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PLAN :

• Status of the minimal “triplet”
Model in SUSY SO(10)

• The new particle spectrum for
gauge coupling unification

• Predictions from mass spectra
analysis in SO(10)× S4

• Fermion masses and mixings in
SO(10)× S4

• Summary and Outlook
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I. Introduction

• We search for intermediate gauge
sym.:
SU(2)L × SU(2)R × U(1)B−L ×
SU(3)C(gL = gR) ≡ G2213

• If we break LR gauge sym to MSSM
by RH triplet in
126 ⊂ SO(10) , the R-parity is
automatically conserved. This is
important for proton stability and
neutralino DM.

• With parity cons. at the intermediate
scale the LH-triplet
is also at the intermediate scale,
leading to natural Type II seesaw,
in addition to Type I seesaw, or an ad-
mixure of the two.
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At first we consider the minimal spec-
trum:

SO(10)→210⊕54
MU

G2213

→126+126
MR

G213

→10
MW

U(1)em × SU(3)C
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To discuss gauge coupling unification
we use the RGEs fromMZ toMU ,

1
αY (MZ) = 1

αG
+ aY

2π
ln MR

MZ

+ 1
10π

(3a′2L + 2a′BL) ln MU

MR

1
α2L(MZ) = 1

αG
+ a2L

2π
ln MR

MZ
+ a′

2L

2π
ln MU

MR

1
α3C(MZ) = 1

αG
+ a3C

2π
ln MR

MZ
+ a′

3C

2π
ln MU

MR

Here primes are for RG coeffs. in LRS
theory and nonprimes for MSSM.
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From these we obtain two equations:

Lθ ≡ 2π

α(MZ)

(
1− 8 Sin2θW (MZ)

3

)

= A ln
MU

MZ

+ B ln
MR

MZ

,

LS ≡ 2π

α(MZ)

(
1− 8α(MZ)

3α3C(MZ)

)

= A′ ln
MU

MZ

+ B′ ln
MR

MZ

.
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A =
2

3
(a′BL − a′2L),

B =
5

3
(aY − a2L)− A,

A′ = 2a′2L +
2

3
a′BL −

8

3
a′3C ,

B′ =
5

3
aY + a2L − 8

3
a3C − A′.

Since B and B’ are coeffs. of ln(MR/MZ)
we expect lower values of int. scale to
be permissible only if these coeffs. are
small.
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Using PDG value of α(MZ) = 127.9,
Sin2θW (MZ) = 0.2312 , andα3C(MZ) =
0.1187, gives
LS = 662.736, Lθ = 308.305.

The minimal spectrum and the asso-
ciated beta function coefficients are
μ = MZ -MR:
Φu(2, 1, 1)⊕ Φd(2,−1, 1) ⊂ G213,
aY = 33/5, a2L = 1, a3C = −3

μ = MR −MU :
Φ(2, 2, 0, 1),ΔL(3, 1,−2, 1)⊕ΔR(1, 3,−2, 1)⊕
ΔL(3, 1, 2, 1)⊕ΔR(3, 1, 2, 1),

0-7



a′
BL = 24, a′

2L = a′
2R = 5,

a′
3C = a3C = −3

A = 38/3, B = −10/3, A′ = 34, B′ =
−14, AB′ − A′B = −64 , i,e B and B’ are not
small. In fact |B′| � A.

The solutions are
MR � 1016 GeV, MU = 2× 1016 GeV Note:
MR is at least two orders
larger than the seesaw scale.
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II. INT. SCALE IN SUSY SO(10)× S4

We note the following:

• nonSUSY SM alone does not unify gauge
couplings

• Unification takes place in non SUSY GUTS
when SM is extended in the gauge and/or
in particle spectrum

• With extn. in gauge sector toG2213 non
SUSY SO(10) unifies the couplings with
this intermediate gauge symmetry.

• When nonSUSY SM is promoted to MSSM
with extended particle spectrum
unification takes place rejecting any
intermediate symmetry.

