



1951-31

#### Workshop on the original of P, CP and T Violation

2 - 5 July 2008

Experimental searches for mirror matter

Sergei GNINENKO RAS, Institute for Nuclear Research 60th October Anniversary Avenue Prospect 7A 117312 Mosocw Russia

# Experimental searches for mirror matter

S.N. Gninenko INR Moscow

## Workshop on origin of P, CP and T violation July 2-5, 2008 Trieste, Italy

S.N. Gninenko(INR)

- Experimental searches for mirror matter -

mirror matter model

□ searches at low energies

- Ps Ps` oscillations (focus of the talk)
- n-n` transitions ( Berezhani, this workshop)

□ searches at LHC

- H-H`mixing (Chacko, this workshop)

□ Summary

P violation: two classes of models

Great mistery: why only left-handed fermions feel week interactions?

Wu et al.'56: decays of polarized  ${}^{60}Co > {}^{60}Ni e - v$ .

#### Left-right symmetric models-

Parity restoration at high energy scale > 1 TeV, New heavy right handed  $W_R$ LHC can probe  $W_R$  mass up to 3 TeV, (N.V.Krasnikov, this Workshop) however, already high limits on M( $W_R$ ): > 2.5 TeV from  $\Delta M_{K/B}$  and > 4 TeV from K0-decays (R.Mohapatra,X.Ji, this Workshop)

#### □ Mirror matter model -

So far no data confronting the model Effects of parity restoration can be directly observed at low energies in a table top experiment (a'la Wu)

## mirror matter (mm) model

#### $\Box$ old idea: P -> CP -> CPA symmetry

Nature is intrinsically L-R symmetric with L-R particle

- properties exchanged: V-A->V+A
- New CPA-sector must be hidden; connected to our world by gravity

Kobzarev, Okun, Pomeranchuk'65; Lee, Yang'56; Pavsic'74;

Blinnikov, Khlopov'83.

#### modern mm model -

based on minimal symmetry:

 $(SU(3)_C \times SU(2)_L \times U(1)_Y) \times (SU(3)_{CM} \times SU(2)_R \times U(1)_{YM})$ SM fermions and gauge bosons are accompanied by identical mirror partners

- mm must have different cosmology,
- is a good candidate for dark matter
- can be linked to string theory, extra dimen., ...

Foot, Volkas'91 Berezhiani, Mohapatra'95, Berezhiani et al.'00-08, Akhmedov, Senjanovic'92, .....

For review see: L.Okun hep-ph/0606202

S.N. Gninenko(INR) - Experimental searches for mirror matter -

## ordinary -mirror particle interaction

Conservation laws for ordinary matter and mirror matter prevent particles with colour and charge from interacting between two sectors.



But, interaction between colourless neutral particles is allowed: ordinary and hidden sectors can communicate trough mixing of H-H<sup>\*</sup>, kinetic mixing of photons, mass mixing between neutrinos, neutrons, etc...(Z.Berezhiani, this Workshop)



S.N. Gninenko(INR)

- Experimental searches for mirror matter -

## possible mm effects:

## Higgs mixing

Ignatiev, Volkas '01; Barbieri et al. '05, Wilczek' 07, Li et al. '07.....

### Ps-Ps` oscillations

Glashow '86, SG '95, Foot, SG '01; Atoyan et al. '89, Mitsui et al. '95, Badertsher et al. 07

#### $\Box$ n-n` mixing

Berezhiani, Bento '05; Pokotilovski '06, Ben et al.(PSI) '07, Serebrov et al. (PNPI) '07, Mohapatra et al. '05.

#### dark matter

DAMA '05; DAMA/LIBRA '07, Foot '01-07; Ignatiev,Volkas'03, Mitra'03-06,...

## $\Box$ v-v` mixing

Berezhiani, Mohapatra '95, Foot, Volkas '00; Mohapatra, Nasri '05

## cosmology

Blinnikov, Khlopov'82,83, Khlopov'91,00, Berezhiani'95-08, Ciarcelluti'03-05,....

