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Abstract. The emphasis of this short course is on fundamental properties of
developed turbulence, weak and strong. We shall be focused on the degree of
universality and symmetries of the turbulent state. We shall see, in particular, which
symmetries remain broken even when the symmetry-breaking factor goes to zero, and
which symmetries, on the contrary, emerge in the state of developed turbulence. In
particular, we describe how Schramm-Loewner Evolution (SLE) appears in turbulent
inverse cascades.

1. Introduction

We define turbulence as a state of a physical system with many interacting degrees of

freedom deviated far from equilibrium. This state is irregular both in time and in space

and is accompanied by dissipation.

Turbulence is a state of a continuous medium (or a system with many degrees

of freedom) deviated far from thermal equilibrium. That state is accompanied by

dissipation and needs an external pumping to sustain it. Developed turbulence

corresponds to the case when the scales of externally excited and effectively dissipated

motions are vastly different. For example, a moving car leaves behind meter-size vortices

while viscous friction is only effective for eddies smaller than a millimeter. Instabilities of

large vortices, their breakdown and fragmentation bring energy from input to dissipation

scales by a cascade: Big whirls have little whirls that feed on their velocity, and little

whirls have lesser whirls, and so on to viscosity (Richardson, 1922).

Cascade must be a natural state of any nonlinear system where input and output

are far away as long as the interaction is effectively local. Locality here means that

effective energy exchange between different modes goes to zero with the ratio of their

scales. Apart from energy, other quantities conserved by interaction can cascade too.

For example, during ore pulverization (when colliding stones are broken) mass cascades

towards smaller sizes, while in water droplet coagulation (say, in clouds) mass cascades

towards larger sizes. The cascade towards small scales is usually called direct while that

towards large scales is called inverse. If a system has more than one conservation law in

the absence of input and dissipation, then input at some scale can generate both direct

and inverse cascades simultaneously, as happens for two-dimensional vortex turbulence
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or wave turbulence on water surface. The interval of scales between input and output

is called inertial interval (or transparency window).

Developed turbulence contains many excited degrees of freedom and requires a

statistical description. Since most cases of turbulence involve many strongly interacting

degrees of freedom, they can be neither described theoretically nor satisfactory modelled

on computer. Therefore, a general symmetry aspects of turbulence statistics are of

prime importance. Pumping and dissipation usually break symmetries (isotropy, scale

invariance and time reversibility) and one asks if the symmetries are restored in the

inertial interval (so that some of the information on pumping is forgotten). Scale

invariance (or scaling) is particularly important to predict the properties of the scales

unresolved by modelling. One calls probability density function of the velocity difference

v measured at the distance r scale invariant if it is actually a function of a single

variable (rather than two): P (v, r) = f(v/ra)/v. One can use the cascade idea to

guess the scaling properties of turbulence. For incompressible fluid, the energy flux

(per unit mass) ε through the given scale r can be estimated via the velocity difference

δv measured at that scale as the energy (δv)2 divided by the time r/δv. That gives

(δv)3 ∼ εr. Of course, δv is a fluctuating quantity and we ought to make statements on

its moments or probability distribution P(δv, r). Energy flux constancy fixes the third

moment, 〈(δv)3〉 ∼ εr. It is a natural wish to have turbulence scale invariant in the

inertial interval so that P(δv, r) = (δv)−1f [δv/(εr)1/3] is expressed via the dimensionless

function f of a single variable. Initially, Kolmogorov made even stronger wish for the

function f to be universal (i.e. pumping independent). Nature is under no obligation

to grant wishes of even great scientists, particularly when it is in a state of turbulence.

After hearing Kolmogorov talk, Landau remarked that the moments different from third

are nonlinear functions of the input rate and must be sensitive to the precise statistics

of the pumping. As we show below, the cascade idea can indeed be turned into an

exact relation for the simultaneous correlation function which expresses the flux (third

or fourth-order moment depending on the degree of nonlinearity). The relation requires

the mean flux of the respective integral of motion to be constant across the inertial

interval of scales. Is it enough to know just the flux i.e. the input rate of energy

(or other quantity) in a statistical steady state? The answer on scale invariance and

universality is ”definitely no for direct cascades” and ”probably yes for inverse cascades”,

as discussed in more details below.

2. Burgers turbulence

Consider arguably the simplest hydrodynamic system. In the reference moving with

the sound velocity, weakly compressible 1d flows (u ¿ c) are described by the Burgers

equation (Landau and Lifshits 1987, E et al 1997, Frisch and Bec 2001):

ut + uux − νuxx = 0 . (1)

This equation can be also written for the potential h defined by u = ∇h, then it can

be considered in multi-dimensional versions as well when it describes surface growth,
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directed polymer etc. Such form

ht + (∇h)2/2− ν∆h = ξ (2)

is called Kardar-Parisi-Zhang (KPZ) equation when the driving forces is white both in

time and in space: 〈ξ(x, t)ξ(0, 0)〉 = Tδ(t)δ(x). Such a small-scale driven state has

a simple Gaussian equilibrium (Gibbs) single-point probability distribution: P (h) ∼
exp(−U/T ) where the energy U =

∫
h2

xdx/2 is conserved by the nonlinear term in 1d.

Indeed, the Fokker-Planck equation for the pdf,

∂P (h, t) =
∫

dx
δ

δh(x)

[
T

δP

δh(x)
− P

(
δU

δh(x)
+

h2
x

2

)]
(3)

has such a solution since
∫

dxh2
xδU/δh =

∫
dxh2

xhxx = 0 and
∫

dxδh2
x/δh(x) = 0.

Gaussian statistics is completely determined by the second moment which behaves in a

diffusive way:

〈[h(x)− h(0)]2〉 =
∫ ∞

−∞
[exp(iqx)− 1]

T

q2

dq

2π
= T |x| . (4)

Consider now the Burgers turbulence driven by a large-scale force or appearing from

a large-scale initial distribution (so that the Reynolds number is large). Note that (1)

has a propagating shock-wave solution u=2v{1 + exp[v(x− vt)/ν]}−1 with the energy

dissipation rate ν
∫

u2
x dx independent of ν. The shock width ν/v is a dissipative scale

and we consider acoustic turbulence produced by a pumping correlated on much larger

scales (for example, pumping a pipe from one end by frequencies much less than cv/ν).

After some time, it will develop shocks at random positions. Here we consider the single-

time statistics of the Galilean invariant velocity difference δu(x, t) = u(x, t)−u(0, t). The

moments of δu are called structure functions Sn(x, t) = 〈[u(x, t)− u(0, t)]n〉. Quadratic

nonlinearity relates the time derivative of the second moment to the third one:

∂S2

∂t
= −∂S3

3∂x
− 4ε + ν

∂2S2

∂x2
. (5)

Here ε = ν〈u2
x〉 is the mean energy dissipation rate. Equation (5) describes both a

free decay (then ε depends on t) and the case of a permanently acting pumping which

generates turbulence statistically steady at scales less than the pumping length. In the

first case, ∂S2/∂t ' S2u/L ¿ ε ' u3/L (where L is a typical distance between shocks)

while in the second case ∂S2/∂t = 0 so that S3 = 12εx + ν∂S2/∂x.

Consider now limit ν → 0 at fixed x (and t for decaying turbulence). Shock

dissipation provides for a finite limit of ε at ν → 0 then

S3 = −12εx . (6)

It is thus the flux constancy that fixes S3(x) which is universal that is determined

solely by ε and depends neither on the initial statistics for decay nor on the pumping

for steady turbulence. On the contrary, other structure functions Sn(x) are not given

by (εx)n/3. Indeed, the scaling of the structure functions can be readily understood

for any dilute set of shocks (that is when shocks do not cluster in space) which seems

to be the case both for smooth initial conditions and large-scale pumping in Burgers
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turbulence. In this case, Sn(x) ∼ Cn|x|n + C ′
n|x| where the first term comes from

the regular (smooth) parts of the velocity (the right x-interval in Fig. 1) while the

second comes from O(x) probability to have a shock in the interval x. The scaling

exponents, ξn = d ln Sn/d ln x, thus behave as follows: ξn = n for n ≤ 1 and ξn = 1

for n > 1. That means that the probability density function (PDF) of the velocity

shock

x

u

Figure 1. Typical velocity profile in Burgers turbulence.

difference in the inertial interval P (δu, x) is not scale-invariant, that is the function

of the re-scaled velocity difference δu/xa cannot be made scale-independent for any a.

