\varepsilon D^{2} \sim 4 \%$

DØ performance similar:
D~ $0.21 \quad \varepsilon \sim 1$

Initroducing of Flavor tagging

- Tagging improves sensitivity to CP violation phase β_{s} (provided oscillation can be resolved)
- Removes two of the 4 -fold ambiguity
- Still two exact mirror solution due to strong phase

$$
\begin{aligned}
2 \beta_{s} & \rightarrow \mathrm{p}-2 \beta_{s} \\
\Delta \mathrm{G}_{s} & \rightarrow-\Delta \mathrm{G}_{s} \\
\mathrm{~d}_{\|} & \rightarrow 2 \mathrm{p}-\mathrm{d}_{\|} \\
\mathrm{d}_{\perp} & \rightarrow \mathrm{p}-\mathrm{d}_{\perp}
\end{aligned}
$$

ambiguity remain

Likelinood: with tengjing, gelin sensitivity to boith $\left|\cos \left(2 b_{s}\right)\right|$ and $\sin \left(2 b_{s}\right)$, reither thearn only $\left|\cos \left(2 b_{s}\right)\right| \operatorname{anc} \|\left|\sin \left(2 b_{s}\right)\right|$ (note áosolute vellue)

- $\beta_{\mathrm{s}} \leftrightarrow-\beta_{\mathrm{s}}$ no longer a symmetry thanks to $\sin \left(\Delta m_{s} t\right)$ terms:
$\Rightarrow 4$-fold ambiguity reduced to $\underline{2 \text {-fold }}$

CDr result
PRL 100, 161802 (2008) arXiv:0712.2397 [hep-ex]

Perform an unbinned maximum likelihood fit to mass, ct and angles: 27 parameters total !

- Symmetries of the problem and low statistics means the likelihood contour does not

 have the correct coverage.- Quoted confidence region is based on a modified Feldman Cousin profile-likelihood ratio ordering with inclusion of systematic uncertainties.

Adding information/Theory

$\Delta \Gamma_{\mathrm{s}}$ is theoretically constrained:

$$
\text { -Input } \Delta \Gamma_{s}=2\left|\underline{\Gamma}_{12}\right| \cos \Phi_{s} \approx 2\left|\Gamma_{12}\right| \cos \left(2 \beta_{s}\right):
$$

[$\Gamma_{12}=0.048 \pm 0.018$ - Nierste, Lenz, hep-ph/0612167]

$2 \beta_{\mathrm{s}}$ in $[0.24,1.36] \cup[1.78,2.90]$ at 68% C.L.

Adding information/Lifetime and strong phase constraints
 - Contraint
 $\tau_{s}=\tau_{d} \pm 1 \%$
 - Constraint strong phase to $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{J} / \psi \mathrm{K}^{*}$

- Largest effect on $\Delta \Gamma_{s}$, and near $\beta_{s}=\pi / 4$, likelihood near $\beta_{s}=0$ not very sensitive (too bad)

$$
2 \beta_{\mathrm{s}} \text { in }[0.40,1.20] \text { at } 68 \% \text { C.L }
$$

\varnothing : ~2000 B_{s} events with $2.8 \mathrm{fb}^{-1}$

- Assume strong phase as measured in $B_{d} \rightarrow J / \Psi K^{*}$ decays
-Combined Tagging Power $\Rightarrow \varepsilon D^{2}=(4.68 \pm 0.54) \% \quad$ (NEW)

$$
\begin{aligned}
\mathrm{t}_{\mathrm{s}} & =1.52 \pm 0.06 \text { (stat }) \pm 0.01 \text { (syst) ps } \\
\Delta \mathrm{G}_{\mathrm{s}} & =0.19 \pm 0.07 \text { (stat })_{-0.01}^{+0.02} \text { (syst) } \mathrm{ps}^{-1} \\
\mathrm{~F}_{\mathrm{s}} & \left.=-2 \beta_{\mathrm{s}}=-0.57_{-0.30}^{+0.24} \text { (stat }\right)_{-0.02}^{+0.07} \text { (syst) rad }
\end{aligned}
$$

