

1951-2

Workshop on the original of P, CP and T Violation

2 - 5 July 2008

CP Violation in Kaon Decays

A. PICH Universidad de Valencia, Facultad de Fisica 46100 Valencia, SPAIN

CP Violation in Kaon Decays

Workshop on the origins of P, CP and T violation (cpt@ictp) ICTP, Trieste, Italy, July 2 to 5 2008

Wolfenstein 1964

 $K^0-\bar{K}^0$ Mixing is the only source of CP

• Standard Model

CP:

Kobayashi–Maskawa 1973

Quark Mixing

 $\Delta S = 1$

 $\Delta S = 2$

DIRECT CP VIOLATION

$$\eta_{+-} \equiv \frac{T(K_L \to \pi^+ \pi^-)}{T(K_S \to \pi^+ \pi^-)} \approx \varepsilon_{\kappa} + \varepsilon'_{\kappa} \quad ; \quad \eta_{00} \equiv \frac{T(K_L \to \pi^0 \pi^0)}{T(K_S \to \pi^0 \pi^0)} \approx \varepsilon_{\kappa} - 2\varepsilon'_{\kappa}$$

 $\varepsilon_{\kappa} = (2.229 \pm 0.010) \times 10^{-3} e^{i \phi_{\varepsilon_{\kappa}}}$; $\phi_{\varepsilon_{\kappa}} = (43.51 \pm 0.05)^{\circ}$

$$\operatorname{Re}\left(\frac{\varepsilon_{\kappa}'}{\varepsilon_{\kappa}}\right) \approx \frac{1}{6} \left\{ 1 - \left|\frac{\eta_{00}}{\eta_{+-}}\right|^{2} \right\} = (16.5 \pm 2.6) \times 10^{-4}$$

23.0 ± 6.5	NA31	1993
7.4 ± 5.9	E731	1993
14.7 ± 2.2	NA48	2002
20.7 ± 2.8	KTeV	2003

CP Violation in Kaon Decays

10⁴ Re($\varepsilon'_{\kappa}/\varepsilon_{\kappa}$)

Long History of Theoretical Predictions

 $|\varepsilon_{\kappa}'/\varepsilon_{\kappa}| \lesssim 0.002$

- Earlier estimates:
- First LO calculations: $|\varepsilon'_{\kappa}/\varepsilon_{\kappa}| \sim 0.01$
- Electroweak penguins:
- First estimates of isospin breaking:
- First matrix elements from $1/N_C$:
- Heavy top mass: Big cancellation
- NLO short-distance calculation:
- Modelling matrix elements:
- $\chi \mathsf{PT}_{FSI}$ & $1/N_C$: $\operatorname{Re}(\varepsilon'_{\kappa}/\varepsilon_{\kappa}) \sim 1.7 \cdot 10^{-3}$ Pallante-Pich '00, Pallante-Pich-Scimemi '01
- Isospin breaking $(m_{\mu} m_{d}, \alpha)$
- Matrix elements at NLO in $1/N_C$: Ongoing analytical / lattice effort Amherst, Barcelona, Caltech, CP-PACS, Granada, Lund, Marseille, Montpellier, RBC, Roma,

Gilman-Wise '79, Guberina-Peccei '80

Bijnens-Wise '84, Donoghue et al '86, Buras-Gerard '87

Donoghue et al '86, Buras-Gerard '87, Lusignoli '89

Buras-Bardeen-Gerard '87

Flynn-Randall '89, Buchalla-Buras-Harlander '90 Paschos-Wu '91, Lusignoli et al '92

 ${
m Re}(arepsilon_{\kappa}^{\prime}/arepsilon_{\kappa})\sim 7\cdot 10^{-4}$ Buras et al '93, Ciuchini et al '93