Simple bi-modal nature of Burgers turbulence (shocks and smooth parts) means that the

PDF is actually determined by two (nonuniversal) functions, each depending of a single

argument: P (δu, x) = δu−1f1(δu/x) + xf2(δu/urms). Breakdown of scale invariance

means that the low-order moments decrease faster than the high-order ones as one goes

to smaller scales, i.e. the smaller the scale the more probable are large fluctuations and

the statistics is getting more and more non-Gaussian. In other words, the probability of

strong fluctuations increases with the resolution. When the scaling exponents ξn do not

lie on a straight line, this is called an anomalous scaling since it is related again to the

symmetry (scale invariance) of the PDF broken by pumping and not restored even when

x/L → 0. When the scaling exponents ξn do not lie on a straight line, this is called an

anomalous scaling. The term ”anomaly” in theoretical physics means that the effect of

symmetry breaking stays finite when the symmetry-breaking factor goes to zero.

As an alternative to the description in terms of structures (shocks), one can relate

the anomalous scaling in Burgers turbulence to the additional integrals of motion.

Indeed, the integrals En =
∫

u2n dx/2 are all conserved by the inviscid Burgers equation.

Any shock dissipates the finite amount of En at the limit ν → 0 so that similarly to (6)

one denotes 〈Ėn〉 = εn and obtains S2n+1 = −4(2n + 1)εnx/(2n − 1) for integer n. We

thus conclude that the statistics of velocity differences in the inertial interval depends

on the infinitely many pumping-related parameters, the fluxes of all dynamical integrals

of motion.

Note that S2(x) ∝ |x| corresponds to E(k) ∝ k−2, since every shock gives uk ∝ 1/k

at k ¿ v/ν, that is the energy spectrum is determined by the type of structures (shocks)

rather than by energy flux constancy. That is Burgers turbulence demonstrates the

universality of a different kind: the type of structures that dominate turbulence (here,
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shocks) is universal while the statistics of their amplitudes depends on pumping.

3. 3d Navier-Stokes turbulence

Incompressible fluid flow is described by the Navier-Stokes equation

∂tv(r, t) + v(r, t) · ∇v(r, t)− ν∇2v(r, t) = −∇p(r, t) , div v = 0 . (7)

We are again interested in the structure functions Sn(r, t) = 〈[(v(r, t)− v(0, t)) · r/r]n〉
and consider distance r smaller than the force correlation scale for a steady case and

smaller than the size of turbulent region for a decay case. Similar to (5), one can derive

the Karman-Howarth relation between S2 and S3 (see Landau and Lifshits 1987):

∂S2

∂t
= − 1

3r4

∂

∂r
(r4S3) +

4ε

3
+

2ν

r4

∂

∂r

(
r4∂S2

∂r

)
. (8)

Here ε = ν〈(∇v)2〉 is the mean energy dissipation rate. Neglecting time derivative

(which is zero in a steady state and small comparing to ε for decaying turbulence) one

can multiply (8) by r4 and integrate: S3(r) = −4εr/5 + 6νdS2(r)/dr. Kolmogorov

considered the limit ν → 0 for fixed r and assumed nonzero limit for ε which gives the

so-called 4/5 law (Kolmogorov 1941, Landau and Lifshits 1987, Frisch 1995):

S3 = −4

5
ε r . (9)

Similar to (6), this relation means that the kinetic energy has a constant flux in the

inertial interval of scales (the viscous scale η is defined by νS2(η) ' εη2). Let us stress

that this flux relation is built upon the assumption that the energy dissipation rate ε

has a nonzero limit at vanishing viscosity. Since the input rate can be independent

of viscosity, this is the assumption needed for an existence of a steady state at the

limit: no matter how small the viscosity, or how high the Reynolds number, or how

extensive the scale-range participating in the energy cascade, the energy flux is expected

to remain equal to that injected at the stirring scale. Unlike compressible (Burgers)

turbulence, here we do not know the form of the specific singular structures that are

supposed to provide non-vanishing dissipation in the inviscid limit (as shocks waves do).

Experimental data show, however, that the dissipation rate is indeed independent of the

Reynolds number when Re À 1. Historically, persistence of the viscous dissipation in the

inviscid limit (both in compressible and incompressible turbulence) is the first example

of what is now called “anomaly” in theoretical physics: a symmetry of the equation

(here, time-reversal invariance) remains broken even as the symmetry-breaking factor

(viscosity) becomes vanishingly small (see e.g. Falkovich and Sreenivasan 2006). If one

screens a movie of steady turbulence backwards, we can tell that something is indeed

wrong!

The law (9) shows that the third-order moment is universal, i.e. it does not

depend on the details of the turbulence production but is determined solely by the mean

energy dissipation rate. The rest of the structure functions have never been derived.

Kolmogorov (1941) and also Heisenberg, von Weizsacker and Onsager presumed the pair
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correlation function to be determined only by ε and r which would give S2(r) ∼ (εr)2/3

and the energy spectrum Ek ∼ ε2/3k−5/3. Experiments suggest that ζn = d ln Sn/d ln r

lie on a smooth concave curve sketched in Fig. 2. While ζ2 is close to 2/3 it has to be

a bit larger because experiments show that the slope at zero dζn/dn is larger than 1/3

while ζ(3) = 1 in agreement with (9). Like in Burgers, the PDF of velocity differences

in the inertial interval is not scale invariant in the 3d incompressible turbulence. So

far, nobody was able to find an explicit relation between the anomalous scaling for 3d

Navier-Stokes turbulence and either structures or additional integrals of motion. We

understand qualitatively the breakdown of scale invariance in Navier-Stokes turbulence

and in a related problem of passive scalar turbulence in terms of statistical Lagrangian

integrals of motion (as opposite to dynamical integrals in the Burgers turbulence), see

Section 5 below. Namely, it is believed that the correlation functions are determined

by persistent structures. For example, the second velocity moment must have a scaling

(close but not equal to 2/3) of the statistically conserved quantity build out of velocity

vectors of two fluid particles and the distance between them: this scaling is determined

by the law of de-correlation of two vectors convected by the flow (rather than energy

flux constance which determines only the third moment).
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Figure 2. The scaling exponents of the structure functions ξn for Burgers, ζn for 3d
Navier-Stokes and σn for the passive scalar. The dotted straight line is n/3.

While not exact, the Kolomogorov’s approximation S2(η) ' (εη)2/3 can be used to

estimate the viscous scale: η ' LRe−3/4. The number of degrees of freedom involved into

3d incompressible turbulence can thus be roughly estimated as N ∼ (L/η)3 ∼ Re9/4.

That means, in particular, that detailed numerical simulation of water or oil pipe flows

(Re ∼ 104 ÷ 107) or turbulent cloud (Re ∼ 106 ÷ 109) is beyond the reach of today

(and possibly tomorrow) computers. To calculate correctly at least the large-scale

part of the flow, it is desirable to have some theoretical model to parameterize the

small-scale motions. Here, the main obstacle is our lack of qualitative understanding

and quantitative description of how turbulence statistics changes with the scale. This

breakdown of scale invariance in the inertial range is another example of anomaly (effect

of pumping scale does not disappear even at the limit r/L → 0). Such an anomalous

(or multi-fractal) scaling, is an important feature of turbulence, and sets it apart from
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the usual critical phenomena: one needs to work out the behavior of moments of each

order independently rather than get it from dimensional analysis. Anomalous scaling

in turbulence is such that ζ2n < nζ2 so that S2n/S
n
2 for n > 2 increases as r → 0. The

relative growth of high moments means that strong fluctuations become more probable

as the scales become smaller. Its practical importance is that it limits our ability to

produce realistic models for small-scale turbulence.

Since we know neither the structures nor the extra conservation laws that are

responsible for an anomalous scaling in the 3d incompressible turbulence, then, to

get some qualitative understanding of this very complicated problem, we now pass

to another (no less complicated) problem of 2d turbulence. That latter problem will

motivate us to consider passive scalar turbulence, which will, in particular, teach us a

new concept of statistical conservation laws that will shed some light on 3d turbulence

too.

We thus conclude that in direct cascades we have at least two anomalies:

• finite third moment means time-irreversibility even when ν → 0,

• scale invariance is not restored even when x/L → 0

.

4. 2d Turbulence and passive scalar

Large-scale motions in shallow fluid can be approximately considered two-dimensional.

When the velocities of such motions are much smaller than the velocities of the surface

waves and the velocity of sound, such flows can be considered incompressible. Their

description is important for understanding atmospheric and oceanic turbulence at the

scales larger than the atmosphere height and the ocean depth. Vorticity ω = curl v is a

scalar in a two-dimensional flow. It is advected by the velocity field and dissipated by

viscosity. Taking curl of the Navier-Stokes equation one gets

dω/dt = ∂tω + (v · ∇)ω = ν∇2ω . (10)

Two-dimensional incompressible inviscid flow just transports vorticity from place to

place and thus conserves spatial averages of any function of vorticity, Ωn ≡
∫

ωndr. In

particular, we now have the second quadratic inviscid invariant (in addition to energy)

which is called enstrophy: Ω2 =
∫

ω2 dr. The spectral density of the energy is |vk|2/2
while that of the enstrophy is |k × vk|2. Pumping (at some kf ) generally provides for

an input of both E and Ω2. If there are two inertial intervals (at k À kf and k ¿ kf ),

then there should be two cascades. Indeed, absorbing finite amount of Ω2 at kd → ∞
corresponds to an absorption of an infinitely small E. It is thus clear that the flux of E

has to go in opposite direction that is to large scales. A so-called inverse cascade with

the constant flux of E can thus be realized at k ¿ kf , as was suggested by Kraichnan

(1967). What about other Ωn? The intuition developed so far might suggest that the

infinity of dynamical conservation laws must bring about anomalous scaling. As we

shall see, turbulence never fails to defy intuition.



