

1951-23

Workshop on the original of P, CP and T Violation

2 - 5 July 2008

Impact of Non-Standard Interactions on Neutrino Physics

Manfred B. LINDNER Max-Planck-Institute for Nuclear Physics, Saupfercheckweg 1, D-69117

> Heidelberg Germany

Impact of Non-Standard Interactions on Neutrino Physics

The larger Picture: GUTs

Learning about Flavour from Neutrinos

History: Elimination of SMA

Mechanisms for large mixings:

- → sequential dominance
 → type II see-saw
 → Dirac screening
 → ...
- ➔ generically 3 large/sizable mixings

Next: Smallness of θ_{13} **and maximal** θ_{23}

what if θ₁₃ is very tiny?
or if θ₂₃ is very close to maximal?
→ numerical coincidence?
→ special reasons (symmetry, ...)
answered by coming experiments

θ_{13} Sensitivity Versus Time

M. Lindner

Flavour Unification

- so far no understanding of flavour, 3 generations
- apparant regularities in quark and lepton parameters
- → flavour symmetries (finite number for limited rank)
- → symmetry not texture zeros

Examples:

GUT \otimes Flavour Unification

→ GUT group ⊗ flavour group

<u>example:</u> SO(10) \otimes SU(3)_F

- SSB of SU(3)_F between Λ_{GUT} and Λ_{Planck}
- all flavour Goldstone Bosons eaten
- discrete sub-groups survive ←→SSB e.g. Z2, S3, D5, A4
 - ➔ structures in flavour space
 - ➔ compare with data

 $\mbox{GUT}\otimes\mbox{flavour}$ is rather restricted

←→ small quark mixings *AND* large leptonic mixings ; quantum numbers

→ so far not many viable models, e.g.

Cai and Yu, Hagedorn, ML and Mohapatra, Chen and Mahantappa, King, Ross, ...

→ rather limited number of possibilities; phenomenological success non-trivial

→ aim: distinguish models further by future precision

Could we be on the wrong track?

- Top-down approach
 - tries to solve problems, be complete, ...
 - looks promising, aesthetical, predictions...
- Bottom-up
 - parametrize unknown physics

• Options:

- is the low energy field content complete?
 - \rightarrow e.g. sterile v's, ...
- are the underlying concepts correct?
 - → d=4, ...
- QFT with known LE particle content: higher dimensional Operators from integrating out heavy unknown physics

Adding Neutrino Mass Terms

Renormalizable mass terms require new fields:

1) Simplest possibility: add 3 right handed neutrino fields

Other Neutrino Mass Operators

<u>3) Both v_R and new Higgs triplets \Delta_L:</u>

 $\Rightarrow \text{ see-saw type II} \qquad \mathbf{m}_{v} = \mathbf{M}_{L} - \mathbf{m}_{D} \mathbf{M}_{R}^{-1} \mathbf{m}_{D}^{T}$

4) No new fields: Higher dimensional operators: d=5, ...

other higher dimensional operators!?

NSI Operators

- Good reasons for physics beyond the $SM + \nu$'s
 - → expect effects beyond 3 flavours in many models
 - → effective 4f operators = Non Standard Interactions=NSIs
- integrating out heavy physics

$$\mathcal{L}_{NSI} \simeq \epsilon_{\alpha\beta} 2\sqrt{2} G_F(\bar{\nu}_{L\beta} \ \gamma^{\rho} \ \nu_{L\alpha})(\bar{f}_L \gamma_{\rho} f_L)$$

Grossman, Bergmann+Grossman, Ota+Sato, Honda et al., Friedland+Lunardini, Blennlow+Ohlsson+Skrotzki, Huber+Valle, Huber+Schwetz+Valle, Campanelli+Romanino, Bueno et al., Kopp+ML+Ota, ...

M. Lindner

Contributions to 0\nu\beta\beta Decay

Alternative ways to generate neutrino-less double beta decay: Majorana v's, LR, RPV-SUSY, $\dots \rightarrow$ other \mathcal{L} operators $\leftarrow \rightarrow$ NSI's

Schechter+Valle:

L violating operator \rightarrow radiative mass generation \rightarrow Majorana nature of v's However: This may only be a tiny correction to a much larger Dirac mass term

Comments:

- HM claim disputed, but what if right?
- reliability of cosmological results
- 0vββ signal from *some other* new BSM lepton number violating operator
 - → very promising interplay of neutrino mass determinations, cosmology, LHC, LVF experiments and theory