Dortmund, Lund, München, Roma, Trieste,

Ecker et al '00, Cirigliano et al '03

$K \rightarrow 2\pi$ ISOSPIN AMPLITUDES

$$\begin{aligned} &A[K^0 \to \pi^+ \pi^-] \equiv A_0 e^{i\chi_0} + \frac{1}{\sqrt{2}} A_2 e^{i\chi_2} \\ &A[K^0 \to \pi^0 \pi^0] \equiv A_0 e^{i\chi_0} - \sqrt{2} A_2 e^{i\chi_2} \\ &A[K^+ \to \pi^+ \pi^0] \equiv \frac{3}{2} A_2^+ e^{i\chi_2^+} \end{aligned}$$

$$\begin{aligned} A_0 e^{i\chi_0} &= \mathcal{A}_{1/2} \\ A_2 e^{i\chi_2} &= \mathcal{A}_{3/2} + \mathcal{A}_{5/2} \\ \mathcal{A}_2^+ e^{i\chi_2^+} &= \mathcal{A}_{3/2} - \frac{2}{3} \mathcal{A}_{5/2} \end{aligned}$$

$$\Delta I = 1/2$$
 Rule: $\omega \equiv \frac{\operatorname{Re}(A_2)}{\operatorname{Re}(A_0)} \approx \frac{1}{22}$

Strong Final State Interactions: $\chi_0 - \chi_2 \approx \delta_0 - \delta_2 \approx 45^{\circ}$

$$\varepsilon_{\kappa}' = \frac{-i}{\sqrt{2}} e^{i(\chi_2 - \chi_0)} \omega \left\{ \frac{\operatorname{Im}(A_0)}{\operatorname{Re}(A_0)} - \frac{\operatorname{Im}(A_2)}{\operatorname{Re}(A_2)} \right\}$$

$$egin{aligned} &Q_1 = \left(\overline{s}_lpha \, u_eta
ight)_{\mathrm{V-A}} \left(\overline{u}_eta \, d_lpha
ight)_{\mathrm{V-A}} \ &\overline{u}_eta \, d_lpha
ight)_{\mathrm{V-A}} \sum_q \left(\overline{q} \, q
ight)_{\mathrm{V\mp A}} \ &Q_{7,9} = rac{3}{2} \left(\overline{s} \, d
ight)_{\mathrm{V-A}} \sum_q e_q \left(\overline{q} \, q
ight)_{\mathrm{V\pm A}} \ &Q_6 = -8 \sum_q \left(\overline{s}_L q_R
ight) \left(\overline{q}_R \, d_L
ight) \end{aligned}$$

 $Q_{2} = \overline{(\overline{s}u)_{V-A} (\overline{u}d)_{V-A}}$ $Q_{4} = (\overline{s}_{\alpha}d_{\beta})_{V-A} \sum_{q} (\overline{q}_{\beta}q_{\alpha})_{V-A}$ $Q_{10} = \frac{3}{2} (\overline{s}_{\alpha}d_{\beta})_{V-A} \sum_{q} e_{q} (\overline{q}_{\beta}q_{\alpha})_{V-A}$ $Q_{8} = -12 \sum_{q} e_{q} (\overline{s}_{L}q_{R}) (\overline{q}_{R}d_{L})$

Physics does not depend on

•
$$q > \mu$$
: $C_i(\mu) = z_i(\mu) - y_i(\mu) \left(V_{td} V_{ts}^* / V_{ud} V_{us}^* \right)$
 $O(\alpha_s^n t^n)$, $O(\alpha_s^{n+1} t^n)$ $[t \equiv \log(M/m)]$ (Munich / Rome)

