

1951-4

Workshop on the original of P, CP and T Violation

2 - 5 July 2008

The Time Reversal Experiment with Kaons (TREK) at J-PARC

M. POSPELOV University of Victoria, Dept. of Physics & Astronomy Victoria, V8W 3P6, CANADA Workshop on the Origins of P, CP and T Violation, ICTP, Trieste, Italy, July 2-5, 2008

The Time Reversal Experiment with Kaons (TREK) at J-PARC

Michael Kohl <kohlm@jlab.org>

Hampton University, Hampton, VA, USA & Jefferson Lab, Newport News, VA, USA

T-violation in stopped-kaon decays

• Introduction: $\mathcal{P}P$, $\mathcal{T}(P_{\tau})$

- E-246 experiment at KEK Principle of experiment Present detector configuration
- Proposed experiment TREK/E06 at J-PARC Detector upgrade Sensitivity
- Schedule

C, P, and T

Before 1956:

All of nature's laws invariant under

- Charge conjugation
- Parity
- Time reversal

1956

- Parity violated in beta decay
- Combination C+P good symmetry
- T good, CPT good

1964 until today

- Parity violated in weak interaction
- CP violated in neutral K and B weak decays
- CPT good
- All observed CP violation allowed within SM through flavor mixing (CKM)
- Matter/Antimatter asymmetry lacks explanation (Sakharov)

Search for New Physics beyond the SM!

Direct CP violation and New Physics

- Focus on observables with SM≈0
- Electric dipole moments suppressed to 3rd order loop in SM n-EDM covers same parameter space as CP in neutral mesons (hadronic)

■ Charged mesons: Transverse polarization P_T in semileptonic decays $K^+ \rightarrow \mu^+ \pi^0 \nu$ (" $K_{\mu 3}$ ", BR=3.27%) $K^+ \rightarrow \mu^+ \gamma \nu$ (" $K_{\mu 2 \gamma}$ ", BR=0.55%) J.J. Sakurai PR109 (1958) 980 SM: $P_T < 10^{-7} (10^{-5})$ Exp.: $P_T < 5 \cdot 10^{-3} (90\% CL)$ Proposed: $P_T < 2 \cdot 10^{-4} (90\% CL)$

4

Transverse muon polarization

KEK-E246: $P_{\tau} = -0.0017 \pm 0.0023(stat) \pm 0.0011(sys)$ $(|P_{\tau}| < 0.0050 : 90\% C.L.)$ M. Abe et al., PRL83 (1999) 4253
M. Abe et al., PRL93 (2004) 131601
M. Abe et al., PRD72 (2006) 072005

5

New Physics: Model predictions of P_{T}

KEK-E246 J-P	ARC F.S.I.	S.M.
• •	lowed region	•
P_{T} 10 ⁻² 10 ⁻³	10 ⁻⁴ 10 ⁻⁵ 10	-6 -7 10
Model	$K^{+} \rightarrow \pi^{0} \mu^{+} \nu$	$K^+ \rightarrow \mu^+ \nu \gamma$
 Standard Model 	<10 ⁻⁷	<10 ⁻⁷
 Final State Interactions 	<10 ⁻⁵	<10-3
 Multi-Higgs 	$\leq 10^{-3} \leq P_T(K^+ \to \pi^0 \mu^+ \nu) \leq$	≤ 10 ⁻³ ≈ 3 <i>Ρ_T(K</i> + → μ+νγ)
 SUSY with squarks mixin 	$P_{T}(K^{+} \rightarrow \pi^{0}\mu^{+}\nu) \approx$	≤ 10 ⁻³ - 3 <i>Ρ_T(K</i> + → μ+νγ)
 SUSY with <i>R</i>-parity break Leptoquark model 	king $\leq 4 \times 10^{-4}$ $\leq 10^{-2}$	≤ <mark>3 x10⁻⁴</mark> ≤5 x10 ⁻³
 Left-Right symmetric mod 	del 0	< 7x10 ⁻³

New proposal of $P_T(K_{\mu 3})$ at J-PARC

- **Time Reversal Experiment with Kaons**
- TREK/E06: Upgrade of E246 setup
- Reduce systematic errors by factor ~>10

 alignment with data
 10⁻⁴
- Decrease statistical error by factor ~>20
 - 30x higher intensity at J-PARC 10-4
 - 10x larger polarimeter acceptance

KEK-PS E246 experiment: $K^+...\pi^0\mu^+\nu$ ($K_{\mu3}$)

- Stopped *K*⁺ decay at K5
- Superconducting Toroidal Spectrometer

E246: Superconducting toroidal magnet

E246: Active target and Csl calorimeter

E246: Muon polarimeter

Upgrade proposal

- Charged tracking:
 - Addition of a new element C1 between C2 and TGT/RNG
 - Replacement of previous C1 chamber by cylindrical GEM
 - Finer segmentation of TGT fiber; use of helium bags Readout: MPPC (SiPMT) or MA-PMT
- π^0 detection:
 - New, faster readout of CsI(TI): APD, MAPD
 - Operation of wave form analysis by FADC
- Muon polarimeter :
 - Active polarimeter
 - New magnet with a parallel field

Active Muon Polarimeter

- 10 times more acceptance
- Full angular acceptance for positrons
- Improved field alignment

TREK/E06 Tracking Upgrade

- Planar GEMs (C1) between CsI and C2
- Cylindrical GEM (C0) in replacement of former C1

<u>GEM technology:</u> In collaboration with Jefferson Lab, Hampton U. and MIT

Principle of GEM Detectors

- GEM = Gas Electron Multiplier introduced by F. Sauli in mid 90's, F. Sauli et al., NIMA 386 (1997) 531
- Copper layer-sandwiched kapton foil with chemically etched micro-hole pattern
 gas amplification in the hole

C0 Cylindrical GEM for TREK

- Vertex tracking near target, $\delta < 0.1$ mm
- Very high rate capability > 1 kHz/mm²
- Radiation-hardness >> 10⁷/mm²

Jlab/BoNuS: First cylindrical GEM

Barely off-shell Nuclear Structure

Prototype

Curved GEM foil

TREK/E06 GEM will have potential applications at Jefferson Lab 17

BoNuS

 Radial TPC (8-12 cm in./out. diameter 20cm active length)

 Ran in CLAS end of 2005

 Further development planned for Jlab-12 GeV

 \rightarrow Howard Fenker

Location of J-PARC

Hadron Experimental Hall

Schedule / Agenda 2013

Feb 2005:	New collaboration formed
	(Japan, Canada, USA, Russia and Vietnam)

- April 2006: Proposal submission
- July 2006: Review by PAC \rightarrow "stage-1" (scientific) approval

2007-2009:	R&D and experiment design phase J-Parc PS and HF start operating
2010-2011:	Kaon 0.8 beamline, experiment upgrade and commissioning
2011-2012:	Start of experiment (1 year)

2012-2013: Analysis and results

Summary

TREK (E-06) at J-PARC is taking off

- Measure T-violating transverse muon polarization in K_{μ3} decays
 - Large potential for discovery comparable to n-EDM
 - Upgrade of existing experimental setup of KEK/E-246

Sensitivity improved by factor 20 to ~10⁻⁴

Run in 2011/12