Symmetries of turbulent state 8

Passive Scalar Turbulence. Before discussing vorticity statistics in two-

dimensional turbulence, we describe a similar yet somewhat simpler problem of passive

scalar turbulence which allows one to introduce the necessary notions of Lagrangian

description of the fluid flow. Consider a scalar quantity θ(r, t) which is subject to

molecular diffusion and advection by the fluid flow but has no back influence on the

velocity (i.e. passive):

dθ/dt = ∂tθ + (v · ∇)θ = κ∇2θ . (11)

Here κ is molecular diffusivity. The examples of passive scalar are smoke in the air,

salinity in the water and temperature when one can neglect thermal convection. Without

viscosity and diffusion, ω and θ behave in the same way in the same 2d flow — they are

both Lagrangian invariants satisfying dω/dt = dθ/dt = 0. Note however that vorticity

is related to velocity while the passive scalar is not.

Let us now consider passive scalar turbulence. For that we add random source of

fluctuations ϕ:

∂tθ + (v · ∇)θ = κ∇2θ + ϕ . (12)

If the source ϕ produces the fluctuations of θ on some scale L then the inhomogeneous

velocity field stretches, contracts and folds the field θ producing progressively smaller

and smaller scales — this is the mechanism of the scalar cascade. If the rms velocity

gradient is Λ then molecular diffusion is substantial at the scales less than the diffusion

scale rd =
√

κ/Λ. For scalar turbulence, the ratio Pe = L/rd, called Peclet number,

plays the role of the Reynolds number. When Pe À 1, there is an inertial interval with

a constant flux of θ2:

〈(v1 · ∇1 + v2 · ∇2)θ1θ2〉 = 2P , (13)

where P = κ〈(∇θ)2〉 = 〈ϕθ〉 and subscripts denote the spatial points. In considering

the passive scalar problem, the velocity statistics is presumed to be given. Still, the

correlation function (13) mixes v and θ and does not generally allow one to make a

statement on any correlation function of θ. The proper way to describe the correlation

functions of the scalar at the scales much larger than the diffusion scale is to employ

the Lagrangian description that is to follow fluid trajectories. Indeed, if we neglect

diffusion, then the equation (12) can be solved along the characteristics R(t) which

are called Lagrangian trajectories and satisfy dR/dt = v(R, t). Presuming zero initial

conditions for θ at t → −∞ we write (see also Sect. 1.2.3 in the Gawȩdzki course)

θ
(
R(t), t

)
=

∫ t

−∞
ϕ

(
R(t′), t′

)
dt′ . (14)

In that way, the correlation functions of the scalar Fn = 〈θ(r1, t) . . . θ(rn, t)〉 can be

obtained by integrating the correlation functions of the pumping along the trajectories

that satisfy the final conditions Ri(t)= ri. We consider a pumping which is Gaussian,

statistically homogeneous and isotropic in space and white in time:

〈ϕ(r1, t1)ϕ(r2, t2)〉 = Φ(|r1 − r2|)δ(t1 − t2)
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where the function Φ is constant at r ¿ L and goes to zero at r À L. The pumping

provides for symmetry θ → −θ which makes only even correlation functions F2n nonzero.

The pair correlation function is as follows:

F2(r, t) =
∫ t

−∞
Φ

(
R12(t

′)
)
dt′ . (15)

Here R12(t
′) = |R1(t

′)−R2(t
′)| is the distance between two trajectories and R12(t) = r.

The function Φ essentially restricts the integration to the time interval when the distance

R12(t
′) ≤ L. Simply speaking, the stationary pair correlation function of a tracer is Φ(0)

(which is twice the injection rate of θ2) times the average time T2(r, L) that two fluid

particles spent within the correlation scale of the pumping. The larger r the less time

it takes for the particles to separate from r to L and the less is F2(r). Of course,

T12(r, L) depends on the properties of the velocity field. A general theory is available

only when the velocity field is spatially smooth at the scale of scalar pumping L. This

so-called Batchelor regime happens, in particular, when the scalar cascade occurs at the

scales less than the viscous scale of fluid turbulence (Batchelor 1959, Kraichnan 1974,

Falkovich et al 2001). This requires the Schmidt number ν/κ (called Prandtl number

when θ is temperature) to be large, which is the case for very viscous liquids. In this

case, one can approximate the velocity difference v(R1, t)− v(R2, t) ≈ σ̂(t)R12(t) with

the Lagrangian strain matrix σij(t) = ∇jvi. In this regime, the distance obeys the linear

differential equation

Ṙ12(t) = σ̂(t)R12(t) . (16)

The theory of such equations is well-developed and is related to what is called

Lagrangian chaos and multiplicative large deviations theory. Fluid trajectories separate

exponentially as typical for systems with dynamical chaos (see, e.g. Antonsen and Ott

1991, Falkovich et al 2001): At t much larger than the correlation time of the random

process σ̂(t), all moments of R12 grow exponentially with time and 〈ln[R12(t)/R12(0)]〉 =

λt where λ is called a senior Lyapunov exponent of the flow (remark that for the

description of the scalar we need the flow taken backwards in time which is different

from that taken forward because turbulence is irreversible). Dimensionally, λ = Λf(Re)

where the limit of the function f at Re →∞ is unknown. We thus obtain:

F2(r) = Φ(0)λ−1 ln(L/r) = 2Pλ−1 ln(L/r) . (17)

In a similar way, one shows that for n ¿ ln(L/r) all Fn are expressed via F2 and the

structure functions S2n = 〈[θ(r, t) − θ(0, t)]2n〉 ' (P/λ)n lnn(r/rd) for n ¿ ln(r/rd).

That can be generalized for an arbitrary statistics of pumping as long as it is finite-

correlated in time (Balkovsky and Fouxon 1999, Falkovich et al 2001). Note that those

F2n anf S2n are completely determined by Φ(0) which is the flux of θ2, only sub-leading

corrections depend on the fluxes of the high-order integrals.

2d Enstrophy cascade. Now, one can use the analogy between passive scalar

and vorticity in 2d (Kraichnan 1967,Falkovich and Lebedev 1994). For the enstrophy

cascade, one derives the flux relation analogous to (13):

〈(v1 · ∇1 + v2 · ∇2)ω1ω2〉 = 2D , (18)
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where D = 〈ν(∇ω)2〉. The flux relation along with ω = curl v suggests the scaling

δv(r) ∝ r that is velocity being close to spatially smooth (of course, it cannot be

perfectly smooth to provide for a nonzero vorticity dissipation in the inviscid limit, but

the possible singularities are indeed shown to be no stronger than logarithmic). That

makes the vorticity cascade similar to the Batchelor regime of passive scalar cascade

with a notable change in that the rate of stretching λ acting on a given scale is not a

constant but is logarithmically growing when the scale decreases. Physically, for smaller

blobs of vorticity there are more large-scale velocity gradients that are able to stretch

them. Since λ scales as vorticity, the law of renormalization can be established from

dimensional reasoning and one gets 〈ω(r, t)ω(0, t)〉 ∼ [D ln(L/r)]2/3 which corresponds

to the energy spectrum Ek ∝ D2/3k−3 ln−1/3(kL). High-order correlation functions

of vorticity are also logarithmic, for instance, 〈ωn(r, t)ωn(0, t)〉 ∼ [D ln(L/r)]2n/3. Note

that both passive scalar in the Batchelor regime and vorticity cascade in 2d are universal

that is determined by the single flux (P and D respectively) despite the existence of

high-order conserved quantities. Experimental data and numeric simulations support

those conclusions (Falkovich et al 2001, Tabeling 2002).