FIT inputs:
Δm_{s} fixed to $17.77 \mathrm{ps}^{-1}$
Gaussian constraint on Strong phases:

$$
\begin{gathered}
\delta_{\perp}-\delta_{\| \|}=-0.46 \pm(\pi / 5) \\
\delta_{\perp}=+2.92 \pm(\pi / 5)
\end{gathered}
$$

Standard Model expectations:
(arXiv:hep-ph/0612167)
$\Phi_{\mathrm{s}}=-0.04 \pm 0.01 \mathrm{rad}$
Standard Model $p_{\text {value }}=$ 6.6\%

Additional ϕ_{s} related measurement at TeVatron and impact on New Physics

Bis Sernileptonic Asyrninsetry

-if $M_{12} / \Gamma_{12} \gg 1$

$$
\mathrm{A}_{\mathrm{sL}}^{\mathrm{s}}=\frac{\Delta \mathrm{G}_{\mathrm{s}}}{\Delta \mathrm{~m}_{\mathrm{s}}} \tan \mathrm{~F}_{\mathrm{s}}
$$

- D \varnothing :
$1.3 \mathrm{fb}^{-1}$ of data collected (B_{s} semileptonic decays):

$$
\left.\left.\mathrm{A}_{\mathrm{SL}}^{\mathrm{s}}=[2.45 \pm 1.93 \text { (stat }) \pm 0.35 \text { (syst }\right)\right] \times 10^{-2}
$$

PRL 98, 151801 (2007)

- CDF: $1.6 \mathrm{fb}^{-1}$ of data collected (dimuon charge asymmetry):

$$
\left.\mathrm{A}_{\mathrm{sL}}^{\mathrm{s}}=0.020 \pm 0.021 \text { (stat }\right) \pm 0.016 \text { (syst) } \pm 0.009 \text { (inputs) }
$$

(http://www-cdf.fnal.gov/physics/new/bottom/070816.blessed-acp-bsemil/)

- D®: $1.0 \mathrm{fb}^{-1}$ of data collected (dimuon charge asymmetry):

```
A
```

- Unofficial Tevatron combination: using common/updated inputs

$$
A_{S L}^{s}=-0.0054 \pm 0.0072(\text { stat }+ \text { syst }) \quad A_{S L}^{s}(S M)=\mathrm{O}\left(10^{-5}\right)
$$

- Quite precise, compare with

$$
A_{S L}^{d}=-0.0005 \pm 0.0055(\text { stat }+ \text { syst })
$$

ASL s constrainit

Fayor specific lifetirne constraint

- Flavor specific modes: only accessible from either B_{s} or anti- B_{s} state
- Light and Heavy state contributes both 50\% to the time evolution
- Fit to a single lifetime determine $\tau_{\text {fs }}$
- Expected higher than $1 / \Gamma_{\mathrm{s}}$
\lrcorner HQET: $\Gamma_{s}=\Gamma_{d} \pm O(1 \%)$

$\tau_{f s}=\frac{1}{\Gamma_{s}} \frac{1+\left(\frac{\Delta \Gamma_{s}}{2 \Gamma_{s}}\right)^{2}}{1-\left(\frac{\Delta \Gamma_{s}}{2 \Gamma_{s}}\right)^{2}}$
- Recent high precision measurement from CDF using $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{\left({ }^{*}\right)} \pi+\mathrm{D}_{\mathrm{s}}{ }^{*}{ }^{*} \pi+$ $\mathrm{D}_{\text {s }} p$ final states using $1.3 \mathrm{fb}-1$
- $c \tau\left(B_{s}\right)=455.0 \pm$ 12.2 (stat.) ± 7.4 (syst.) $\mu \mathrm{m}$

Fayor specific lifetirne constraint

- PDG 08 average: $1.417 \pm 0.042 \mathrm{ps}$
- Slightly lower than recent τ_{s} from $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \phi(1.52 \pm 0.04 \mathrm{ps})$ and τ_{d}
($\Delta(\log L)=0.5)$
- CDF hadronic more consistent
- Naïve average PDG07+ CDFII
- Current precision on $\tau_{\text {fs }}$ can be translated in a constraint on
 $\Delta \Gamma_{\mathrm{s}}<0.16 \mathrm{ps}^{-1}$ at 1σ