• Failure of intermediate sym. at one loop
level in SUSY GUT might be hinting at
further extn. of particle spectrum
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• We find that this appropriate extn. is
realised when S4 family symmetry is
included with
G2213 → G2213 × S4 and
SO(10) → SO(10)× S4

• By using SO(10) Higgs multiplets which
are singlets under S4 to break the gauge
symmetries at the GUT scale and the
intermediate scale we haveMSSM × S4

as the eW scale sym. or TeV scale sym. In
prticular we realize the Spont. Sym.
Breaking pattern

SO(10)×S4 → G2213×S4 → MSSM×
S4 with perfect one-loop gauge coupling uni-
fication andMR = 109.5 GeV to 1015 GeV.
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Hagedorn, Lindner and Mohapatra(2006) have
examined the rich structure for fermion masses
and mixings in
non-SUSY SM × S4

model. One should look for gauge coupling uni-
fication in this model
. Our model gives
MSSM × S4

as the ew-scale sym. or TeV - scale sym. with
left-right intermediate gauge sym. and perfect of
gauge coupling unification. over a wide range
of values of the intermediate scale using only
Renormalizable Interactions.
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Keeping the MSSM particle spectrum fromMZ

toMR unaltered, the enlarged particle spectrum
at the intermediate scale consistent withG2213×
S4 symmetry is:

μ �MR:

ΔL(3, 1,−2, 1)⊕ΔR(1, 3,−2, 1)⊕
ΔL(3, 1, 2, 1)⊕ΔR(3, 1, 2, 1)
6(2, 2, 0, 1), 3(1, 1, 0, 8)

These modify the beta fn. coeffs. with:
a′

BL = 24, a′
2L = a′

2R = 10, a′
3C = 6

A = 28/3, A′ = 20, and
B = B′ = 0

The fact that the two coeffcs. exactly vanish
with suchG2213×S4 multiplets of Higgs scalars
may have some underlying importance for the
combination of P, R, and S4 symmetries.
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The numerical solution of successful gauge
coupling unification withMR = 1013 GeV is shown
in the Fig.1. Any value of Int. scale is now al-
lowed withMR ≥ 109.5 GeV.
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Figure 1: The evolution of the gauge couplings with G2213 ×
S4 intermediate gauge symmetry in SUSY SO(10) × S4

model
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We need six bidoublets which may originate
from six tens of SO(10)× S4

where 6 = 3 + 2 + 1 . That means we have one
triplet, one doublet, and one singlet of S4

Similarly the three octets under SU(3)C may
originate from a triplet of 45
of SO(10)× S4.

We have carried out mass spectra analysis to
show that such a spectrum is permitted by the
theory below the GUT scale by tuning the
parameters of the superpotential.
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Under SO(10)× S4 they are:
Φ(210, 1), S(54, 1),Σ0(126, 1),Σ0(126, 1)

Ai(45, 3), H0(10, 3), HD(10, 2), HT (10, 3)

Higgs Superpotential:

W0 = 1
2
mΦΦ2 + 1

2
mSS2 +1

2
mAΣiA

2
i

+mΣΣΣ + 1
2
mH0

H2
0 + +1

2
mHD

HD
2

+1
2
mHT

HT
2 + λ0Φ

3 + λ1ΦΣΣ

+(λ2Σ+λ3Σ)H0Φ+λ4ΣiA
2
i Φ +S(λ5S

2 +
λ6ΣiA

2
i + λ7Φ

2

+λ8Σ
2+λ9Σ

2
+λ10H

2
0 +λ11H

2
D+λ12H

2
T )+

....
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Using vacuum expectation values < S >=
vS, < Φ >= vΦ < ΔR >= σ,< ΔR >= σ, the
vanishing F-terms yield ,

mΦvΦ + 0v2

Φ

3
√

2
+ 1σσ

10
√

2
− 27vΦvS√

15
= 0,

mSvS +
√

3λ5v2

S

2
√

5
− λ7v2

Φ√
15

= 0,[
mΣ + λ1vΦ

10
√

2

]
σ = 0

Vanishing D-term gives, σ = σ. Also for the
desired hierarchy σ = σ <<< S >� < Φ >
leadind to