• $q < \mu$: $\langle \pi \pi | Q_i(\mu) | K \rangle$

A. Pich

 μ

$$\varepsilon_{\kappa}^{\prime}/\varepsilon_{\kappa} \sim \operatorname{Im}\left(V_{ts}^{*}V_{td}\right) \left[P^{(1/2)} - P^{(3/2)}\right] \qquad (\text{Buras et al})$$

$$P^{(1/2)} = r \sum_{i} y_{i}(\mu) \langle Q_{i}(\mu) \rangle_{0} \left(1 - \Omega_{IB}\right) \quad ; \quad P^{(3/2)} = \frac{r}{\omega} \sum_{i} y_{i}(\mu) \langle Q_{i}(\mu) \rangle_{2}$$

$$r = \frac{G_{F}\omega}{2 |\varepsilon_{\kappa}| \operatorname{Re}\left(A_{0}\right)} \quad ; \quad \omega = \frac{\operatorname{Re}\left(A_{2}\right)}{\operatorname{Re}\left(A_{0}\right)} \approx \frac{1}{22} \quad ; \quad \operatorname{Re}\left(A_{0}\right) = 3.37 \times 10^{-7} \operatorname{GeV}$$

$$\langle Q_{i}(\mu) \rangle \equiv \langle Q_{i} \rangle_{22} B_{i}(\mu)$$

$$\underbrace{\varepsilon_{\kappa}^{\prime}}_{\kappa} \sim \left[\frac{110 \operatorname{MeV}}{m_{s}(2 \operatorname{GeV})}\right]^{2} \left\{B_{6}^{(1/2)} \left(1 - \Omega_{IB}\right) - 0.4 B_{6}^{(3/2)}\right\}$$

Delicate Cancellation. Strong Sensitivity to:

- m_s (quark condensate)
- Isospin Breaking $(m_u \neq m_d, e.m. effects)$
- Penguin Matrix Elements (χ PT corrections)

Weak Currents
Factorize
at Large NC
$$\kappa \longrightarrow \pi$$

 $O(N_C^2)$ $\kappa \longrightarrow \pi$
 $O(N_C)$ $\kappa \longrightarrow \pi$
 $O(N_C)$ $A[K^0 \rightarrow \pi^0 \pi^0] = 0$ $A_0 = \sqrt{2} A_2$ $No \ \Delta I = \frac{1}{2}$ enhancement at leading order in $1/N_C$ Multiscale problem:OPE $\frac{1}{N_C} \log\left(\frac{M_W}{\mu}\right) \sim \frac{1}{3} \times 4$

Short-distance logarithms must be summed

• Large χ PT logarithms: FSI $\frac{1}{N_C} \log \left(\frac{\mu}{M_{\pi}}\right) \sim \frac{1}{3} \times 2$ Infrared logarithms must also be included $[\delta_I \sim O(1/N_C), \delta_0 - \delta_2 \approx 45^\circ]$

CHIRAL PERTURBATION THEORY (χ PT)

- Expansion in powers of p^2/Λ_{χ}^2 : $\mathcal{A} = \sum_n \mathcal{A}^{(n)}$ $(\Lambda_{\chi} \sim 4\pi F_{\pi} \sim 1.2 \text{ GeV})$
- Amplitude structure fixed by chiral symmetry
- Short-distance dynamics encoded in low-energy couplings (LECs)
- $O(p^2) \chi PT$: $\delta_0 = \delta_2 = 0$

$$\mathcal{A}_{1/2} = \sqrt{2} F_{\pi} \left(G_{8} + \frac{1}{9} G_{27} \right) \left(M_{K}^{2} - M_{\pi}^{2} \right)$$
$$\mathcal{A}_{3/2} = \frac{10}{9} F_{\pi} G_{27} \left(M_{K}^{2} - M_{\pi}^{2} \right) \qquad ; \qquad \mathcal{A}_{5/2} = 0$$

- Loop corrections (χ PT logarithms) unambiguously predicted
- LECs can be determined at $N_C \to \infty$

$$O(p^2, e^2p^0) \chi PT$$

$$\mathcal{Q} = \operatorname{diag}\left(\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3}\right)$$

$$\mathcal{L}_{2}^{\Delta 5-1} = G_{6}F^{4} \langle \lambda L_{\mu}L^{\mu} \rangle + G_{27}F^{4} \left(L_{\mu 23}L_{11}^{\mu} + \frac{2}{3}L_{\mu 21}L_{13}^{\mu} \right) + e^{2}F^{6}G_{8}g_{ew} \langle \lambda U^{\dagger}QU \rangle$$