## Image: Image:

Holdom '85; Ignatiev '91; Gninenko et al.'07....

## □ anomalous events, .....

Foot, Silagadze'01-05, Foot,Mitra'02-03,...

## $\gamma$ - $\gamma$ ` kinetic mixing



 $\Box$  new mass eigenstates: oPs± = (oPs±oPs`)/ $\sqrt{2}$ 

**u** energy splitting:  $\Delta E = 2\epsilon f$ , f=8.4x10<sup>4</sup> MHz from oPs-pPs splitting

□ oscillation probability:  $P(oPs-oPs)(t)=sin^2(2\pi\epsilon ft)$ 

Holdom'86, Glashow '86

S.N. Gninenko(INR) - Experimental searches for mirror matter - Trieste, July 2008

Experimental signatures for oPs-oPs' oscillations

- modification of oPs decay curve very difficult to measure, high statistics required
- OPs`-> 3γ' -> invisible decay more convenient: few events need to be observed

Branchnig ratio in vacuum:

$$Br(oPs \rightarrow invisible) = \frac{2(2\pi\varepsilon f)^2}{\Gamma_{SM}^2 + 4(2\pi\varepsilon f)^2}; t \gg \frac{1}{\Gamma_{SM}}$$

in a target (in presence of collisions):

$$Br(oPs \rightarrow invisible) \simeq \frac{2(2\pi \varepsilon f)^{2}}{\Gamma_{SM}}; t >> \frac{1}{\Gamma_{COLL}};$$
  
SG'95, Foot and SG '00 Suppression factor

S.N. Gninenko(INR)

- Experimental searches for mirror matter -

#### Positronium decays in the SM

□ parapositronium g.s.: L=0, S=0, pPs-> 2, 4, ...  $\gamma$ ,  $\tau$ ~10<sup>-10</sup> s

- □ orthopositronium g.s.: L=0, S=1, oPs-> 3, 5, ...  $\gamma$ ,  $\tau$ ~10<sup>-7</sup> s
- OPs-->2γ forbidden
- Br (pPs-->4γ)~ Br(oPs-->5γ)~10<sup>-6</sup>

 $\Box$  e<sup>+</sup> + e<sup>-</sup> + M ->  $\gamma$  + M or e<sup>+</sup> + e<sup>-</sup> + M -> M\* are small

□ Br(oPs--> invisible)<~10<sup>-18</sup> is extremely small

Only 𝔅, 𝔅, 𝔅, 2, 3, ¼, ..gamma in the final state. for Br(oPs--> anything)>~10<sup>-5</sup> 9

#### o-Ps decay rate puzzle (1982-2002) History of oPs decay rate measurements



Discrepancy  $\Gamma_{exp} > \Gamma_{SM}$ : -unknow contribution at the level Br(oPs->X)~10<sup>-3</sup> or

- experimental problems

Tokyo measurements (oPs formation in target) and Ann Arbor experiment (oPs formation in vacuum,) agree to each other and also agree with QED predictions



#### **Experimental setup**

#### spectrum from Ge detector

oPs formation and decay in a 0.1 g/cm<sup>3</sup> dense target ~10<sup>4</sup> collisions/lifetime results in pick off rate: e+e- + (e-M)-> e- + (e+e- ->  $2\gamma$ )+ M ~10<sup>-2</sup>  $\Gamma_{oPs}$  and suppression of oPs-oPs' transitions

Asai et al.'08

S.N. Gninenko(INR)

Discrepancy triggers searches for new physics.

all exotic modes oPs-> wrong number of photons : 0,1, 2, 4.... are excluded at the level  $Br < ~10^{-5}$ . However, measurements are performed whith oPs formation in a target, i.e. oscillations oPs-oPs' are suppressed and cannot contribute through oPs-> invisible, hence no constraint on oPs->invisible through mirror oscillations.

Experiments that agree with QED predictions,

-Tokyo measurements are not sensitive to mirror effect: oscillations oPsoPs' are suppressed and cannot contribute to the decay rate - Ann Arbor vacuum experiment: small cavity size is used and oPs collisions with the cavity walls may dump oscillations.