Lepton Flavour Violation

- Majorana neutrino mass terms
- •••
- **R-parity violating supersymmetry** Hall+Kosteleck+Rabi, Borzumati+Masiero, Hisano+Tobe, Casas+Ibarra, Antusch+Arganda+Herrero+Teixeira, Joaquim+Rossi, ...
- →LFV and leptonic CP violation can even exist for m_v→0
- → e.g. modifications of correlations between μ⁻ → e⁻γ decay and nuclear μ⁻ → e⁻ conversion MEG: 10⁻¹³ PRISM: 10⁻¹⁸

→<u>interplay:</u>v's – LFV - LHC

M=1TeV, best fit oscillation paramaters

Deppisch+Kosmas+Valle

NSIs & Oscillations

Future precision oscillation experiments:

- must include full 3 flavour oscillation probabilities
- matter effects
- define sensitivities on an event rate basis
 - ➔ Simulations with GLoBES

Source	⊗ Oscillation	⊗ Detector
- neutrino energy E - flux and spectrum - flavour composition - contamination - symmetric $\nu/\overline{\nu}$ operatio	 oscillation channel realistic baselines MSW matter pro degeneracies on - correlations 	els - effective mass, material - threshold, resolution ofile - particle ID (flavour, charg event reconstruction,) - backgrounds - x-sections (at low E)

precision experiments might see new effects beyond oscillations → NSIs!

NSIs interfere with Oscillations

<u>note:</u> interference in oscillations $\sim \epsilon \quad \bigstar \quad FCNC \text{ effects } \sim \epsilon^2$

Physics Potential with NSIs included

Perform physics potential simulations

- full osciallation framework
- plus NSIs

→4 possibilities for flavour transition:

- Oscillation
- NSI operator at source
- NSI operator at detector
- NSI effects in propagation

important: sensitivity limit comes from few events (small statistics)

- → no capability to resolve characteristic L/E dependence of oscillation
- → potential misinterpretation of NSI flavour transition effects

potential consequences:

- offsets in parameter determinations
- conflicting data

NSIs in Oscillation Experiments

Possible consequences in oscillation experiments:

- Poor quality of standard oscillation fit (⇒ Detection of NSI possible)
- Offset: Wrong reconstruction of neutrino mixing parameters
- Mismatch between standard oscillation fits to different experiments

NSI: Offset and Mismatch in θ_{13}

Kopp, ML, Ota, Sato

M. Lindner

Relevant NSI Operators

$$\mathcal{L}_{\mathsf{NSI}} = \mathcal{L}_{V\pm A} + \mathcal{L}_{S\pm P} + \mathcal{L}_{T}$$

General Lorentz and flavour structure

$$\mathcal{L}_{V\pm A} =$$

$$\frac{G_F}{\sqrt{2}} \sum_{f,f'} \tilde{\epsilon}^{s,f,f',V\pm A}_{\alpha\beta} \left[\bar{\nu}_{\beta} \gamma^{\rho} (1-\gamma^5) \ell_{\alpha} \right] \left[\bar{f}' \gamma_{\rho} (1\pm\gamma^5) f \right]$$

$$+ \frac{G_F}{\sqrt{2}} \sum_{f} \tilde{\epsilon}^{m,f,V\pm A}_{\alpha\beta} \left[\bar{\nu}_{\alpha} \gamma^{\rho} (1-\gamma^5) \nu_{\beta} \right] \left[\bar{f} \gamma_{\rho} (1\pm\gamma^5) f \right]$$

$$+ \text{h.c.}$$

$$\mathcal{L}_{S\pm P} = \frac{G_F}{\sqrt{2}} \sum_{f,f'} \tilde{\epsilon}^{s,f,f',S\pm P}_{\alpha\beta} \left[\bar{\nu}_{\beta} (1+\gamma^5) \ell_{\alpha} \right] \left[\bar{f}' (1\pm\gamma^5) f \right],$$

$$\mathcal{L}_T = \frac{G_F}{\sqrt{2}} \sum_{f,f'} \tilde{\epsilon}^{s,f,f',T}_{\alpha\beta} \left[\bar{\nu}_{\beta} \sigma^{\rho\tau} \ell_{\alpha} \right] \left[\bar{f}' \sigma_{\rho\tau} f \right].$$

Reactor source and detector (f = u, f' = d)