mΦ + λ0vΦ

3
√

2
− 2λ7vS√

15
= 0

vS satisfies a quadratic equation,

pv2
S + qvS − r = 0
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p =
√

3λ5

2
√

5
− 24λ3

7

5
√

15λ2

0

,

q = mS +
24λ2

7

5λ2

0

mΦ

r = 18λ7√
15λ2

0

m2
Φ

Goldstone Bosons are 30 in number

A.1. (1, 1, 3, 2/3) + (c.c) ⊂ (1, 1, 15) ⊂ 210
as 6 Goldstone Bosons.They have masses
mG1 = mΦ + λ0vΦ

3
√

2
− 2λ7vS√

15
= 0

A.2.(2, 2, 3, 1/3)+(c.c) as remaining 24Gold-
stone Bosons from a linear combination of states
in (2, 2, 6) ⊂ 54 and (2, 2, 10) ⊂ 210. To achieve
this finetuning of λ5 is needed.

0-17



Light Scalrs from Mass Spectra Analysis:
(A).ΔL(3, 1,−2, 1),ΔR(1, 3,−2, 1) ⊂ 126 and
their conjugates acquire degenerate masses,

MR = mΣ + λ1vΦ

10
√

2

MR << MU is guaranted by tuning λ1.
(B). The five bi-doublts from five 10-plets are teated
to have
masses near MR in the usual fashion by some
doublet triplet splitting
mechanism or by tuning the parameters (e.g. λ11,
and λ12)
. The sixth bidoublet in the sixth 10-plet which is
a siglet underS4 istreated to have mass near 100
GeV (e,g by finetuning of λ10). Equivalently by
suaitable unitary transforamation and fine tun-
ings one can keep five linear combinations of bi-
doublets at the MR scale while the sixth linear
combination is kept at the ew-scale. .
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(C). Choosing the basis (Ai)
1,1,0,8
1,1,15 , S1,1,0,8

1,1,20′ ,Φ
1,1,0,8
1,1,15 ,

we find that their are 3 number of unmixed states
in Ai with masses,

mA−
√

2λ4vΦ

3
− 2λ6vS√

15
Clearly the advatage of

Ai being the members of 3 ⊂ S4 is that
the tuning of the single parameter λ4 makes all
the three octets light at theMR scale
.
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It is found that the other two states mix through
the mass matrix
,

M2 =

[
mS − 2

√
3λ5vS√

5
−λ7vΦ√

6

−λ7vΦ√
6

mΦ − λ0vΦ

3
√

2
− 27vS√

15

]
.

(1)

The eigen values emerging from this eq. are
in general at the
GUT scale and we do not adopt any further fine-
tuning.
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Thus by tuning the parameters of the super-
potential
it is possible to obtain five bidoublets, three color
octets
and left- and right handed triplets at theMR scale
necessary for successful gauge coupling unifi-
cation
withG2213 intermediate symmetry with
MR = 5× 105 − 1016 GeV.
One bidoublet is kept at the ew scale.
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III. FERMION MASSES AND MIXINGS
Details can be found in arXiv:0804.4571.
For our analysis of fermion masses we adopt the
following strategy:
We add a doublet of (126⊕ ¯126)1,2 having GUT-
scale masses for all their components.
(i) All the ew bi-doublets in (126⊕ ¯126)0,1,2

are kept heavy at the GUT scale.
(ii) In this way the five bi-doublets at the
intermediate scale acquire VEVs� 100 GeV
but the three weak bidoublets in ( ¯126)0,1,2

aquire a somewhat suppressed induced VEV’s
� 10− 100 MeV.
All these contribute to fermion masses and
mixing and are adequate for our purpose.
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The three fermion generations are treated as
a triplet under S4.