-In addition.....

#### more interesting observation:

- two Ann Arbor vacuum experiments with big and small cavities disagree:
  oPs decay rate for big cavity measurements is higher ~10<sup>-3</sup>
- if "acceleration" of oPs decay is due to a SM process, e.g. due to oPs positron annihilation with wrong electron (pick off process) or due to oPs-pPs mixing,

#### then

-  $2\gamma$  (511 keV line) must be seen in the final state in the big cavity experiment in addition to the main spectrum from oPs-> 3  $\gamma$  !

#### Two Ann Arbor experiments on oPs decay rate in vacuum

 $arGamma_{ ext{exp}} > arGamma_{ ext{SM}}$ 

$$\Gamma_{\rm exp} = \Gamma_{\rm SM}$$



# in the SM oPs can decay faster only due to additional SM 2γ annihilation process, i.e.

- pick-off annihilation, or
- oPs-pPs mixing (external fields)

#### Search for 511 keV line.

 $arGamma_{ ext{exp}} > arGamma_{ ext{SM}}$ 





# check presence of $2\gamma$ (511 keV line) with intensity ~10<sup>-3</sup> of the total rate

S.N. Gninenko(INR)

- Experimental searches for mirror matter -

#### No 511 keV line - hint for mirror matter ?

VOLUME 66, NUMBER 10 PHYSICAL REVIEW LETTERS

11 MARCH 1991

#### Direct Search for Two-Photon Decay Modes of Orthopositronium

D. W. Gidley, J. S. Nico, and M. Skalsey Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (Received 13 December 1990)

A direct search for  $\gamma$  rays from the forbidden decay o-Ps  $\rightarrow$  2y has been performed using the same apparatus that recently measured an anomalously high o-Ps decay rate. Using a high-resolution Ge  $\gamma$ -ray detector, a 233-ppm limit is set on the branching ratio to a pair of 511-keV  $\gamma$  rays, and a 200-ppm limit is set on the branching ratio to a pair of 512-keV. Hence, these 2 $\gamma$  modes cannot be responsible for the o-Ps decay-rate discrepancy between theory and experiment of 1400  $\pm$  230 ppm.

PACS numbers: 36.10.Dr, 11.30.-j, 12.20.Fv



16

#### What size $\varepsilon$ , if oPs escapes to mirror world?

 $\Delta\Gamma(oPs \rightarrow invisible) = \Gamma_{EXP} - \Gamma_{SM}$  $\Delta\Gamma(oPs \rightarrow invisible) \simeq 10^{-3}$  $\Delta\Gamma(oPs \rightarrow invisible) = \frac{2(2\pi\varepsilon f)^2}{\Gamma_{ov}\Gamma_{ov}}$  $\Gamma_{COLL} \simeq 3 \Gamma_{SM}$  $\varepsilon \simeq (5 \pm 1) \times 10^{-7}$ 

S.N. Gninenko(INR)

- Experimental searches for mirror matter -

# Existing limits on $\boldsymbol{\epsilon}$

□  $\epsilon < \sim 10^{-5}$  from milli-charged particle searches SLAC'01

□ ε< 10<sup>-8</sup> Tokyo group claim. However, suppression due to collisions are not considered.
 ε< ~10<sup>-6</sup> after correction. → Br(oPs->inv)<~ 10<sup>-2</sup>

Mitsui et al. '93; SG '95;

 $\Box \ \varepsilon < 3x10^{-8} \text{ from BBN} \qquad \Longrightarrow \ Br(oPs->inv) <~ 10^{-6}$ 

Glashow, Carlson'87;

□  $\epsilon \sim 4x10^{-9}$  from DAMA, DAMA/LIBRA observation of modulation  $\implies$  Br(oPs->inv)~ 10^{-7}-10^{-8} Foot'01-08;