	Source			Detector		
	$\ell_{\alpha} = e$	$\ell_{\alpha} = \mu$	$\ell_{\alpha} = \tau$	$\ell_{\alpha} = e$	$\ell_{\alpha} = \mu$	$\ell_{\alpha} = \tau$
V - A	\checkmark	no μ production	no τ production	✓	no μ production	no τ production
V + A	\checkmark	no μ production	no τ production	\checkmark	no μ production	no τ production
S-P	strong constraints	no μ production	no τ production	strong constraints	no μ production	no τ production
S + P	strong constraints	no μ production	no τ production	strong constraints	no μ production	no $ au$ production
T	strong constraints	no μ production	no τ production	strong constraints	no μ production	no τ production

Superbeam source and detector (f = u, f' = d)

	Source			Detector		
	$\ell_{\alpha} = e$	$\ell_{\alpha} = \mu$	$\ell_{\alpha} = \tau$	$\ell_{\alpha} = e$	$\ell_{\alpha} = \mu$	$\ell_{\alpha} = \tau$
V-A	no e production	√	no τ production	✓	\checkmark	no τ detection
V + A	no e production	✓	no τ production	\checkmark (mild supp.)	√(mild supp.)	no τ detection
S-P	no e production	\checkmark	no τ production	strong constraints	chiral supp.	no τ detection
S + P	no e production	√	no τ production	strong constraints	chiral supp.	no τ detection
T	no e production	no P -odd part	no τ production	strong constraints	chiral supp.	no τ detection

Propagation (f = e, u, d)

V - A	√
V + A	\checkmark

Table I: Classification of the vertices from Eqs. (4) – (6) according to their impact on reactor and superbeam experiments. Terms marked with \checkmark can give a sizeable contribution; for all other terms, the reason for their suppression is given (see text for details).

M. Lindner

NSI in the NuFact appearance Channel

- Standard path (suppressed by θ_{13}): $\mu^+ \rightarrow \nu_e \xrightarrow{\theta_{13}} \nu_\mu \rightarrow \mu^-$
- Assume $\varepsilon \sim \theta_{13}$
- NSI paths with same level of suppression as standard path:

$$\mu^{+} \to \nu_{e} \xrightarrow{\varepsilon_{e\mu}^{m}} \nu_{\mu} \to \mu^{-}$$
$$\mu^{+} \to \nu_{e} \xrightarrow{\varepsilon_{e\tau}^{m}} \nu_{\tau} \xrightarrow{\theta_{23}} \nu_{\mu} \to \mu^{-}$$

NSI in the NuFact disappearance Channel

- Standard path (unsuppressed): $\mu^+ \rightarrow \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} \rightarrow \mu^+$
- Dominant NSI paths:

$$\begin{split} \mu^{+} &\to \bar{\nu}_{\mu} \xrightarrow{\varepsilon_{\mu\mu}^{m}} \bar{\nu}_{\mu} \to \mu^{+} \\ \mu^{+} &\to \bar{\nu}_{\mu} \xrightarrow{\theta_{23}} \bar{\nu}_{\tau} \xrightarrow{\varepsilon_{\tau\tau}^{m}} \bar{\nu}_{\tau} \xrightarrow{\theta_{23}} \bar{\nu}_{\mu} \to \mu^{+} \\ \mu^{+} &\to \bar{\nu}_{\mu} \xrightarrow{\varepsilon_{\mu\tau}^{m}} \bar{\nu}_{\tau} \xrightarrow{\theta_{23}} \bar{\nu}_{\mu} \to \mu^{+} \end{split}$$

Modified Oscillation Probabilities

Standard Oscillations

$$P_{\nu_{\alpha} \rightarrow \nu_{\beta}} = |\langle \nu_{\beta} | e^{-iHL} | \nu_{\alpha} \rangle|^2$$

Oscillations with neutral current NSI

$$P_{\nu_{\alpha}^{s} \to \nu_{\beta}^{d}} = |\langle \nu_{\beta}|e^{-i(H+V_{\text{NSI}})L}|\nu_{\alpha}\rangle|^{2}$$
$$V_{\text{NSI}} = \sqrt{2}G_{F}N_{e}\begin{pmatrix}\varepsilon_{ee}^{m} & \varepsilon_{e\mu}^{m} & \varepsilon_{e\tau}^{m}\\\varepsilon_{e\mu}^{m*} & \varepsilon_{\mu\mu}^{m} & \varepsilon_{\mu\tau}^{m}\\\varepsilon_{e\tau}^{m*} & \varepsilon_{\mu\tau}^{m*} & \varepsilon_{\tau\tau}^{m}\end{pmatrix}$$