Under SO(10)×S4,Ψi = (16, 3).The super-
potential
for fermion-Higgs Yukawa interaction is written
as,

WY uk = (Ψ1Ψ1 + Ψ2Ψ2 + Ψ3Ψ3)( y0H0 +
f0Σ0)

+ 1√
2
(Ψ2Ψ2 −Ψ3Ψ3)(y1H1 + f1Σ1)

+ 1√
6
(−2Ψ1Ψ1+Ψ2Ψ2+Ψ3Ψ3)(y1H2+f1Σ2)

+y3[(Ψ2Ψ3+Ψ3Ψ2)H3+(Ψ1Ψ3+Ψ3Ψ1)H4

+(Ψ1Ψ2 + Ψ2Ψ1)H5].
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Just below the GUT-scale for μ ∼ MU ,

WY uk = Σ3
k=1[Q

T
k τ2(y0H

φ
0 + f0Δ

φ

0)Q
C
k

+LT
k τ2(y0H

φ
0 − 3f0Δ

φ

0)L
C
k ]

+
1√
2
[QT

2 τ2(y1H
φ
1 + f1Δ

φ

1)Q
C
2

−QT
3 τ2(y1H

φ
1 + f1Δ

φ

2)Q
C
3

+LT
2 τ2(y1H

φ
1 − 3f1Δ

φ

1)L
C
2

−LT
3 τ2(y1H

φ
1 − 3f1Δ

φ

2)L
C
3 ]

+
1√
6
[−2QT

1 (y1H
φ
2 + f1Δ

φ

2)Q
C
1

−2LT
1 τ2(y1H

φ
2 − 3f1Δ

φ

2)L
C
1

+QT
2 τ2(y1H

φ
2 + f1Δ

φ

2)Q
C
2

LT
2 τ2(y1H

φ
2 − 3f1Δ

φ

2)L
C
2

+QT
3 τ2(y1H

φ
2 + f1Δ

φ

2)Q
C
3

+LT
3 τ2(y1H

φ
2 − 3f1Δ

φ

2)L
C
3 ]
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+y3[Q
T
2 τ2H

φ
3 QC

3 + QT
3 τ2H

φ
3 QC

2

+QT
1 τ2H

φ
4 QC

3

+QT
3 τ2H

φ
4 QC

1 + QT
1 τ2H

φ
5 QC

2

+QT
2 τ2H

φ
5 QC

1 + (Q → L)].

where allΔ
φ

i
(i = 0,1,2) are heavy weak bi-doublets

in (2,2,15)i ⊂ 126i(i = 0,1,2). All other six
bi-doublets are lighter thanMU ; five of them be-
ing atMR and the sixth one nearMZ .
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Adding their contributions, the mass matri-
ces of quarks and leptons have the well known
forms,
Mu = M

(10)
u +M

(126)
u , Md = M

(10)
d +M

(126)
d ,

Ml = M
(10)
d − 3M

(126)
d , MD

ν = M
(10)
u −

3M
(126)
u ,

The Type-I seesaw contribution to light neu-
trino mass matrx is,
Mν = −MDT

ν MD
ν /MN ,
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M
(10)
u =

⎡
⎣ α0 − 2α2 α5 α4

α5 α0 + α1 + α2 α3

α4 α3 α0 − α1 + α2

⎤
⎦ ,

M
(10)
d =

⎡
⎣ β0 − 2β2 β5 β4

β5 β0 + β1 + β2 β3

β4 β3 β0 − β1 + β2

⎤
⎦

M
(126)
u =

⎡
⎣ γ0 − 2γ2 0 0

0 γ0 + γ1 + γ2 0
0 0 γ0 − γ1 + γ2

⎤
⎦

M
(126)
d =

⎡
⎣ δ0 − 2δ2 0 0

0 δ0 + δ1 + δ2 0
0 0 δ0 − δ1 + δ2

⎤
⎦

0-27



In these equations
αi ≡ yi < Hu

i >, βi ≡ yi < Hd
i >,

γi ≡ fi < Δu
i >, δ ≡ fi < Δd

i >.
(i not summed).
The choice of diagonal basis in the down quark
sector which automatically also leads to the di-
agonal basis in the charged lepton sector, en-
ables to choose the six parameters, βi, δi(i =
0, 1, 2) to be real and β3 = β4 = β5 = 0. All
other parameters are, in general, complex. Ana-
lytically the six real parameters in terms of down-
quark and charged lepton mass eigen-values at
the see-saw scale (μ = MR) are,
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β0 =
[
3(m0

b + m0
s + m0

d) + m0
τ + m0

μ + m0
e

]
/12,

β1 =
[−3m0

b + 3m0
s −m0

τ + m0
μ

]
/8,

β2 =
[
3m0

b + 3m0
s − 6m0

d + m0
τ + m0

μ − 2m0
e

]
/24,

δ0 =
[
m0

b + m0
s + m0

d − (m0
τ + m0

μ + m0
e)