5. Zero modes and anomalous scaling

How one builds the Lagrangian description when the velocity is not spatially smooth,

for example, that of the energy cascades in the inertial interval? Again, the only exact

relation one can derive for two fluid particles separated by a distance in the inertial

interval is for the Lagrangian time derivative of the squared velocity difference (Falkovich

et al 2001): 〈
d|δv|2

dt

〉
= 2ε

— this is the Lagrangian counterpart to (6,9,24). One can assume that the statistics of

the distances between particles is also determined by the energy flux. That assumption

leads, in particular, to the Richardson law for the asymptotic growth of the inter-particle

distance:

〈R2
12(t)〉 ∼ εt3 , (19)

first inferred from atmospheric observations (in 1926) and later from experimental data

on the energy cascades both in 3d and in 2d. There is no consistent theoretical derivation

of (19) and it is unclear whether it is exact (likely to be in 2d) or just approximate

(possible in 3d). Semi-heuristic argument usually presented in textbooks is based on

the mean-field estimate: Ṙ12 = δv(R12, t) ∼ (εR12)
1/3 which upon integration gives:

R
2/3
12 (t)−R

2/3
12 (0) ∼ ε1/3t. While this argument is at best a crude estimate in 3d (where

there is no definite velocity scaling since every moment has its own exponent ζn) we use

it to discuss implications for the passive scalar‡.
‡ What matters here and below is that in a non-smooth flow Ra

12(t)−Ra
12(0) ∼ t with a < 1, not the

precise value of a
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For two trajectories, the Richardson law gives the separation time from r to L:

T2(r, L) ∼ ε−1/3[L2/3 − r2/3]. Note that T2(r, L) has a finite limit at r → 0 —

infinitesimally close trajectories separate in a finite time. That leads to non-uniqueness

of Lagrangian trajectories (non-smoothness of the velocity field means that the equation

Ṙ = v(R) is non-Lipschitz). As discussed in much details elsewhere [30], that leads

to a finite dissipation of a transported passive scalar even without any molecular

diffusion (which corresponds to a dissipative anomaly and time irreversibility). Indeed,

substituting T2(r, L) into (15), one gets the steady-state pair correlation function of the

passive scalar: F2(r) ∼ Φ(0)ε−1/3[L2/3 − r2/3] as suggested by Oboukhov (1949) and

Corrsin (1952). The structure function is then S2(r) ∼ Φ(0)ε−1/3r2/3. Experiments

measuring the scaling exponents σn = d ln Sn(r)/d ln r generally give σ2 close to 2/3 but

higher exponents deviating from the straight line even stronger than the exponents of

the velocity in 3d as seen in Fig. 2. Moreover, the scalar exponents σn are anomalous

even when advecting velocity has a normal scaling like in 2d energy cascade (described

in Sec. 7 below).

To explain the dependence σ(n) and describe multi-point correlation functions

or high-order structure functions one needs to study multi-particle statistics. Here

an important question is what memory of the initial configuration remains when

final distances far exceed initial ones. To answer this question one must analyze

the conservation laws of turbulent diffusion. We now describe a general concept of

conservation laws which, while conserved only on average, still determine the statistical

properties of strongly fluctuating systems. In a random system, it is always possible

to find some fluctuating quantities which ensemble averages do not change. We now

ask a more subtle question: is it possible to find quantities that are expected to change

on the dimensional grounds but they stay constant (Falkovich et al 2001, Falkovich

and Sreenivasan 2006). Let us characterize n fluid particles in a random flow by inter-

particle distances Rij (between particles i and j) as in Figure 3. Consider homogeneous

functions f of inter-particle distances with a nonzero degree ζ, i.e. f(λRij) = λζf(Rij).

When all the distances grow on the average, say according to < R2
ij >∝ ta, then one

expects that a generic function grows as f ∝ taζ/2. How to build (specific) functions

that are conserved on the average, and which ζ-s they have? As the particles move in

a random flow, the n-particle cloud grows in size and the fluctuations in the shape of

the cloud decrease in magnitude. Therefore, one may look for suitable functions of size

and shape that are conserved because the growth of distances is compensated by the

decrease of shape fluctuations.

For the simplest case of Brownian random walk, inter-particle distances grow by

the diffusion law: 〈R2
ij(t)〉 = R2

ij(0) + κt, 〈R4
ij(t)〉 = R4

ij(0) + 2(d + 2)[R2
ij(0)κt+ κ2t2]/d,

etc. Here d is the space dimensionality. Two particles are characterized by a single

distance. Any positive power of this distance grows on the average. For many particles,

one can build conserved quantities by taking the differences where all powers of t cancel

out: f2 = 〈R2
12 − R2

34〉, f4 = 〈2(d + 2)R2
12R

2
34 − d(R4

12 + R4
34)〉, etc. These polynomials

are called harmonic since they are zero modes of the Laplacian in the 2d-dimensional
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R13

R
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1
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Figure 3. Three fluid particles in a flow.

space of R12, R13. One can write the Laplacian as ∆ = R1−2d∂RR2d−1∂R + ∆θ, where

R2 = R2
12 + R2

13 and ∆θ is the angular Laplacian on 2d − 1-dimensional unit sphere.

Introducing the angle, θ = arcsin(R12/R), which characterizes the shape of the triangle,

we see that the conservation of both f2 = 〈R2 cos 2θ〉 and f4 = 〈R4[(d + 1) cos2 2θ − 1]〉
can be also described as due to cancellation between the growth of the radial part (as

powers of t) and the decay of the angular part (as inverse powers of t). For n particles,

the polynomial that involves all distances is proportional to R2n (i.e. ζn = n) and the

respective shape fluctuations decay as t−n.

The scaling exponents of the zero modes are thus determined by the laws that

govern decrease of shape fluctuations. The zero modes, which are conserved statistically,

exist for turbulent macroscopic diffusion as well. However, there is a major difference

since the velocities of different particles are correlated in turbulence. Those mutual

correlations make shape fluctuations decaying slower than t−n so that the exponents

of the zero modes, ζn, grow with n slower than linearly. This is very much like the

total energy of the cloud of attracting particles does not grow linearly with the number

of particles. Indeed, power-law correlations of the velocity field lead to super-diffusive

behavior of inter-particle separations: the farther particles are, the faster they tend to

move away from each other, as in Richardson’s law of diffusion. That is the system

behaves as if there was an attraction between particles that weakens with the distance,

though, of course, there is no physical interaction among particles (but only mutual

correlations because they are inside the correlation radius of the velocity field). Let us

stress that while zero modes of multi-particle evolution exist for all velocity fields—from

those that are smooth to those that are extremely rough as in Brownian motion—only

those non-smooth velocity fields with power-law correlations provide for an anomalous

scaling. Zero modes were discovered in Gawedzki and Kupiainen 1995, Shraiman and

Siggia 1995, Chertkov et al 1995 and then described in Chertkov and Falkovich 1996,

Bernard et al 1996, Balkovsky and Lebedev 1998.

The existence of multi-particle conservation laws indicates the presence of a long-

time memory and is a reflection of the coupling among the particles due to the simple

fact that they are all in the same velocity field.
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We now ask: How does the existence of these statistical conservation laws (called

martingales in the probability theory) lead to anomalous scaling of fields advected by

turbulence? According to (14), the correlation functions of θ are proportional to the

times spent by the particles within the correlation scales of the pumping. The structure

functions of θ are differences of correlation functions with different initial particle

configurations as, for instance, S3(r12) ≡ 〈[θ(r1)−θ(r2)]
3〉 = 3〈θ2(r1)θ(r2)−θ(r1)θ

2(r2)〉.
In calculating S3, we are thus comparing two histories: the first one with two particles

initially close to the position r1 and one particle at r2, and the second one with one

particle at r1 and two particles at r2— see Fig 4. That is, S3 is proportional to the time

2

2

1

1

Figure 4. Two configurations (upper and lower) whose difference determines the third
structure function.

during which one can distinguish one history from another, or to the time needed for

an elongated triangle to relax to the equilateral shape. That time grows with r12 (as it

takes longer to forget more elongated triangle) by the law that can be inferred from the

law of the decrease of the shape fluctuations of a triangle.