NP in Es midisig

pre tagged $J / \Psi \phi$ status

$\underline{U T}_{\text {fit }}$ inputs:

$$
\begin{aligned}
& \Delta \mathrm{m}_{\mathrm{s}} \text { measurement (CDF) } \\
& \text { Lifetime } \tau_{\mathrm{s}}(C D F \text { and } D \varnothing) \\
& \Delta \Gamma_{\mathrm{s}}\left(C D F \text { on } 200 \mathrm{pb}^{-1}\right) \\
& \Delta \Gamma_{\mathrm{s}} \text { and } \Phi_{\mathrm{s}}\left(\mathrm{D} \varnothing \text { on } 1.1 \mathrm{fb}{ }^{-1}\right) \\
& \text { Semileptonic } \mathrm{A}_{\mathrm{sL}}(\mathrm{D} \varnothing)
\end{aligned}
$$

$$
\begin{aligned}
& \Delta m_{\mathrm{s}}=\mathrm{C}_{\mathrm{Bs}}{ }^{*} \Delta \mathrm{~m}_{\mathrm{s}}^{\mathrm{SM}}: \text { Lattice-QCD dominated uncertainty } \\
& \frac{\left\langle\mathrm{B}_{\mathrm{s}}\right| H_{\mathrm{eff}}^{\mathrm{tul}}\left|\overline{\mathrm{~B}}_{\mathrm{s}}\right\rangle}{\left\langle\mathrm{B}_{\mathrm{s}} H_{\mathrm{eff}}^{\mathrm{SH}} \mid \overline{\mathrm{B}}_{\mathrm{s}}\right\rangle}=\mathrm{C}_{\mathrm{BS}} \mathrm{e}^{2 i} \mathrm{FB}_{\mathrm{s}} \\
& \beta_{\mathrm{s}}=\beta_{\mathrm{s}} \mathrm{SM}-\Phi_{\mathrm{Bs}}: \text { Experimentally dominated uncertainty }
\end{aligned}
$$

Effects of recent measurements

FIRST EVIDENCE OF NEW PHYSICS IN $\mathrm{b} \leftrightarrow \mathrm{s}$ TRANSITIONS
(UTfit Collaboration)

Constraint:

$\checkmark \Delta \Gamma_{s}=2\left|\Gamma_{12}\right| \cos \Phi_{s} \approx 2\left|\Gamma_{12}\right| \cos \left(2 \beta_{s}\right)$ with ($\Gamma_{12}=0.048 \pm 0.018$): \checkmark Strong phases from $\mathrm{J} / \Psi \mathrm{K}^{* 0}[$ hep-ex/0411016], B_{d} lifetime $[P D G]$ and $\Delta \Gamma_{s} \approx 2\left|\Gamma_{12}\right| \cos \left(2 \beta_{\mathrm{s}}\right)$:

CDF: $2 \beta_{s} \in[0.40,1.20] @ 68 \%$ C.L

Dø:

$$
2 \beta_{s}=+0.46 \pm 0.28
$$

Tevencron Consijujajions
 (very preliminary)

- First step towards a TeVatron combination, remove strong phase constraint in D \varnothing fit!
- HFAG combination at ICHEP

From Capri to Trieste

- CKMfitter full fit 2.5σ from SM
- UTfit full fit 2.5 o from SM
- Bayesian magic?

Dø unconstrained fit!