]
/12,

δ1 =
[−m0

b + m0
s + m0

τ −m0
μ

]
/8,

δ2 =
[
m0

b + m0
s − 2m0

d −m0
τ −m0

μ + 2m0
e

]
/24.
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Table 1: Renormalisation Group extrapolated running masses
of quarks and charged leptons of three generations at the in-
termediate scaleMR = 1013 GeV as estimated.
tanβ 10 55
mu (MeV) 0.8882±0.1694

0.1794 0.8882±0.1675
0.1795

mc (MeV) 258.0945±23.8287
25.8339 258.2929±23.3295

25.8144

mt (GeV) 94.3698±22.5572
25.8339 104.2363±32.7015

18.2028

md (MeV) 1.8290±0.5111
0.2779 1.8219±0.5054

0.2755

ms (MeV) 36.4261±5.1588
5.4807 36.2891±5.0777

5.4340

mb (GeV) 1.2637±0.1189
0.0893 1.5768±0.2640

0.1685

me (MeV) 0.3911±0.0002
0.0002 0.3893±0.0005

0.0002

mμ (MeV) 82.5539±0.0346
0.0330 82.2064±0.0468

0.1024

mτ (GeV) 1.4085±0.0009
0.0008 1.6574±0.0188

0.0148

We utilise the RG-extrapolated values of the
running charged fermion masses at the interme-
diate scale μ = MR ≈ vR ≈ 1013 GeV as shown
in Table.1 for tan β = 10, 55 [?]. In the present
model the definition tan β = vu/vd is valid in the
presence of MSSM below the intermediate scale.
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Using the down quark and charged leptonmasses
from Table 1 and eqs. for βi and δi, we obtain,
β0 = 449.773 MeV, β1 = − 625.971 MeV,

β2 = 224.155 MeV, δ0 = −15.791 MeV,

δ1 = 12.334 MeV, δ2 = − 8.074 MeV.

Using low-energy values of CKM matrix ele-
ments with its phase δ = 60◦ and using the
renormalisation factor rN = exp[−(y2

topln(vR/mtop)/16π

0.86 leads to the CKM matrix at μ = MR = 1013

GeV. We obtain elements of Mu in terms of the
running up-qurk mass eigen-values and CKM el-
ements via,
Mu = V T

CKMdiag(m0
u,m

0
c ,m

0
t )VCKM

For tan β = 10, using eqs forM (10)
U ,M

(126)
U ,

and Mu = M
(10)
U + M

(126)
U and the elements

of Mu obtained from VCKM and eigen values of
running up-quark masses at intermediate scale,
determines the three parameters αi(i = 3, 4, 5)
while three equations are obtained among the
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α3 = −(3423.16388±756.85493
525.63030)− i(62.68593±14.98302

9.61636 )

α4 = 634.28240±152.89360
96.74958 − i(268.69088±64.22568

41.21599),

α5 = −(80.01832±11.10225
9.05636 ) + i(9.33456±2.18567

1.43414),

where all parameters are in MeV and the uncer-
tainties in the RHS of these equations reflect the
uncertainties in the low-energy data [?]. It is clear
that the set of six eqs. leaves undetermined three(9−
6) complex (six real ) parameters which provide a
very rich structure to the model. Because of this,
the model may be able to confront the present
neutrino data and even the future precision data
that may emerge from planned and ongoing os-
cillation experiments. On the other hand, it is
also possible that the number of parameters may
not ensure faithful representation of neutrino data
because of highly non-linear nature of the prob-
lem emerging from see-saw mechanism.