## Program of experiments

- search for oPs escape into extra dimensions
  sensitivity in Br~ 10<sup>-8</sup> 10<sup>-9</sup>
- 2. measurements of free gravity fall of antihydrigen (and positronium), very cold < 10 mK Rydberg oPs formation is required</p>
  - tests of mirror matter effect in oPs decays well fit into this program

#### Moscow experiment on o-Ps->invisible

"A search for photonless annihilation of orthopositronium," Atoyan, SG, Razin, Ryabov, Phys. Lett. B 220, 317 (1989). LEP Z->*invisible* 

- Radioisotope Ps source (<sup>22</sup>Na)
- Generate trigger on <sup>22</sup>Na decay (positron + 1.2 MeV photon)
- Detect energy of all e+ annihilations
- Subtract p-Ps ->  $2\gamma$  events in Nal spectrum
- "Difference of two large numbers" problem
- Statistics, background limited





Fig. 1. Schematic view of the set-up: (1): Nal calorimeter; (2): Nal counter (3): target; (4): proportional counter; (5): the positron source <sup>22</sup>Na.

$$\frac{\Gamma(O - Ps \rightarrow nothing)}{\Gamma(O - Ps \rightarrow 3\gamma)} < 5.8 \times 10^{-4}$$

Cannot be resnonsible for o-Ps decay rate anomaly.

S.N. Gninenko(INR)

- Experimental searches for mirror matter -

#### Tokyo experiment on o-Ps -> invisible

- Radioisotope source: 22Na
- Composite trigger: (e+) & (1275 keV)
- 840 kg calorimeter mass
- "High resolution" 1275 keV trigger
- Statistics, PMT noise limited

T. Mitsui et al., PRL 70, 2265 (1993).

$$\frac{\Gamma(O - Ps \rightarrow \text{nothing})}{\Gamma(O - Ps \rightarrow 3\gamma)} < 2.8 \times 10^{-6}$$



FIG. 1. Schematic of the experimental setup.

S.N. Gninenko(INR)

#### ETH-INR-LAPP experiment on o-Ps -> invisible



# oPs target



#### Photograph of the calorimeter (assembling phase)



S.N. Gninenko(INR)



#### Picture of the lab





## Signal selection

#### **Charged particle VETO**



#### Rejection of shake-off electrons

The atomic shell electrons ejected in the EC process are a source of background. The ejection probability decreases strongly with the energy of the ejected electrons thus a cut on the energy deposited in the fiber can suppress this background to the required level of 10<sup>-0</sup>.

The probability for the atomic shell electrons to be ejected in the EC process was measured as a function of the energy deposited in the fiber.



#### Fiber energy spectroscopy

The energy is read with the FBGO through the aerogel and a hole in the wrapping using the BGO as a light guide.



# Data selection



S.N. Gninenko(INR)

- Experimental searches for mirror matter -

#### **Background estimation**

The table summarizes the expected background for the experiment estimated from the simulation and the measurement of the shake-off probability

| BACKGROUND<br>SOURCE                       | EXPECTED<br>LEVEL                        |                |
|--------------------------------------------|------------------------------------------|----------------|
| Hermiticity<br>Dead Material<br>Resolution | < 10 <sup>-9</sup>                       |                |
| Absorption in trigger<br>Energy window     | < 10 <sup>-9</sup>                       |                |
| MS positron<br>546 keV                     | < 10 <sup>-9</sup>                       | Most dangerous |
| MS positron<br>1.83 MeV                    | < 10 <sup>-9</sup>                       | background     |
| Compton EC photon                          | < 10 <sup>-9</sup>                       | 1              |
| Accidental noise and EC photon             | $3.2 \times 10^{-11}$                    | 1              |
| Source contamination<br>and EC photon      | < 1.6 × 10 <sup>-10</sup>                |                |
| Shake-off electrons<br>in EC process       | $\simeq 10^{-8}$ (for 140 keV threshold) |                |
| Physical backgrounds                       | 10-10                                    |                |
| Total                                      | ≃ 10 <sup>-8</sup>                       |                |