TeVatron Outlook

- With no analysis improvements, and no external constraints, but same signal yield and experimental resolution:
- With 5(10) fb-1each Tevatron experiment could reach a 3(5) σ significance if "fluctuation" is real
- $10 \mathrm{fb}^{-1}$ may also be viewed as a CDF+D0 combination with $5 \mathrm{fb}^{-1}$
- Expect $>6 \mathrm{fb}^{-1} /$ experiment if TeVatron stops in 2009 and $\sim 8 \mathrm{fb}^{-1 /}$ experiment if 2010 running approved
- May do better adding further signals (triggers) or better tagging (underway)

Coniclusions

- $B(s)$ physics program at TeVatron very rich and still promising:
- Study Direct CP violation in $B_{d, u}, B_{s}$ and Λ_{b}
- First ever flavor tagged measurement of $J / \Psi \phi$ rates this winter from Tevatron
\lrcorner Observe a (not yet) significant fluctuation towards large value of $\sin \left(2 \beta_{\mathrm{s}}\right)$
- Make B_{s} physics program at the Tevatron and LHCb even more intriguing
- CDF update with $>2^{*}$ statistics and DØ without constraints underway \rightarrow TeVatron average

Conslusjoris

- Would be really nice to repeat 1999/2000 situation for $\sin 2 \beta!$

Backup Slides

Trigger／Signial selection

－Trivial（？）trigger：
－Dimuons with invariant mass cuts around J／Ψ mass：
－$P_{t \mu}>1.5 \mathrm{GeV}$ at low luminosity
－Increasingly restrictive at higher luminosity
」 Significant bandwidth needed at high lumi（2E32 $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ ）
－ 5 KHz （L1）， 100 Hz （L2）， 10 $\mathrm{Hz}(3)$
－Offline selection：
」CDF：Neural Network selection
」 DØ：cut based selection

Angular acceptance

- Monte Carlo used to determine acceptance in transversity angles, two different approaches attempted: a) fitting to analytical model b) binned acceptance. Obtained equivalent results.

\section*{| 0 |
| :--- |
| 0 |
| O |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 1 |}

uncorrected for detector sculpting

Polarization in $B_{d} \rightarrow j / \Psi K^{\prime \prime}$

- Acceptance corrected fit projections validates treatment of detector acceptance!

Results for $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi \mathrm{K}^{0}$ in good agreement with BaBar, competitive uncertainties!

CDF
www-cdf.fnal.gov/physics/new/bottom/070830.blessed-BdPsiKS

Babar:
Phys. Rev. D 76, 031102 (2007)

$$
\begin{aligned}
& c \mathrm{t}=456 \pm 6(\text { stat }) \pm 6(\text { syst }) \mu m \\
& \left|A_{0}(0)\right|^{2}=0.569 \pm 0.009(\text { stat }) \pm 0.009(\text { syst }) \\
& \left|A_{\|}(0)\right|^{2}=0.211 \pm 0.012(\text { stat }) \pm 0.006(\text { syst }) \\
& \mathrm{d}_{\|}=-2.96 \pm 0.08(\text { stat }) \pm 0.03(\text { syst }) \\
& \mathrm{d}_{\perp}=+2.97 \pm 0.06(\text { stat }) \pm 0.01(\text { syst })
\end{aligned}
$$

$$
\begin{aligned}
& \left|A_{0}(0)\right|^{2}=0.556 \pm 0.009(\text { stat }) \pm 0.010(\text { syst }) \\
& \left|A_{\|}(0)\right|^{2}=0.211 \pm 0.010(\text { stat }) \pm 0.006(\text { syst }) \\
& \mathrm{d}_{\|}=-2.93 \pm 0.08(\text { stat }) \pm 0.04(\text { syst }) \\
& \mathrm{d}_{\perp}=+2.96 \pm 0.05(\text { stat }) \pm 0.03(\text { syst })
\end{aligned}
$$

Bel/Es polarization

$$
\begin{aligned}
\tau & =1.52 \pm 0.04 \pm 0.02 \mathrm{ps} \\
\Delta \Gamma & =0.076_{-0.063}^{+0.059} \pm 0.006 \mathrm{ps}^{-1} \\
\left|A_{0}\right|^{2} & =0.531 \pm 0.020 \pm 0.007 \\
\left|A_{\perp}\right|^{2} & =0.239 \pm 0.029 \pm 0.011 \\
\left|A_{\|}\right|^{2} & =0.230 \pm 0.026 \pm 0.009
\end{aligned}
$$