$$G_{R} = -\frac{G_{F}}{\sqrt{2}}V_{ud}V_{us}^{*}g_{R} \quad ; \quad L_{\mu} = -iU^{\dagger}D_{\mu}U \quad ; \quad \lambda \equiv \frac{1}{2}\lambda_{6-i7} \quad ; \quad U \equiv \exp\left\{ i\sqrt{2}\Phi/F \right\}$$

$$\mathcal{A}_{1/2} = \sqrt{2} F_{\pi} \left\{ G_{8} \left[\left(M_{K}^{2} - M_{\pi}^{2} \right) \left(1 - \frac{2}{3\sqrt{3}} \varepsilon^{(2)} \right) - \frac{2}{3} F_{\pi}^{2} e^{2} \left(g_{ew} + 2 Z \right) \right] \right. \\ \left. + \frac{1}{9} G_{27} \left(M_{K}^{2} - M_{\pi}^{2} \right) \right\} \\ \mathcal{A}_{3/2} = \frac{2}{3} F_{\pi} \left\{ \left(\frac{5}{3} G_{27} + \frac{2}{\sqrt{3}} \varepsilon^{(2)} G_{8} \right) \left(M_{K}^{2} - M_{\pi}^{2} \right) - F_{\pi}^{2} e^{2} G_{8} \left(g_{ew} + 2 Z \right) \right\} \\ \left. \mathcal{A}_{5/2} = 0 \qquad ; \qquad \delta_{0} = \delta_{2} = 0 \right]$$

 $\varepsilon^{(2)} = (\sqrt{3}/4) (m_d - m_u)/(m_s - \hat{m}) \approx 0.011$; $Z \approx (M_{\pi^{\pm}}^2 - M_{\pi^0}^2)/(2 e^2 F_{\pi}^2) \approx 0.8$

$O(p^2, e^2 p^0) \ \chi PT$; $N_C \rightarrow \infty$

$$g_{8} = \left(\frac{3}{5}C_{2} - \frac{2}{5}C_{1} + C_{4}\right) - 16 L_{5} \left(\frac{\langle \bar{q} q \rangle(\mu)}{F_{\pi}^{3}}\right)^{2} C_{6}(\mu)$$

$$g_{27} = \frac{3}{5} (C_{2} + C_{1})$$

$$e^{2} g_{8} g_{ew} = -3 \left(\frac{\langle \bar{q} q \rangle(\mu)}{F_{\pi}^{3}}\right)^{2} \left[C_{8}(\mu) + \frac{16}{9} C_{6}(\mu) e^{2} (K_{9} - 2K_{10})\right]$$

$$G_R \equiv -\frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* g_R \qquad (R = 8, 27)$$

$$\frac{\langle \bar{q} q \rangle(\mu)}{F_{\pi}^{3}} = \frac{M_{K^{0}}^{2}}{(m_{s} + m_{d})(\mu) F_{\pi}} \left\{ 1 - \frac{8M_{K^{0}}^{2}}{F_{\pi}^{2}} \left(2L_{8} - L_{5} \right) + \frac{4M_{\pi^{0}}^{2}}{F_{\pi}^{2}} L_{5} \right\}$$

• Equivalent to standard calculations of **B**_i

• μ dependence only captured for $Q_{6,8}$

$\mathbf{O}\left[\mathbf{p^4}, \left(\mathbf{m_u} - \mathbf{m_d}\right)\mathbf{p^2}, \mathbf{e^2p^2}\right] \quad \chi \mathbf{PT}$

• Nonleptonic weak Lagrangian: $O(G_F p^4)$

$$\mathcal{L}_{\text{weak}}^{(4)} = \sum_{i} G_{8} N_{i} F^{2} O_{i}^{8} + \sum_{i} G_{27} D_{i} F^{2} O_{i}^{27} + \text{h.c.}$$