#### **Results** A.Baderscher et al., PRD(2007)

| DATA            | Air                  | Nitrogen              | Combined              |
|-----------------|----------------------|-----------------------|-----------------------|
| Fiber triggers  | $0.6 \times 10^{10}$ | $0.79 \times 10^{10}$ | $1.39 \times 10^{10}$ |
| Selected events | $0.61 \times 10^{8}$ | $0.8 \times 10^{8}$   | $1.41 \times 10^{8}$  |
| o-Ps fraction   | 3.41 %               | 5.29 %                | 4.48 %                |
| Number of o-Ps  | $2.08 \times 10^{6}$ | $4.23 \times 10^{6}$  | $6.31 \times 10^{6}$  |

After the selection cut one can perform the sum of the

total energy in the calorimeter

 $E_{tot} = \sum_{i}^{all} E_i - E_{TBGO}$ 

Data taking period: 4.5 months 1.39x10<sup>10</sup> triggers



Since no event is observed in the signal region, this result provides an upper limit on the o-Ps -> invisible

 $Br(o - Ps \rightarrow invisible) = 2.3/(N_{o-Ps} \cdot \epsilon) \le 4.2 \times 10^{-7}$ 

$$Br(p - Ps \to invisible) = 2.3/(N_{p-Ps} \cdot \epsilon) \le 4.3 \times 10^{-7} (90\% \text{ C.L.})$$
$$Br(e^+e^- \to invisible) = 2.3/(N_{e^+e^-} \cdot \epsilon) \le 2.1 \times 10^{-8} (90\% \text{ C.L.})$$

factor ~7 better than Tokyo result

S.N. Gninenko(INR)

- Experimental searches for mirror matter -

# New limit on $\boldsymbol{\epsilon}$

**α** ε< (1.6 - 3)x10<sup>-7</sup>

Main uncertainty from collision rate of oPs in the aerogel target:  $\varepsilon \sim (5 \pm 1) \times 10^{-7}$  cannot be reliably excluded. still could be Br(oPs->inv)~ 10<sup>-3</sup>

Badertsher et al.'07;

□ vacuum experiment is needed

## How to search for hidden world with oPs?



Cortesy New Scientists, 2004.

S.N. Gninenko(INR)

- Experimental searches for mirror matter -

# Search for mirror matter via o-Ps->invisible decays in vacuum

"An apparatus to search for mirror dark matter via the invisible decay of orthopositronium in vacuum," SG'03, Badertscher *et al.'03* 





cold oPs formation in vacuum: minimum collisions, enough time for oscillations, minimize leak through entrance window

- □ e+ tagging system: timing coincidence of e+ bunch and MCP signal from secondary e-'s emission, inefficiency < 1.e-8
- pulsed slow positron beam: high efficiency & compression factor
- hermetic calorimeter in magnetic field
- very thin vacuum pipe
- □ expected sensitivity in Br(oPs->inv) ~ 10<sup>-8</sup>

#### cold Ps formation target





Ps formation in porous Si films to minimize the leak.



Figure 4 Typical Ps lifetime spectra for a film with open porous network (black) and after capping (red).



FIG. 2. The energy distribution of *o*-Ps emitted from a typical porous silica film. Note that higher energy positrons implanted more deeply (solid circles) in the film produce more thermalized *o*-Ps with fewer events in the epithermal tail.

S.N. Gninenko(INR)

Trieste, July 2008



#### Results on positron pulse width

Alberola et al., Nucl. Instr. Method A 560 (2006) 224-232



## positron tagging system

#### expected inefficency < $10^{-8}$ , $\Delta t$ =start-stop~ $10^{-9}$ sec



S.N. Gninenko(INR)



- Experimental searches for mirror matter -

Trieste, July 200010 3

Cross-check of oPs disappearance



 $\Delta n = n_{p1}(E < E_{thr}) - n_{p2}(E < E_{thr})$ 

no 0-peak if "bad" vacuum

S.N. Gninenko(INR)

Trieste, July 2008



S.N. Gninenko(INR)