0-33
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In order to examine the efficiency of themodel
in representing the neutrino sector, we use the
standard parametrization of the leptonic PMNS
mixing matrix,

where cij ≡ cos θij , sij ≡ sin θij , δ is the
Dirac phase and ϕ1, ϕ2 are Majorana phases of
neutrinos. These phases have range from 0 to
2π.

We use experimental data on neutino oscilla-
tions within the 3σ limit [?]:

0.29 ≤ tan2 θ12 ≤ 0.64,

0.49 ≤ tan2 θ23 ≤ 2.2,

sin2 θ13 ≤ 0.054,

5.2 ≤ Δm2
�/10−5eV 2 ≤ 9.8,

1.4 ≤ Δm2
atm/10−3eV 2 ≤ 3.4.
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For numerical analysis we exploit the well de-
fined diagonalisation procedure for complex and
symmetric mass matrices,

U †MνU
∗ = diag(m1,m2,m3),

U †MνM
†
νU = diag(m2

1,m
2
2,m

2
3),

where U is a unitary diagonalising matrix , the
light neutrino mass matrix Mν has been defined
in by Type-I seesaw andmi(i = 1, 2, 3) are pos-
itive mass eigen values.

For the sake of simplicity we reduce the pa-
rameters of the model by treating the parameters
γi(i = 0, 1, 2) as real. Then the six eqs. for
αi−γi combinations, determines six real param-
eters out of a total nine, This choice of parame-
ters implies that the CP-violation has its origin
only in the quark sector as reflected in the CKM
matrix [?].
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Thus, in addition to the see-saw scale, we are
left with three real parameters to fit the neutrino
oscillation data on four quantities,Δm2

�,Δm2
atm, tan2 θ12,

and tan2 θ23 andmake predictions on sin θ13, lep-
tonic Dirac phase (δ) andMajorana phases(ϕ1, ϕ2),
sum of the three light neutrino masses Σmi, the
effective matrix element for neutrinoless double
beta decay,< mee >, and the kinematic neutrino
massmβ to be measured in beta decay where

< mee >= |
∑3

i=1
(U ei

PMNS)2mi|,

mβ = (
∑3

i=1
|U ei

PMNS|2m2
i )

1/2.
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Equivalently, the three real unknown parame-
ters are defined as,

ξ = γ0 − 2γ2,

η = γ0 + γ1 + γ2,

ζ = γ0 − γ1 + γ2.

We find that ξ, η and ζ are quite efficient in de-
scribing the present neutrino oscillation data. Some
examples of our fit to the data and model predic-
tions are shown in Table 2.
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We find that the see-saw scale is determined
to beMN = 3.78×1013 GeV for hierarchial neu-
trino masses. The first and the second columns
show that for fixed values of η and ζ , the param-
eter ξ is very effective in controlling the value of
the solar neutrino mixing angle (θ12).
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Table 2: Fit to the available neutrino oscillation data and pre-
dictions of reactor mixing angle θ13, Leptonic Dirac phase
(δ), Majorana phases (ϕ1, ϕ2) and the CP violation parame-
ter JCP in the SO(10) × S4 model with see-saw scale at
MR = 3.78× 1013 GeV and tanβ = 10
ξ (GeV) 1.025 1.100 1.235
η (GeV) 2.137 2.137 2.400
ζ (GeV) 25.529 25.529 25.700
m1 (eV) 0.00536 0.00596 0.00801
m2 (eV) 0.00920 0.00956 0.01268
m3 (eV) 0.05000 0.05000 0.07860∑

imi (eV) 0.0645 0.0675 0.09929
Δm2

� (eV2) 6× 10−5 6× 10−5 9.6× 10−5

Δm2
atm (eV2) 2.5× 10−3 2.5× 10−3 3.1× 10−3

sin θ12 0.515 0.616 0.511
sin θ23 0.718 0.718 0.736
sin θ13 0.055 0.057 0.052
δ(radians) 3.096 3.048 3.100
φ1(radians) 5.67 5.46 5.65
φ2(radians) 5.59 5.39 5.65
JCP 2.66× 10−4 6.49× 10−4 2.95× 10−5