- Electroweak Lagrangian: $O(G_F e^2 p^2)$ $\mathcal{L}_{EW} = e^2 \sum_i G_8 Z_i F^4 O_i^{EW} + h.c.$
- $O(e^2p^2)$ Electromagnetic + $O(p^4)$ Strong: K_i, L_i
- $K \rightarrow \pi \pi, \pi \pi \gamma$ Inclusive , DAPHNE

A. Pich

$$\mathcal{A}_n^{(X)} = a_n^{(X)} \left[1 + \Delta_L \mathcal{A}_n^{(X)} + \Delta_C \mathcal{A}_n^{(X)} \right]$$

1 $O(p^4) \chi PT$ Loops: Large correction NLO in $1/N_C$ $\Delta_L \mathcal{A}_{1/2}^{(8)} = 0.27 \pm 0.05 + 0.47 i$; $\Delta_L \mathcal{A}_{1/2}^{(27)} = 1.02 \pm 0.60 + 0.47 i$; $\Delta_L \mathcal{A}_{3/2}^{(27)} = -0.04 \pm 0.05 - 0.21 i$ $\Delta_L \mathcal{A}_{1/2}^{(g)} = 0.27 \pm 0.05 + 0.47 \, i$; $\Delta_L \mathcal{A}_{3/2}^{(g)} = -0.50 \pm 0.20 - 0.21 \, i$

Pallante-Pich-Scimemi

2 All local $O(p^4)$ couplings fixed at $N_C \to \infty$ \longrightarrow $\Delta_C \mathcal{A}_p^{(\chi)}$ **Small correction** to $O(p^2)$ results

Isospin Breaking: $O\left[\left(m_u - m_d\right)p^2, e^2p^2\right]$ Sizeable corrections 3

Cirigliano-Ecker-Neufeld-Pich

4 Re(g_8), Re(g_{27}), $\chi_0 - \chi_2$ fitted to data

A. Pich

$$\frac{\varepsilon_{\kappa}'}{\varepsilon_{\kappa}} \sim \left[\frac{105 \text{ MeV}}{m_s(2 \text{ GeV})}\right]^2 \left\{ B_6^{(1/2)} \left(1 - \Omega_{\text{eff}}\right) - 0.4 B_8^{(3/2)} \right\}$$

Delicate Cancellation. Strong Sensitivity to:

- m_s (quark condensate) $m_s(2 \text{ GeV}) = 105 \pm 20 \text{ MeV}$
- Isospin Breaking $(m_u \neq m_d, \alpha)$ $\Omega_{\mathrm{eff}} = 0.06 \pm 0.08$
- Penguin Matrix Elements

 χ PT Loops (FSI):

Cirigliano-Ecker-Neufeld-Pich

(FSI):
$$B_{6,\infty}^{(1/2)} \times (1.35 \pm 0.05)$$
 ; $B_{8,\infty}^{(3/2)} \times (0.54 \pm 0.20)$

$$\operatorname{Re}\left(\varepsilon'/\varepsilon\right) = \left(19 \pm 2_{\mu} + 9_{-6_{m_s}} \pm 6_{1/N_c}\right) \times 10^{-4}$$

Pallante-Pich-Scimemi '01 (updated)

Exp. world average: $\operatorname{Re}(\varepsilon'/\varepsilon) = (16.5 \pm 2.6) \times 10^{-4}$

Challenge: Control of subleading $1/N_{C}$ corrections to χ PT couplings

A. Pich

$$|\varepsilon'/\varepsilon'| = \operatorname{Im}(V_{ts}^*V_{td}) \times \left[P^{(1/2)} - P^{(3/2)}\right]$$