Trieste, July 2008

# Search for n-n` oscillations

**Given the set of the** 

□ the small mass n-n`mixing could have direct consequences for the propagation of ultra-high energy cosmic rays at cosmological distances (GZK cut off) Oscillations could be fast  $\tau \sim 1$  sec

Berezhiani, Bento '05;

- experimental technique: n decays in a trap:
  - no magnetic field
  - as less as posible collisions

Pokotilovski'06

## GZK cut off

Explanation with fast  $(T_{osc} \ll T_n)$  neutron – mirror neutron oscillations



#### **Proposal of PNPI for** $n \rightarrow n'$ **experiment**

Experiment for  $n \rightarrow n'$  oscillations can be realized using PNPI EDM spectrometer



 $\tau_{\text{storage H=0}}$  (without magnetic field)

 $\tau_{\text{storage H}\neq 0}$  (with magnetic field)

 $\Delta \tau = \tau_{\text{storage H}\neq 0} - \tau_{\text{storage H}=0} = (\neq)0$  It is the main question

A.Serebrov Talk at B-L Workshop'07

S.N. Gninenko(INR)

- Experimental searches for mirror matter -

#### Scheme of experimental installation to search for n-n' transitions



1: UCN input guide; 2: UCN storage chamber; 3: magnetic shielding; 4: solenoid; 5-6: UCN detectors; 7-9: valves; 10: Cs-magnetometers, 11: monitor detector, 12: entrance valve.



Count rates of UCN detectors (5 and 6) in log scale during measurements. The filling time is 100 s. Holding times were  $t_1 = 50$  s and  $t_2 = 470$  s. Empting time is 150 s. The time of background measurement is 150 s. The region 3 in these plots is used to deduce the numbers  $N_1$  and  $N_2$  required for the determination of the storage time, respectively the ratio *R* (after background subtraction). This picture was obtained after 130 cycles.  $\tau_{\text{fill}} = 35$  s,  $\tau_{\text{emp}} = 30$  s after holding time 50 s,  $\tau_{\text{emp}} = 38$  s after holding time 470 s. **17** 

#### A.Serebrov Talk at B-L Workshop'07

S.N. Gninenko(INR)

# Present experimental status of n-n` mixing

U. Shmidt et al'07 (UFRM II, Munchen)  $\tau_{osc} > 2 s$ 

□ G. Ban et al.'07 (ILL, Grenoble)  $\tau_{osc} > 103 \text{ s}$ 

A.Serebrov et al. (ILL, Grenoble)

$$\tau_{\rm osc}$$
 > 414 s

Further improvement  $\tau_{osc} > 10^4$  sec

S.N. Gninenko(INR)

# Higgs:

<u>Higgs Boson</u>

Ordinary matter Higgs:  $\Phi_0 \sim (1,2,1)(1,1,0)$ 

Mirror matter Higgs:  $\Phi \sim (1,1,0)(1,2,1)$ 

The Z<sub>2</sub> symmetry implies an operator which transforms the two kinds of matter between each other,  $\Phi_0 \leftrightarrow \Phi$ `

interaction:  $L_{H-H} = \eta \phi^+ \phi \phi^{+} \phi^{+}$ 

two mass eigenstates are created by mixture of our Higgs field and the mirror field

$$\Phi_{\pm} = \frac{1}{\sqrt{2}} (\Phi_{O} \pm \Phi)$$

S.N. Gninenko(INR)

## Search for H-H`mixing

overall Higgs production rate now is devided between two channels instead of one channel with significance S (=Siganl/Noise) for the same running time one will get significance S/2

#### Higgs signal at LHC might be much weaker.

Foot, Lew, Volkas'Ignatiev, Volkas '95; Barbieri et al. '05; Wilczek '06, Zhu et al. '07

S.N. Gninenko(INR)

- Experimental searches for mirror matter -

#### SUMMARY

what is the origin of parity violation?
 50 years old question

experiments results

- on H-H` at LHC
- on n-n` and Ps-Ps` at low energies might give an answer to this question in the near future