Quantitative details can be worked out for the white in time velocity (Kraichnan

1968). Profound insight of Kraichnan was that it is spatial rather than temporal non-

smoothness of the velocity that is crucial for an anomalous scaling. The Kraichnan

model is described in much detail in the course by Gawȩdzki, here we mention few

salient points. The velocity ensemble is defined by the second moment:

〈vi(r, t)vj(0, 0)〉 = δ(t)
[
D0δij − dij(r)

]
,

dij = D1 rξ
[
(d− 1 + ξ) δij − ξrirjr−2

]
. (20)

Here the exponent ξ ∈ [0, 2] is a measure of the velocity non-smoothness with ξ = 2

corresponding to a smooth velocity while ξ = 0 to a velocity very rough in space

(distributional). Richardson-Kolmogorov scaling of the energy cascade corresponds to

ξ = 4/3. Lagrangian flow is a Markov random process for the Kraichnan ensemble

(20). Every fluid particle undergoes a Brownian random walk with the so-called eddy

diffusivity D0. The PDF P (r, t) for two particles to be separated by r after time t
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satisfies the diffusion equation (see e.g. Falkovich et al 2001)

∂tP = L2P , L2 = dij(r)∇i∇j = D1(d− 1)r1−d∂rr
d+ξ−1∂r , (21)

with the scale-dependent diffusivity D1(d − 1)rξ. The asymptotic solution of (21)

is P (r, t) = rd−1td/(2−ξ) exp(−const r2−ξ/t), log-normal for ξ = 2. For ξ = 4/3, it

reproduces, in particular, the Richardson law. Multi-particle probability distributions

also satisfy diffusion equations in the Kraichnan model as well as all the correlation

functions of θ. Multiplying (12) by θ2 . . . θ2n and averaging over the Gaussian statistics

of v and ϕ one derives

∂tF2n = L2nF2n +
∑

l,m

F2n−2Φ(rlm) , L2n =
∑

dij(rlm)∇i
l∇j

m . (22)

This equation enables one, in principle, to derive inductively all steady-state F2n

starting from F2. The equation ∂tF2(r, t) = L2F2(r, t) + Φ(r) has a steady solution

F2(r) = 2[Φ(0)/(2 − ξ)d(d − 1)D1][dL2−ξ/(d − 2 + ξ) − r2−ξ], which has the Corrsin-

Oboukhov form for ξ = 4/3. Further, F4 contains the so-called forced solution having

the normal scaling 2(2 − ξ) but also, remarkably, a zero mode Z4 of the operator L4:

L4Z4 = 0. Such zero modes necessarily appear (to satisfy the boundary conditions at

r ' L) for all n > 1 and the scaling exponents of Z2n are generally different from nγ

that is anomalous. In calculating the scalar structure functions, all terms cancel out

except a single zero mode (called irreducible because it involves all distances between 2n

points). Analytically and numerical calculations of Zn and their scaling exponents σn

(described in detail in the review Falkovich et al 2001) give σn lying on a convex curve

(see Fig. 2) which saturates (Balkovsky and Lebedev 1998) to a constant at large n.

Such saturation is a signature that most singular structures in a scalar field are shocks

like in Burgers turbulence, the value σn at n → ∞ is the fractal codimension of fronts

in space (Celani et al 2001).

The existence of statistical conserved quantities breaks the scale invariance of

scalar statistics in the inertial interval and explains why scalar turbulence knows about

pumping “more” than just the value of the flux. Here again the statistics in the

inertial interval, apart from the flux of θ2, depends on the infinity of pumping-related

parameters. However, those parameters neither are fluxes of θn, nor we can interpret

them as any other fluxes. At the present level of understanding, we thus describe an

anomalous scaling in Burgers and in passive scalar in quite different terms. Of course, the

qualitative appeal to structures (shocks) is similar but the nature of the conservation

laws is different. The anomalies produced by dynamically conserved quantities (like

anomalous scaling in Burgers and time irreversibility in all cases of turbulence) are

qualitatively different from the anomalies produced by statistically conserved quantities

(like breakdown of scale invariance in passive scalar turbulence). Indeed, dissipation

is a singular perturbation which breaks conservation of dynamical integrals of motion

and imposes (one or many) flux-constancy conditions, very much similar to quantum

anomalies. On the contrary, there are no cascades of conserved quantity related to zero

modes, nor their conservation is broken by dissipation. Anomalous scaling of zero modes
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is due to correlations between different fluid trajectories. On the other hand, the two

types of anomalies are related intimately: the flux constancy requires a certain degree of

velocity non-smoothness, which generally leads to an anomalous scaling of zero modes.

Both symmetries, one broken by pumping (scale invariance) and another by

damping (time reversibility) are not restored even when r/L → 0 and rd/r → 0.

For the vector field (like velocity or magnetic field in magnetohydrodynamics)

the Lagrangian statistical integrals of motion may involve both the coordinate of the

fluid particle and the vector it carries. Such integrals of motion were built explicitly

and related to the anomalous scaling for the passively advected magnetic field in the

Kraichnan ensemble of velocities (Falkovich et al 2001). Doing that for velocity that

satisfies the 3d Navier-Stokes equation remains a task for the future.

6. Inverse cascades

Here we consider inverse cascades and discover that, while time reversibility remains

broken, the scale invariance is restored in the inertial interval. Moreover, even wider

symmetry of conformal invariance may appear there.

Passive scalar in a compressible flow. Similar to (15) one can derive from (14)

〈θ(t, r1) . . . θ(t, r2n)〉 =
∫ t

0
dt1 . . . dtn

× 〈Φ(R(t1|T, r12)) . . . Φ(R(tn|T, r2n−1,2n))〉+ . . . , (23)

The functions Φ in (23) restrict integration to the time intervals where Rij < L. If

the Lagrangian trajectories separate, the correlation functions reach at long times the

stationary form for all rij. Such steady states correspond to a direct cascade of the

tracer (i.e. from large to small scales) considered above. That generally takes place in

incompressible and weakly compressible flows.

It is intuitively clear that in compressible flows the regions of compressions can

trap fluid particles counteracting their tendency to separate. Indeed, one can show that

particles cluster in flows with high enough compressibility [30, 20, 35]. In particular,

all the Lyapunov exponents are negative when the compressibility degree of a short-

correlated flow exceeds d/4 [20]. Even in the non-smooth flow with high enough

compressibility, the trajectories are unique, particles that start from the same point will

remain together throughout the evolution [35]. That means that advection preserves all

the single-point moments 〈θN〉(t). Note that the conservation laws are statistical: the

moments are not dynamically conserved in every realization, but their average over the

velocity ensemble are. In the presence of pumping, the moments are the same as for the

equation ∂tθ = ϕ in the limit κ → 0 (nonsingular now). It follows that the single-point

statistics is Gaussian, with 〈θ2〉 coinciding with the total injection Φ(0)t by the forcing.

That growth is produced by the flux of scalar variance toward the large scales. In other

words, the correlation functions acquire parts which are independent of r and grow

proportional to time: when Lagrangian particles cluster rather than separate, tracer

fluctuations grow at larger and larger scales — phenomenon that can be loosely called
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an inverse cascade of a passive tracer [30, 20, 35]. As is clear from (23), correlation

functions at very large scales are related to the probability for initially distant particles

to come close. In a strongly compressible flow, the trajectories are typically contracting,

the particles tend to approach and the distances will reduce to the forcing correlation

length L (and smaller) for long enough times. On a particle language, the larger the time

the large the distance starting from which particle come within L. The correlations of

the field θ at larger and larger scales are therefore established as time increases, signaling

the inverse cascade process.

<θ(0,t) θ(r,t)>

t t

t
1

2 > t1
1 2

r

/< θ2(t)>

Figure 5. Growth of large-scale correlations with time.

The uniqueness of the trajectories greatly simplifies the analysis of the PDF

P(δθ, r). Indeed, the structure functions involve initial configurations with just two

groups of particles separated by a distance r. The particles explosively separate in

the incompressible case and we are immediately back to the full N -particle problem.

Conversely, the particles that are initially in the same group remain together if the

trajectories are unique. The only relevant degrees of freedom are then given by the

intergroup separation and we are reduced to a two-particle dynamics. It is therefore

not surprising that the statistics of the passive tracer is scale invariant in the inverse

cascade regime [35].

An example of strongly compressible flow is given by Burgers turbulence (1) where

there is clustering (in shocks) for the majority of trajectories (full measure in the inviscid

limit). Considering passive scalar in such a flow, θt + uθx − κ∆θ = φ, we conclude that

it undergoes an inverse cascade. The statistics of θ is scale invariant at the scales

exceeding the correlation scale of the pumping φ. While the limit κ → 0 is regular (i.e.

no dissipative anomaly), the statistics is time irreversible because of the flux towards

large scales. It is instructive to compare u and θ which are both Lagrangian invariants

(tracers) in the unforced undamped limit. Yet passive quantity θ (and all its powers)

go to large scales under pumping while all powers of u cascade towards small scales and

are absorbed by viscosity. Physically, the difference is evidently due to the fact that the

trajectory depends on the value of u it carries, the larger the velocity the faster it ends

in a shock and dissipates the energy and other integrals. Formally, for active tracers

like un one cannot write a formula like (23) obtained by two independent averages over

the force and over the trajectories.
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7. Inverse energy cascades in hydrodynamics

For the inverse energy cascade in 2d Navier-Stokes equation, there is no consistent theory

except for the flux relation that can be derived similarly to (9):

S3(r) = 4εr/3 . (24)

This scaling one can also get from phenomenological dimensional arguments, though in

two seemingly unrelated ways. Consider the velocity difference vr at the distance r. On

the one hand, one may require that the kinetic energy v2
r divided by the typical time r/vr

must be constant and equal to the energy flux, ε: v3
r ∼ εr. On the other hand, it can

be argued that vorticity, which cascades to small scales, must be in equipartition in the

inverse cascade range. If this is the case, the enstrophy rdω2
r accumulated in a volume

of size r is proportional to the typical time r/vr at such scale, i.e. rdω2
r ∼ r/vr. Using

ωr ∼ vr/r we derive v3
r ∼ r3−d which for d = 2 is exactly the requirement of constant

energy flux. Amazingly, the requirements of vorticity equipartition (i.e. equilibrium)

and energy flux (i.e. turbulence) give the same Kolmogorov-Kraichnan scaling in 2d.