10⁴ Im $(V_{ts}^* V_{td}) \times P^{(1/2)}$

V. Cirigliano

{Q_i}₁ from original calculations

 $\Omega_{\rm eff}$ Updated

ELECTROWEAK PENGUINS contribute at O(p⁰) $(m_q, p \rightarrow 0)$

$$e^{2}g_{8}g_{ew} F^{6} = 6 C_{7}(\mu) \langle \mathcal{O}_{1}(\mu) \rangle - 12 C_{8}(\mu) \langle \mathcal{O}_{2}(\mu) \rangle \xrightarrow{N_{C} \to \infty} -\frac{1}{3} C_{8}(\mu) \langle \bar{q}q(\mu) \rangle^{2}$$
$$\langle \mathcal{O}_{1}(\mu) \rangle \equiv \langle 0|(s_{L}\gamma^{\mu}d_{L})(\bar{d}_{R}\gamma_{\mu}s_{R})|0\rangle \qquad ; \qquad \langle \mathcal{O}_{2}(\mu) \rangle \equiv \langle 0|(s_{L}s_{R})(\bar{d}_{R}d_{L})|0\rangle$$

$$\mathsf{M}_{\mathbf{8}}\equiv\left.\langle(2\pi)_{I=2}|Q_{\mathbf{8}}(\mu_{0})|K^{0}
ight
angle
ight|_{m_{q}=p=0}$$

$$= rac{8}{F^3} \langle \mathcal{O}_2(\mu_0)
angle$$

$$\mu_0 = 2 \text{ GeV}$$

$$\begin{array}{c} \mathsf{M}_{\mathbf{g}} \stackrel{\mathsf{N}_{\mathcal{C}} \to \infty}{\longrightarrow} \frac{2}{F^{3}} \left\langle \bar{q}q(\mu_{0}) \right\rangle^{2} \\ \\ \approx \frac{2M_{K}^{4}F^{3}}{(m_{s}+m_{q})^{2}(\mu_{0})F_{\pi}^{2}} \end{array}$$

Charge Asymmetry in
$$K^{\pm} \rightarrow (3\pi)^{\pm}$$
 Decays

$$|T(u,v)|^{2} \propto 1 + g u + h u^{2} + k v^{2} + \cdots$$

$$u \equiv (s_{3} - s_{0})/m_{\pi}^{2} ; v \equiv (s_{1} - s_{2})/m_{\pi}^{2} ; s_{0} \equiv (s_{1} + s_{2} + s_{3})/3 ; s_{i} \equiv (p_{K} - p_{\pi_{i}})^{2} ; 3 \equiv \text{odd } \pi$$
NA48/2: $A_{g} \equiv \frac{g^{+} - g^{-}}{g^{+} + g^{-}} = \begin{cases} (-1.5 \pm 2.1) \cdot 10^{-4} & \pi^{\pm} \pi^{+} \pi^{-} \\ (1.8 \pm 1.9) \cdot 10^{-4} & \pi^{\pm} \pi^{0} \pi^{0} \end{cases}$

Theory: $A_g^{\pi^{\pm}\pi^{+}\pi^{-}} = (-0.24 \pm 0.12) \cdot 10^{-4}$; $A_g^{\pi^{\pm}\pi^{0}\pi^{0}} = (0.11 \pm 0.07) \cdot 10^{-4}$ (Gámiz-Prades-Scimemi)

New Experiments Needed

SUMMARY

- Qualitative understanding of ε'/ε within the Standard Model
- Quantitative prediction using the $1/N_C$ expansion and χ PT
- Large chiral corrections generated by infrared logarithms
- Detailed analysis of isospin breaking corrections
- Good agreement with experiment (but large uncertainties)

$$\operatorname{Re}\left(\varepsilon'/\varepsilon\right) = \left(19 \pm 2_{\mu} + 9_{-6_{m_s}} \pm 6_{1/N_c}\right) \times 10^{-4}$$

Challenge: Control of subleading $1/N_{C}$ corrections to χ PT couplings On-going theoretical efforts using both analytical & lattice tools