Analytic Expression for $P_{e\mu}$ with $|e_{e\tau}^{m}|$

$$\begin{split} P_{e\mu}^{\mathrm{NSI}} \simeq P_{e\mu}^{\mathrm{SO}} &- 2 \left| \varepsilon_{e\tau}^{m} \right| \sin 2\theta_{13} \sin 2\theta_{23} s_{23} \sin(\delta_{\mathrm{CP}} + \phi_{e\tau}^{m}) \mathcal{F}^{\mathrm{MB}} \mathcal{F}^{\mathrm{Res}} \sin \Delta \\ &- 2 \left| \varepsilon_{e\tau}^{m} \right| \sin 2\theta_{13} \sin 2\theta_{23} s_{23} \cos(\delta_{\mathrm{CP}} + \phi_{e\tau}^{m}) \mathcal{F}^{\mathrm{MB}} \mathcal{F}^{\mathrm{Res}} \cos \Delta \\ &+ 4 \left| \varepsilon_{e\tau}^{m} \right| \sin 2\theta_{13} c_{23} s_{23}^{2} \cos(\delta_{\mathrm{CP}} + \phi_{e\tau}^{m}) \hat{A} \left(\mathcal{F}^{\mathrm{Res}} \right)^{2} \\ &- 2 \left| \varepsilon_{e\tau}^{m} \right| \alpha \sin 2\theta_{12} \sin 2\theta_{23} c_{23} \sin \phi_{e\tau}^{m} \mathcal{F}^{\mathrm{MB}} \mathcal{F}^{\mathrm{Res}} \sin \Delta \\ &+ 2 \left| \varepsilon_{e\tau}^{m} \right| \alpha \sin 2\theta_{12} \sin 2\theta_{23} c_{23} \cos \phi_{e\tau}^{m} \mathcal{F}^{\mathrm{MB}} \mathcal{F}^{\mathrm{Res}} \cos \Delta \\ &- 4 \left| \varepsilon_{e\tau}^{m} \right| \alpha \sin 2\theta_{12} s_{23} c_{23}^{2} \cos \phi_{e\tau}^{m} \frac{1}{\hat{A}} \left(\mathcal{F}^{\mathrm{MB}} \right)^{2} \\ &+ 4 \left| \varepsilon_{e\tau}^{m} \right|^{2} c_{23}^{2} s_{23}^{2} \hat{A}^{2} \left(\mathcal{F}^{\mathrm{Res}} \right)^{2} \\ &- 2 \left| \varepsilon_{e\tau}^{m} \right|^{2} \sin^{2} 2\theta_{23} \hat{A} \mathcal{F}^{\mathrm{MB}} \mathcal{F}^{\mathrm{Res}} \cos \Delta \\ &+ 4 \left| \varepsilon_{e\tau}^{m} \right|^{2} s_{23}^{2} c_{23}^{2} \left(\mathcal{F}^{\mathrm{MB}} \right)^{2}. \end{split}$$

$$\begin{split} \hat{A} &\equiv \pm a_{\rm CC} / \Delta m_{31}^2 = \pm 2\sqrt{2}EG_F N_e / \Delta m_{31}^2, \\ \Delta &\equiv \Delta m_{31}^2 L / 4E, \\ \mathcal{F}^{\rm Res} &\equiv \sin[(1 - \hat{A})\Delta] / (1 - \hat{A}), \\ \mathcal{F}^{\rm MB} &\equiv \sin(\hat{A}\Delta) = \sin\left(\pm \frac{G_F}{\sqrt{2}} N_e L\right). \end{split}$$

Vacuum oscillation phase Maximal at matter resonance

Matter potential

Vanishes at magic baseline

Optimization of Muon Energy

 E_μ = 25 GeV is optimal. (E_μ > 25 GeV → no significant improvement E_μ < 25 GeV → sensitivity decreases dramatically)
 Silver channel only useful at E_μ ≫ 25 GeV.

Kopp, Ota, Winter

Conclusions

- Neutrino physics carries important flavour information
 - large mixings $\leftarrow \rightarrow$ small quark mixings
 - tiny θ_{13} and/or maximal θ_{23} could be hints for symmetries
- Good reasons for unifications
 - GUTs
 - horizontal flavour symmetries
 - GUT x flavour
- Parametrize unknown new physics as NSIs
 - effects in $0\nu\beta\beta$ decay
 - effects in LFV
 - interference terms in oscillations: limits or discovery potential
- Interesting potential from interplay of neutrino physics, LHC and LFV