Let us stress that (24) means that time reversibility is broken in the inverse cascade.

Experiments (Tabeling 2002, Kellay and Goldburg 2002, Chen et al 2006) and numerical

simulations (Boffetta et al 2000), however, demonstrate a scale-invariant statistics with

the vorticity having scaling dimension 2/3: ωr ∝ r−2/3. In particular, S2 ∝ r2/3 which

corresponds to Ek ∝ k−5/3. It is ironic that probably the most widely known statement

on turbulence, the 5/3 spectrum suggested by Kolmogorov for 3d, is not correct in this

case (even though the true scaling is close) while it is probably exact in the Kraichnan’s

inverse 2d cascade. Qualitatively, it is likely that the absence of anomalous scaling in the

inverse cascade is associated with the growth of the typical turnover time (estimated, say,

as r/
√

S2) with the scale. As the inverse cascade proceeds, the fluctuations have enough

time to get smoothed out as opposite to the direct cascade in 3d, where the turnover

time decreases in the direction of the cascade. Note in passing that passive scalar

undergoes direct cascade in the flow of the 2d inverse energy cascade, scalar statistics is

not scale invariant since the velocity is non-smooth (compare with the relation between

the Lagrangian invariants u and θ for Burgers turbulence).

Two-dimensional Navier-Stokes equation belongs to a family of models that describe

a transport of a scalar quantity by an incompressible velocity related to a scalar by

an instantaneous linear scale-invariant relation. Consider a real function of time and

coordinates, a(r, t), which evolves according to the equation

∂a/∂t + (v · ∇)a = f + ν∆a− αa . (25)

Here r = (x, y) belongs to a two-dimensional manifold (plane, disc or torus) where

one defines a solenoidal vector field of velocity: v = (∂Ψ/∂y,−∂Ψ/∂x). The stream

function Ψ is related to the quantity a by a linear scale-invariant relation Ψ(r, t) '∫
dr′ |r−r′|m−2a(r′, t). That is a is carried by the velocity v, is pumped by the force f and

is dissipated by the viscous and uniform (bottom) friction with the friction coefficients

respectively ν and α.
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For the models of physical interest, m is integer. 2d Navier-Stokes equation

corresponds to m = 2 when the pseudo-scalar a = ∇× v = ∆Ψ is called vorticity and

Ψ(r, t) = −(2π)−1
∫

dr′ ln |r− r′|a(r′, t). We also consider m = 1, which corresponds to

surface quasi-geostrophic (SQG) model that describes rotating buoyancy-driven flows

near solid surface, a is the temperature in this case [37, 53]. The case m = −2, which

describes large-scale flows of a rotating shallow fluid, is not considered here [44].

In the Fourier representation, vk = −ı(k2,−k1)Ψk = −ı(k2,−k1)k
−mak. For

example, for the torus 2π × 2π the Fourier coefficients ak(t) =
∫

a(x, t)eı(k·x)dx evolve

according to the equation

∂ak

∂t
−∑

j

[k, j]j−majak−j = fk − (α + νk2)ak , (26)

k, j ∈ Z2\(0, 0) , [k, j] = k1j2 − k2j1 , k = |k| , j = |j| .
The random force is usually taken Gaussian: df(r, t) =

∑
k

√
D(k) exp[ı(k · r)]dBkt,

where Bkt are standard Brownian random walks independent for different k. The

spectral density D(k) is nonzero in the ring kf < k < Akf , here A - is a order-unity

factor. The random fields a,v, Ψ are generally non-Gaussian since they are related to

the force by a nonlinear equation.

The left part of the equation (26) conserves L2-norm
∑ |ak|2 and the “energy”

E =
∑ |ak|2k−m, the right side describes generation and dissipation. We assume the

existence of a steady state where the expectations E[∗] are time-independent so that

the following relations must hold:
∑

k

(α + νk2)E[|ak|2] =
∑

D(k) ≡ P , (27)

∑

k

(α + νk2)k−mE[|ak|2] =
∑

D(k)k−m ≡ Q . (28)

Let us fix P, Q and consider the limit kf → ∞, ν → 0 . For m > 0 it is natural

to assume that the terms with k ' kν À kf give the main contribution into the left

sum (27) and that with k ' kα ¿ kf into the left sum (28). Such arguments form

the basis of the Kraichnan’s double-cascade picture which postulates the existence of

two inertial intervals where the nonlinear (inertial) term of (25) dominates and provides

for the spectral transfer of P and Q respectively in the direct and inverse cascades [40].

Here we consider the inverse cascade determined by the flux Q. Power-law dependencies

can be guessed from dimensional reasoning. Comparing centimeters and seconds one

ought to remember that the dimensionality of a is sec−1·cmm−2 while that of Q is

sec−3·cm4−m. Then kα ' (α3/Q)1/(4−m), where ' means equality up to a dimensionless

factor (generally dependent on the force details). assuming that the statistics in the

inertial interval of the inverse cascade (that is at kα ¿ k ¿ kf )is determined by the

energy flux Q and wavenumber k one obtains from power counting:

E[|ak|2] ' Q2/3k(4m−4)/3 . (29)

In the r-representation

E[a2
r] =

∑

k

E[|ak|2](1− eı(k·r)) ' Q2/3r(4−4m)/3 ∝ r2h . (30)
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For m = 1, E[a2
r] ∝ ln(kfr). Somewhat more rigorous way to get the exponent h is

to require the constancy of the triple correlation function that describes the energy

flux. For instance, in that way one derives the identity 〈(δv · r)3〉 = 3Qr4/2 that gives

Kolmogorov-Kraichnan scaling h = −2/3 for the Euler equation (m = 2)[40, 32, 30].

The best thing one can say about such arguments is that they are confirmed by the data

of experiments and numerics that is within the precision determined by the finiteness

of the inertial interval and experimental errors, the probability distribution is invariant

with respect to global (uniform) scale transformations: P(ar, r) ∼ a−1
r f(arr

2/3) for

m = 2 [61, 38, 17, 11, 15] and P(ar, r) ∼ a−1
r f(ar/ ln(kfr)) for m = 1 [56, 62, 15].

Conformal transformations realize non-uniform change of scale (preserving the angles)

so that conformal invariance can be thought of as local scale invariance. Note that

nonlocal relation between the velocity v and the field a it carries makes our systems

dynamically nonlocal. However, we excite the systems by a noise with the short radius

of correlation k−1
f and hope to find locality in statistics. Specifically, consider turbulence

in some connected domain D ⊂ C and the family of measures µD(z1, . . . , zn), depending

on the points zi ∈ D (for instance, probabilities of the velocity differences in different

points). Turbulence excited by the force with the same kf in another domainD′ produces

another family µD′ . We call the measure conformal invariant if it is invariant with respect

to the conformal map f : D → D′, that is µD(z1, . . . , zn) = µD′(f(z1), . . . , f(zn)). That

property takes place for some remarkable class of random curves which we describe now.

8. Schramm-Loewner evolution (SLE)

Non-self-intersecting curve growing from the domain boundary can be described by a

conformal map of the domain with the curve inside into a domain without the curve.

For example, in the simplest case the curve γ(t) starts at the real axis of the half-plane

H. Here t parameterizes the curve, it should not be confused with the time from (25).

The map gt : H\γ(t) → H is fixed by the asymptotics gt(z) ∼ z + 2t/z + O(1/z2) at

infinity. If the curve touches itself, one must define the domain K(t) as the union of the

curve and all points that cannot be reached from infinity and consider gt : H\K(t) → H.

The growing tip of the curve is mapped into a real point ξ(t). Loewner found in 1923

that the conformal map gt(z) and the curve γ(t) are fully parameterized by tip image

ξ(t) called the driving function [49]. For that one needs to solve the remarkably simple

Loewner equation dgt(z)/dt = 2[gt(z) − ξ(t)]−1. Almost eighty years later, Schramm

considered random curves in planar domains and showed (first, in a particular case)

that the measure on the curves is conformal invariant if and only if ξ(t) =
√

κBt,

where Bt is a standard one-dimensional Brownian walk [57]. In addition, the measure

µH(γ; z1, z2) on the curves γ connecting z1 and z2 is Markovian: if to divide γ into two

pieces γ1 from the boundary z1 to z γ2 from z to z2, then the conditional measure is

as follows: µH(γ2|γ1; z1, z2) = µH\γ1(γ2; z, z2). Diffusivity κ allows one to classify the

classes of conformal invariance random curves called SLEκ. Such curves have been

encountered in physics before as the boundaries of clusters of 2d critical phenomena
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described by conformal field theories. The language and formalism of SLE is a new

natural communication tool for physicists and mathematicians, they lead to an explosive

growth of new results in mathematics, field theory and the theory of critical phenomena

[45, 46, 47, 48, 12, 5]. We shall see in the next Section that SLE is encountered in

hydrodynamics as well.