BACKUP SLIDES

Isospin Breaking in ε'/ε

$$\epsilon'_{\kappa} \sim \omega_{+} \left\{ \frac{\operatorname{Im} A_{0}^{(0)}}{\operatorname{Re} A_{0}^{(0)}} \left(1 + \Delta_{0} + f_{5/2} \right) - \frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{2}^{(0)}} \right\}$$
$$\sim \omega_{+} \left\{ \frac{\operatorname{Im} A_{0}^{(0)}}{\operatorname{Re} A_{0}^{(0)}} \left(1 - \Omega_{\mathrm{eff}} \right) - \frac{\operatorname{Im} A_{2}^{\mathrm{emp}}}{\operatorname{Re} A_{2}^{(0)}} \right\}$$

$$\omega \equiv \frac{\text{Re}\,A_2}{\text{Re}\,A_0} = \omega_+ \ \left(1 + f_{5/2}\right) \quad ; \quad \omega_+ \equiv \frac{\text{Re}\,A_2^+}{\text{Re}\,A_0} \quad ; \quad \Omega_{IB} = \frac{\text{Re}\,A_0^{(0)}}{\text{Re}\,A_2^{(0)}} \ \frac{\text{Im}\,A_2^{\text{non-emp}}}{\text{Im}\,A_0^{(0)}}$$

Cirigliano-Ecker-Neufeld-Pich

×	lpha=0		lpha eq 0		
10^{-2}	LO	NLO	LO	NLO	$\Omega_{ m eff}=0.06\pm0.08$
Ω_{IB}	11.7	15.9 ± 4.5	18.0 ± 6.5	22.7 ± 7.6	$\equiv \Omega_{IB} - \Delta_0 - f_{5/2}$
Δ_0	-0.004	-0.41 ± 0.05	8.7 ± 3.0	8.4 ± 3.6	
<i>f</i> _{5/2}	0	0	0	8.3 ± 2.4	
$\Omega_{ m eff}$	11.7	16.3 ± 4.5	9.3 ± 5.8	6.0 ± 7.7	$\Omega^{\pi^0\eta}_{\mathrm{IB}}=0.16\pm0.03$

A. Pich

$\begin{array}{l} \textbf{ELECTROWEAK PENGUINS contribute at } O(p^{0}) \ (m_{q}, p \rightarrow 0) \\ \\ e^{2}g_{8}g_{ew} \ F^{6} = 6 \ C_{7}(\mu) \ \langle \mathcal{O}_{1}(\mu) \rangle - 12 \ C_{8}(\mu) \ \langle \mathcal{O}_{2}(\mu) \rangle \overset{N_{C} \rightarrow \infty}{\longrightarrow} - \frac{1}{3} \ C_{8}(\mu) \ \langle \overline{q}q(\mu) \rangle^{2} \\ \\ \langle \mathcal{O}_{1}(\mu) \rangle \equiv \langle 0|(s_{L}\gamma^{\mu}d_{L})(\overline{d}_{R}\gamma_{\mu}s_{R})|0 \rangle \quad ; \quad \langle \mathcal{O}_{2}(\mu) \rangle \equiv \langle 0|(s_{L}s_{R})(\overline{d}_{R}d_{L})|0 \rangle \end{array}$

These D=6 vacuum condensates appear in the left-right correlator: $\Pi_{LR}^{\mu\nu}(q) \equiv 2i \int d^4x \, e^{iqx} \langle 0 | T(L^{\mu}(x), R^{\nu}(0)^{\dagger}) | 0 \rangle \equiv \left(-g^{\mu\nu}q^2 + q^{\mu}q^{\nu} \right) \, \Pi_{LR}(-q^2)$