	free ϕ_{s}	$\phi_{s} \equiv \phi_{s}^{S M}$	$\Delta \Gamma_{s}^{t h}$
$\bar{\tau}_{s}(\mathrm{ps})$	1.52 ± 0.06	1.53 ± 0.06	1.49 ± 0.05
$\Delta \Gamma_{s}\left(\mathrm{ps}^{-1}\right)$	0.19 ± 0.07	0.14 ± 0.07	0.083 ± 0.018
$A_{\perp}(0)$	0.41 ± 0.04	0.44 ± 0.04	0.45 ± 0.03
$\left\|A_{0}(0)\right\|^{2}-\left\|A_{\| \|}(0)\right\|^{2}$	0.34 ± 0.05	0.35 ± 0.04	0.33 ± 0.04
δ_{1}	-0.52 ± 0.42	-0.48 ± 0.45	-0.47 ± 0.42
δ_{2}	3.17 ± 0.39	3.19 ± 0.43	3.21 ± 0.40
ϕ_{s}	$-0.57_{-0.30}^{+0.24}$	$\equiv-0.04$	-0.46 ± 0.28
$\Delta M_{s}\left(\mathrm{ps}^{-1}\right)$	$\equiv 17.77$	$\equiv 17.77$	$\equiv 17.77$

Babar:

Phys. Rev. D 76, 031102 (2007)

$$
\begin{aligned}
& \left|A_{0}(0)\right|^{2}=0.556 \pm 0.009(\text { stat }) \pm 0.010(\text { syst }) \\
& \left|A_{\|}(0)\right|^{2}=0.211 \pm 0.010(\text { stat }) \pm 0.006(\text { syst }) \\
& \mathrm{d}_{\|}=-2.93 \pm 0.08(\text { stat }) \pm 0.04(\text { syst }) \\
& \mathrm{d}_{\perp}=+2.96 \pm 0.05(\text { stat }) \pm 0.03(\text { syst })
\end{aligned}
$$

Proper time resolution

-The mean is of the sideband subtracted $\sigma_{c t}$ resolution for a 4-track vertex is $25.05 \mu \mathrm{~m}$ (error returned by the vertex fit)

- Need to multiply by a ct resolution scale factor determined by fitting the prompt peak : $s=1.26 \pm 0.02$ (effect of non gaussian tails, charged particle multiplicity etc,\ldots)
- Estimate an average resolution on proper time of 106 fs (with a most probable value of 78 fs).

Configlence Pegion Corisiruction

$$
R\left(\Delta \mathrm{G}_{\mathrm{s}}, \beta_{s}\right)=\log \frac{L\left(\Delta \hat{\mathrm{G}}_{\mathrm{s}}, \hat{\beta}_{\mathrm{s}}, \hat{\theta}\right)}{L\left(\Delta \mathrm{G}_{\mathrm{s}}, \beta_{\mathrm{s}}, \hat{\theta}^{\prime}\right)}
$$

${ }^{\wedge}=$ parameters that maximize likelihood L
$\theta^{\prime}=$ nuisance parameters which maximize L for a specific choice of $\Delta \Gamma_{\mathrm{s}}, \beta_{\mathrm{s}}$

Use pseudo-experiments to calculate:

Guarantees the frequentistic coverage of the quoted C.L. Takes into account non-asymptotic behaviour of likelihood, i.e. $\log (\mathrm{L})$ nonparabolic, and possibility of large fluctuation of likelihood shape from experiment-to-experiment

$$
p_{\text {value }}=\int_{\text {Rdata }}^{\infty} f\left(R, \Delta \mathrm{G}_{\mathrm{s}}, \beta_{\mathrm{s}}\right) d R
$$

Include systematics via an additional coverage adjustment varying nuisance parameters within 5σ of their uncertainties and choosing worst case (higher P-value) to define the confidence regions

$D \mathscr{D}$ Resuls (cails)

- 90% CL range from pseudoexperiment significantly different from what obtained from likelihood profile

$$
\begin{aligned}
& -1.20<\varphi_{s}<0.06 \mathrm{rad} \mathrm{vs} \\
& -1.10<\varphi_{s}<-0.10 \mathrm{rad}
\end{aligned}
$$