< mee > (eV) 0.00646 0.00742 0.00932
mβ (eV) 0.00462 0.00516 0.00600
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The model is capable of accommodating both
larger and smaller values of θ13. In one example
we find that the predicted reactor mixing angle
occurs in the range θ13 � 3◦−5◦ which is within
the accessible limit of ongoing and planned ex-
periments [?]. The sum of the three neutrinomasses
are found to be well within the cosmological bound
[?]. The leptonic Dirac phase turns out to be
closer to π with δ = 2.9−3.1 radians and the two
Majorana phases are within 5.3 − 5.7 radians.
The predicted values of matrix element for dou-
ble beta decay and the kinematical mass for beta
decay are found to be nearly two orders smaller
than the current experimental bounds [?, ?, ?].
Similar conclusion has been also obtained for
hierarchial neutrinos with S4 flavor symmetry in
the non-SUSY standard model [?]. The Jarlskog
invariant [?] is found to vary between JCP �
2.95× 10−5 and JCP � 10−3 where the smaller
(larger) value depends upon howmuch closer (far-
ther) is the Dirac phase (δ) from π. We observe
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that the predictions of this model in the neutrino
sector made at the high see-saw scale is to re-
main stable under radiative corrections when ex-
trapolated to low energies especially since the
light neutrino mass eigen values are small [?].
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1 IV. Summary and Outlook

• In non-SUSY SO(10) there is no problem
in getting left-right intermediate gauge
symmetry, but the theory has gauge
hierachy problem.

• In minimal SUSY SO(10) the RG
constraint dictates the LR intermediate
gauge sym. breaking scale to be of same
oder as the GUT scale which is at least 2
orders larger than the seesaw scale for
neutrino masses.

• If we achieve a LR-gauge sym. breaking
scaleMR = 1013 GeV to 1014GeV , then
the seesaw scale can be obtained without
any adjustment of the Majorana coupling :
i,e with f0 � 1.
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• In this work we have addressed the
question of possible existence of R-parity
and Parity conserving left-right gauge
theory as an intermediate symmetry in
SUSY SO(10) with manifest one-loop
unification of the gauge couplings.

• We have realized this possibility but with
the extensions:
G2213 → G2213 × S4,
SO(10) → SO(10)× S4.
and the pattern of sym. breaking is
SO(10)× S4 → G2213 × S4

→ MSSM × S4
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• In addition to the minimal Higgs multiplets,
we need contributions of five more
bi-doublets and three SU(3)C -octets at
the intermediate scale. Thus, the total no
of six bi-doublets and three octets are
nicely fitted into the the representations
,3 + 2 + 1 = 6, and 3, respectively, of the
flavor group s4.With almost perfect gauge
coupling unification. The intermediate
scale is found to vary over a wide range
109.5 → 1015 GeV

• SUSY SO(10) with triplet of 45, six 10′s ,
and a singlet of (126⊕ ¯126)0 provide the
right spectrum for gauge coupling
unification.

• Three fermion generations are in the triplet
of 16′s. To get fermion masses we add a
doublet of (126⊕ ¯126)1,2 which have GUT
scale masses. The weak bidoublets in
(126⊕ ¯126)0,1,2 get suppressed induced
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VEVs (See Babu and Mohapatra, 1993) and
others get VEVs� 100 GeV

• The model fits all the fermion masses and
mixings with good predictions of reactor
mixing angle and CP-Violating parameters.
It is very rich in structure and has the
capability to confront more accurate data
in near future.

• It would be interesting to investigate the
experimentally testable light
quasi-degenerate neutrino masses near
their WMAP bounds in this model with
possibility of high scale mixing unification
or otherwise.

• With high degree of degeneracy acquired
through S4 symmetry it would be
interesting to predict baryogenesis via
RESONANT leptogenesis in this model.

• The idea of b− τ unification being applica-
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ble at or below the seesaw scale, it would
be a good idea to see the success of Type−
II seesaw dominance or by taking an ad-
mixure of Type-I and Type -II.
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