CP Violation in Kaon Decays

A. Pich

n_f/N_C Correction to QCD PENGUIN

 $(m_q \rightarrow 0)$ (Hambye-Peris-de Rafael 03)

$$\operatorname{Im}(g_{3}) \doteq \operatorname{Im}[C_{6}(\mu)] \left\{ -16L_{5} \left(\frac{\langle \bar{q}q \rangle}{F^{3}} \right)^{2} + \frac{8n_{f}}{16\pi^{2}F^{4}} \int_{0}^{\infty} dQ^{2} Q^{D-2} \mathcal{W}_{DGRR}(Q^{2}) \right\}$$
$$\left(\frac{q^{\alpha}q^{\beta}}{q^{2}} - g^{\alpha\beta} \right) \mathcal{W}_{DGRR}(-q^{2}) = \int d\Omega_{q} d^{4}x d^{4}y d^{4}z e^{iqx} \langle T[(\bar{s}_{L}q_{R})(x)(\bar{q}_{R}d_{L})(0)(\bar{d}_{R}\gamma_{\alpha}u_{R})(y)(\bar{u}_{R}\gamma^{\alpha}s_{R})(z)] \rangle_{\operatorname{con}}$$

Infrared unstability from pion pole:

Available theoretical information:

(very poor)

$$\lim_{Q^2 \to \infty} Q^2 \mathcal{W}_{DGRR}(Q^2) = -\frac{F^4 \pi \alpha_s}{6Q^2} \left[1 - 16L_5 \left(\frac{\langle \bar{q}q \rangle}{F^3} \right)^2 \right]$$

$$\lim_{Q^2 \to 0} Q^2 \mathcal{W}_{DGRR}(Q^2) = \left(\frac{\langle \bar{q}q \rangle}{F^2}\right)^2 \left\{\frac{F^2}{8Q^2} - \left(L_5 - \frac{5}{2}L_3\right)\right\}$$

Big enhancement (\sim 3) claimed

Large non-factorizable contribution claimed before

(Bardeen et al, Bijnens-Prades)

Phenomenological $\mathbf{K} \rightarrow \pi \pi$ **Fit**

Cirigliano-Ecker-Neufeld-Pich

PDG + KLOE 02
$$[\Gamma(K_S \rightarrow \pi^+ \pi^-(\gamma) / \Gamma(K_S \rightarrow \pi^0 \pi^0)]$$

	LO-IC	LO-IB	NLO-IC	NLO-IB
Re g ₈	5.09 ± 0.01	5.11 ± 0.01	3.67 ± 0.14	3.65 ± 0.14
Re g ₂₇	0.294 ± 0.001	0.270 ± 0.001	0.297 ± 0.014	0.303 ± 0.014
$\chi_0 - \chi_2$	$(48.6 \pm 2.6)^{\circ}$	$(48.5\pm2.6)^\circ$	$(48.6 \pm 2.6)^{\circ}$	$(54.6 \pm 2.4)^{\circ}$

 $\mathsf{IC} \equiv [m_u - m_d = \alpha = 0] \qquad ; \qquad \mathsf{IB} \equiv [m_u - m_d \neq 0, \ \alpha \neq 0]$

 $\pi\pi \to \pi\pi$:

$$\delta_0 - \delta_2 = (47.7 \pm 1.5)^{\circ}$$

Colangelo–Gasser–Leutwyler '01

Before KLOE 02 $(\chi_0 - \chi_2)_{\text{LO} - \text{IC}} = 57^{\circ}$

UNITARITY TRIANGLE CONSTRAINTS

Future Kaon Initiatives

Flavour Physics

A. Pich – Super B 2007

Plans for $K^+ \rightarrow \pi^+ \overline{\nu} \nu$

- J-PARC: Lol; plans to use the BNL-E949 detector
- CERN: P-326 ; about 80 SM events in two years

Plans for $K_L \rightarrow \pi^0 \overline{\nu} \nu$

- KEK: E391a ; data taking completed (three runs)
 - Present limit < $2.1 \ 10^{-7} \ 90\% \ CL$ (10% of Run-1 data)
 - Aims to reach the Grossman-Nir bound ($\sim 10^{-9}$)
- J-PARC: proposal (>2010)
 - Step I: E391a detector at J-PARC ~ SM sensitivity
 - Step II: New detector & dedicated beam-line ~ 100 SM events
- CERN: would need an upgraded proton complex
 A. Pich Super B 2007
 A. Pich Super B 2007