Let us list here few basic facts about SLE curves. When κ = 0, γ is a vertical

straight line. The larger the κ, the more curve wiggles. The curve is simple (i.e. with

probability 1 does not touch nether itself nor real axis) when 0 ≤ κ < 4. For SLEκ with

4 ≤ κ < 8, the curve touches itself but does not fill the space. In this case, one can

define an external perimeter (as a part one can reach from infinity) which belongs to a

dual class SLEκ∗ with κ∗ = 16/κ [55, 6, 24]. The fractal dimension of SLEκ curves is

Dκ = 1 + κ/8 for κ < 8.

Among the dual pairs, κ κ∗, one is special from the viewpoint of locality. The

curves from SLE6 do not feel the boundary until they touch it (a rigorous definition of

that property called SLE locality can be found in [48]).The dual curve SLE8/3 have the

“restriction property”: the statistics of the curves conditioned not to visit some region

is the same as in the domain without this region. Intuitively, one can appreciate these

properties by considering lattice (discrete) models which turn into the respective SLE

in the continuous limit [48, 5]. For example, consider a honeycomb lattice. A random

walk along the bonds starts from the boundary point that has all black hexagons to

the left and white to the right and keeps that property as it moves turning right/left

as it meets black/white hexagon. SLE6 is obtained from the classical model of critical

percolation when hexagons get their colors independently with the probability 1/2.

SLE8/3 corresponds to a self-avoiding random walk when every bond is visited only

once. Also the value κ = 4 is special because it is self-dual it corresponds to the so-

called harmonic navigator. In this case, the probability of the color for the hexagon

encountered is determined by the harmonic function defined in the domain with the

boundary that includes the hexagons colored before; in other words, a new random

walk starts from the hexagon and colors it by the color of the boundary the walk hits

[48, 5, 58]. Both SLE6 and SLE4 appear as isolines of Gaussian random fields. If one

considers the surface of a random function of two variables, a(x, y), as a landscape

during a great flood then at some water level the probability to sail across is equal to

probability to walk. At this level, the shoreline belongs to SLE6 (critical percolation)

if the correlation functions of a(x, y) decay sufficiently fast. In particular, non-rigorous

but plausible Harris criterium claims that if 〈a(r)a(0)〉 ∼ r−2h and h ≥ 3/4, then isolines

of the Gaussian field a are equivalent to critical percolation [63]. That follows from the

fact that when a is non-zero, percolation is non-critical even for a short-correlated field,

and a finite correlation length appears which scales as lc ∝ a−4/3; that means that the

non-zero isoline cannot be distinguished from the zero isoline at the scales shorter than

lc. In other words, on a scale r one is allowed fluctuation of the field less that r−4/3.

Therefore, if on the scale r the fluctuations are of the size r−h with h ≥ 3/4 then the

fluctuations of the field a(x, y) are small and its nodal line belong to SLE6. On the
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contrary, isolines of the Gaussian field a with h < 3/4 are not equivalent to critical

percolation i.e. do not belong to SLE6. As far as SLE4 is concerned, this class contain

isolines of Gaussian (free) fields with 〈a(r)a(0)〉 ∼ ln r [58, 14, 13]. How all that is

related to turbulence where the only thing we are sure about its being non-Gaussian

(because the flux makes the third moment nonzero)?

9. Isolines in turbulence

The fractal dimension of SLEκ curves is known to be Dκ = 1 + κ/8 for κ < 8. To

establish possible link between turbulence and critical phenomena, let us try to relate

the Kolmogorov-Kraichnan phenomenology to the fractal dimension of the boundaries

of vorticity clusters. Note that one ought to distinguish between the dimensionality

2 of the full vorticity level set (which is space-filling) and a single zero-vorticity line

that encloses a large-scale cluster. Consider the vorticity cluster of gyration radius L

L

ω=0

Figure 6. Vorticity nodal line with the gyration radius L.

which has the “outer boundary” of perimeter P (that boundary is the part of the zero-

vorticity line accessible from outside, see Fig. 6 for an illustration). The vorticity flux

through the cluster,
∫

ωdS ∼ ωLL2, must be equal to the velocity circulation along the

boundary, Γ =
∮
v · d`. The Kolmogorov-Kraichnan scaling is ωL ∼ ε1/3L−2/3 (coarse-

grained vorticity decreases with scale because contributions with opposite signs partially

cancel) so that the flux is ∝ L4/3. As for circulation, since the boundary turns every

time it meets a vortex, such a contour is irregular on scales larger than the pumping

scale. Therefore, only the velocity at the pumping scale Lf is expected to contribute

to the circulation, such velocity can be estimated as (εLf )
1/3 and it is independent of

L. Hence, circulation should be proportional to the perimeter, Γ ∝ P , which gives

P ∝ L4/3, i.e. the fractal dimension of the exterior of the vorticity cluster is expected

to be 4/3. This remarkable dimension correspond to a self-avoiding random walk (SLE

curve) which is also known to be an exterior boundary (without self-intersections) of

percolation cluster (yet another SLE curve).

Figure 7 shows a nodal line of vorticity obtained by a numerical solution of (25) with

m = 2 on a torus (that is 2d Navier-Stokes equation with periodic boundary conditions

and added external force and uniform friction), the details can be found in [11, 9]. Force
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scale is lf = 2π/kf = 0.05. The curve looks fractal at the scales exceeding lf , i.e. in

the interval of an inverse cascade. Indeed, the length P grows nonlinearly with the end-

to-end distance L [9]. Power-law exponents of this grows for the curve and its external

perimeter are found to be close within the resolution to the dimensionalities 7/4, 4/3 of

the dual pair SLE6 SLE8/3 (historically, dimensionality 4/3 of the external perimeter

has been guessed from the Kolmogorov-Kraichnan scaling ar ∼ r−2/3, which stimulated

the search for SLE in turbulence [9]). Let us briefly describe how we identified possible
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Figure 7. A portion of a candidate SLE trace obtained from the vorticity field. The
figure has been adapted from [9]

curves from an SLE class and determined the driving function ξ(t). We drew quite

arbitrarily a straight line to be a real axis and at the end checked that translations and

rotations of the axis did not change the results. We then start from the intersection

of a zero isoline and the axis and move along the curve or along the axis (when return

to it) preserving orientation i.e. keeping positive vorticity always to the right. Such a

procedure faithfully reproduces the statistics only in the local case, indeed we expected

(and found!) κ ≈ 6. We then divided our curve into small straight segments and

approximated the family of conformal maps gt(z) by a discrete set of standard conformal

maps absorbing one segment one by one [50, 9]). The resulting set of “times” ti and

values ξi defines the driving function ξ(t). The only thing left is to run the Schramm test

i.e. to check how well this function corresponds to a Brownian walk. The data presented

by upward oriented triangles in Figure 8 show that the ensemble average 〈ξ(t)2〉 indeed

grows linearly in time: the diffusion coefficient κ is very close to the value 6, with an

accuracy of 5% (lower inset). The probability distribution functions of ξ(t)/
√

κt collapse

onto a standard Gaussian distribution at all times t (upper inset). Therefore, we expect

that in the limit of vanishingly small Lf the driving ξ(t) tends to a true Brownian
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motion and zero-vorticity lines become SLEκ traces with κ very close to 6. Note that

the vorticity field has h = 2/3 < 3/4, that is the Harris criterium is violated. However,

our field is non-Gaussian - while the probability distribution looks like Gaussian, the

deviations are measurable including the third moment [61, 38, 17, 11, 15]). Triangles

pointing down on the lower are obtained for the isolines of a Gaussian field having the

same Fourier spectrum as vorticity but randomized phases. Apparently, our accuracy is

sufficient to make sure that it does not correspond to any SLE including SLE6. Indeed,

E[ξ2]/t ≡ 〈ξ2〉/t is not constant and approaches the limiting value κ = 6 only at the

scales exceeding 2π/kα where the power-law correlation is already cut-off by friction

and the field becomes truly uncorrelated. Something remarkable happens here: non-

Gaussianity of the vorticity field, i.e. multi-point correlations, somehow conspire to

make zero-vorticity line statistically equivalent to the isoline of a short-correlated field

even though the pair correlation function decays slower that Harris criterium requires.
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Figure 8. Demonstration of conformal invariance of the isolines of vorticity in the
Euler equation (left) and of the temperature in the surface geostrophic model (right).
The driving function is an effective diffusion process with diffusion coefficient κ = 6±0.3
(left [9]) and with κ = 4 ± 0.2 (right [10]). Right (lower) inset: triangles pointing up
correspond to the vorticity, triangles pointing down to the Gaussian field with the
same second moment. Left (upper) insets: the probability density function of the re-
scaled driving function ξ(t)/

√
κt at four different times t = 0.0012, 0.003, 0.006, 0.009

(left) and t = 0.02, 0.04, 0.08 (right); the solid lines are the Gaussian distribution
g(x) = (2π)−1/2 exp(−x2/2).

The identification of isolines as SLEκ curves allows to apply powerful techniques

borrowed from the theory of stochastic differential equations and conformal mapping

theory and to obtain analytic predictions for some nontrivial statistical properties

of lines, vortices and clusters in turbulence. For example, vorticity nodal lines are

boundaries of the vorticity clusters. The statements from the percolation theory

that the probability of a cluster (island) decays with area as s−96/91, and with the

perimeter as P−8/7, can be directly confirmed for turbulence [9]. Moreover, SLE

allows exact analytic formulas for the probabilities that a nodal line crosses different

figures (triangles, rectangles etc). Such probabilities are determined by the second-order

ordinary differential equation and are expressed via the hypergeometric functions, which

miraculously describe turbulence data. It is worth to stress that maximum one aspired in



Symmetries of turbulent state 24

turbulence theory before was to predict a single number (usually a scaling exponent and

often from dimensional reasoning), now we are able to predict non-trivial functions. An

ability to make exact predictions rather than order-of-magnitude estimates is heartening

too. Most important though is that the inverse vorticity cascade , for instance, is

described by the Euler equation so that the correspondence between the nodal lines in

turbulence and SLE hints at some fundamental properties of this equation which we do

not yet grasp.

Let us now describe briefly the results for the surface quasi-geostrophic model,

m = 1. In this case, the zero-temperature isoline crosses the straight line rarely so that

we simply choose as the candidates for SLE the pieces of the curve returning to the

line at the distance far exceeding 2π/kα. An example is shown in Figure 9 (a). Such a

procedure is self-consistent for κ ≤ 4,which is indeed what we obtain. To recover the

driving function for the curve going from 0 to x∞ in the upper half-plane, one needs

to solve the equation ∂tgt = 2/{ϕ′
(gt)[ϕ(gt) − ξt]}, where ϕ(z) = x∞z/(x∞ − z). This

equation on gt can be solved for a constant ξ: Gt, ξ(z) = x∞{ηx∞(x∞−z)+[x4
∞(z−η)2+

4t(x∞−z)2(x∞−η)2]1/2}/{x2
∞(x∞−z)+[x4

∞(z−η)2 +4t(x∞−z)2(x∞−η)2]1/2}, where

η = ϕ−1(ξ). In this case, the curve is the semi-circle connecting η and x∞. We divide

the interval [0, T ] into small intervals [tn, tn+1) t0 = 0, tN+1 = T , where driving function

can be considered piecewise constant, ξn = ξ(tn). The map gt is found as a composition

GtN−tN−1, ξN−1
◦ · · · ◦ Gt1, ξ0 . Approximating the curve by a finite number of points,

{z0, z1, . . . , zN+1}, where z0 = 0 and zN+1 = x∞, such a discrete procedure defines the set

ξn = ξ(tn). The first step is to find the semi-circle passing through x∞ and z1 [see Fig. 9

(b)]. That gives the values η0 = ϕ−1(ξ0) = [Rez1 x∞ − (Rez1)
2 − (Imz1)

2] /(x∞ − Rez1)

t1 = (Imz1)
2x4
∞/{4[(Rez1− x∞)2 + (Imz1)

2]2}. The map Gt1, ξ0 then maps zk into a new

sequence which is one element shorter: z′k = Gt1, ξ0(zk+1) k = 1 . . . N . Iterating such

procedure one defines two sets tk and ξk, which approximate the driving function. The

procedure was checked first in applying to a self-avoiding random walk where it gave

the right value κ = 8/3 with the accuracy better than 5%. Applying the procedure

to the surface quasi-geostrophic model we obtain ξ(t), whose statistics converges at

0 x∞

(a)

 ∞z

zNz1 z
2z

/

zk

z/
k−1

z =00

(b)

1

0
ϕ (ξ )−1      =xN+1

Figure 9. (a) A part of the temperature isoline that is a candidate for SLE. (b) The
algorithm to extract the driving function (see text). The figure is adapted from [10]
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l2f < κt < 2π/kα to the Gaussian statistics with 〈ξ2(t)〉 = κt κ = 4± 0.2, as shown at

the right part of the Fig. 8. We conclude that within our accuracy the temperature

isolines behave locally as curves from SLE4. Worth stressing that the temperature field

is substantially non-Gaussian [15, 10] so that it is completely unclear how it can have

isolines with the same statistics as that of the isolines of the free Gaussian field with

the same second moment.

Remark that if the contour z(l) belongs to the class SLEκ, then the unit vector zl

has a Gaussian statistics with the second moment proportional to the logarithm of the

contour length. That property has also been found for the isolines of temperature and

vorticity for both our models [9, 10].

Let us briefly discuss weak wave turbulence from the viewpoint of conformal

invariance. Such turbulence has statistics close to Gaussian. Gaussian scalar field in 2d

is conformal invariant if its correlation function is logarithmic i.e. the spectral density

decays as k−2. Such is the case, for instance, for the fluid height in gravitational-capillary

weak wave turbulence on a shallow water (see Zakharov et al 1992, Sect. 5.1.2). It is

interesting if deviations from Gaussianity due to wave interaction destroy conformal

invariance. Another interesting example is the inverse cascade of 2d strong optical

turbulence described by the Nonlinear Schrödinger Equation,

iΨt + ∆Ψ + T |Ψ|2Ψ = 0 . (31)

This equation also describes Bose-Einstein condensation (then it is usually called Gross-

Pitaevsky equation). Weak turbulence is determined by |T |2 and is the same both for

T < 0 (wave repulsion) and T > 0 (wave attraction). Inverse cascade tends to produce

a uniform condensate Ψ(k = 0) = A. At high levels of nonlinearity, different signs

of T correspond to dramatically different physics. At T < 0 the condensate is stable,

it renormalizes the linear dispersion relation from ωk = k2 to the Bogolyubov form

ω2
k = k4 − 2TA2k2. That dispersion relation is close to acoustic at small k, it allows

for three-wave interactions. The resulting over-condensate turbulence is a mixture of

phonons, solitons, kinks and vortices. On the contrary, the condensate and sufficiently

long waves are unstable at T > 0; that instability leads to wave collapse at d = 2, 3

with the energy being fast transferred from large to small scales where it dissipates

(Dyachenko et al 1992). No analytic theory is yet available for such strong turbulence.

Numerics hint that in the case of a stable growing condensate, the statistics of the

finite-scale fluctuations approach Gaussian with a logarithmic correlation function [25].
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10. Conclusion

We reiterate the conclusions on the status of symmetries in turbulence.

Turbulence statistics is always time-irreversible.

Weak turbulence is scale invariant and universal (determined solely by the flux value).

It is generally not conformal invariant.

Strong turbulence: Direct cascades often have symmetries broken by pumping (scale

invariance, isotropy) non-restored in the inertial interval. In other words, statistics

at however small scales is sensitive to other characteristics of pumping besides the

flux. That can be alternatively explained in terms of either structures or statistical

conservation laws (zero modes). Anomalous scaling in a direct cascade may well be

a general rule apart from some degenerate cases like passive scalar in the Batchelor

case (where all the zero modes have the same scaling exponent, zero, as the pair

correlation function). Inverse cascades in systems with strong interaction may be not

only scale invariant but also conformal invariant. It is an example of emerging or restored

symmetry.

For Lagrangian invariants, we explain the difference between direct and inverse cascades

in terms of separation or clustering of fluid particles. Generally, it seems natural that

the statistics within the pumping correlation scale (direct cascade) is more sensitive to

the details of the pumping statistics than the statistics at much larger scales (inverse

cascade).
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[30] Falkovich, G., Gawȩdzki, K. and Vergassola, M. (2001). Particles and fields in fluid turbulence,

Rev. Mod. Phys., 73, 913–975.
[31] Falkovich G. and Sreenivasan, K. (2006). Lessons from hydrodynamic turbulence, Physics Today,

59, 43–49.
[32] Frisch, U. (1995). Turbulence (Cambridge Univ. Press, Cambridge,).
[33] Frisch U. and Bec, J. (2001). Burgulence, in Les Houches 2000: New Trends in Turbulence, ed. M.

Lesieur, (Springer EDP-Sciences, Berlin)
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