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Foreword

The purpose of these notes is very modest. They are meant to introduce

readers gently to the concepts of Loewner chains, local growth and stochas-

tic Loewner evolutions (SLEs). These concepts have played an important

role in physics and mathematics during the recent years.

The �rst chapter describes two discrete examples, the exploration pro-

cess and loop-erased random walks. It can be read almost without any

prerequisites. The aim is to show that even for curves de�ned purely in

geometrical terms, it is useful to have a statistical mechanics viewpoint

where the measure on curves is derived from a measure on local degrees of

freedom of some model. A third model, DLA is also introduced.

The second chapter introduces Loewner chains and their relevance for

the description of growth processes. A prerequisite is a minimal knowledge

of complex analysis.

The third (and last) chapter contains the derivation of the relevance of

SLE in the description of interfaces when two properites, conformal invari-

ance and the domain Markov property, are assumed/proved. The prereq-

uisites are some knowledge of complex analysis and probability theory.

The discussion is informal. There is little or no claim at originality. We

try to give some intuition based on explicit examples. Physical applications

are sometimes mentioned but never explained in detail.

There is no reference but it is easy to �nd more detailed and/or rigorous

and/or applied and/or ... presentations with references in the available
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literature on the web by typing keywords.
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Chapter 1

Discrete models

Random curves have focussed the interest of physicists and mathematicians

for decades. The simplest and perhaps oldest example is the random walk

or its continuous counterpart, Brownian motion. For dimensions ≤ 4 it is
not a simple curve. On the other hand, polymers have a strong tendency to

be self avoiding, and they can be modeled crudely as random simple walks

with a statistical weight giving fugacity µ to each monomer. But there is

a wealth of interesting models of random simple walks. Among them are

interfaces in 2d systems. Under certain circumstances, such systems are

expected to have a continuum limit.

Recently a lot of progress has been achieved. First, a classi�cation of

random curves in the continuum with certain special properties has been

obtained. It has received the name �Stochastic Loewner Evolutions�, and it

is the subject of chapter 3. It is hard to overestimate the impact of SLE : it

has given tools to solve formidable problems by routine computations, but

moreover it has made it possible to prove that families of random simple

walks and interfaces have a continuum limit.

The purpose of the examples that follow is to illustrate the connexion

between geometrical random curves and statistical mechanics. It turns out

that partition functions under various disguises play a huge role in the

study of SLE

1.1 Discrete domains

In what follows, a domain D is an open simply connected (i.e. no holes)

strict subset in the euclidean plane.
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Figure 1.1: Left: a smooth hexagonal domain. Middle: a non-smooth

hexagonal domain. Right: an admissible boundary condition.

The euclidean plane admits regular tilings by hexagons, by triangles or

by squares. The following de�nitions are given for hexagonal tilings, but

they can easily be adapted for tilings by triangles and squares.

All hexagonal tilings can be obtained from one of them by similarities

(in complex notation z 7→ λz + ρ. Fix such a tiling T , for instance one

whose hexagons have unit area . The plane is the disjoint union of vertices

, open edges and open faces of T : every point in the plane is either a vertex,

or an interior point of an edge, or an interior point of a face.

An hexagonal domain D with reference T is a domain in the usual sense

which is the union of vertices, open edges and open faces of T .
This de�nition accomodates �smooth� domains like the left one in Fig.1.1

whose boundary is a simple curve but also more irregular shapes like the

middle one in Fig.1.1 whose boundary is not a simple curve. If ε > 0 is

much smaller than the size of an edge of T , the points in the hexagonal

domain D whose distance to the complement of D is ε form a simple curve,

but the limit ε → 0+ is singular. The knowledge of the side from which

a boundary point is approached is naively lost in the limit, but one can

decide to keep track of it and this is the most useful de�nition of boundary

in this context. For hexagonal domains we have thus a notion of boundary

wich makes it a curve even for a non smooth domain1.

An admissible boundary condition is a couple of distinct vertices (a, b)

of T , a, b /∈ D such that there is a path (or simple walk) from a to b in D
i.e. a number n ≥ 1 and a sequence s1, · · · , s2n+1 where a = s1, b = s2n+1,

1That such a boundary can also be de�ned for general domains is a nontrivial matter.
This is related to the theory of �prime ends� and of the so-caled Poisson/Martin boundaries
that parametrize solutions of the Laplace equation.
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the s2m+1, 1 ≤ m < n, (if any) are distinct vertices of T in D and the s2m,

1 ≤ m < n, are distinct edges of of T in D with boundary {s2m−1, s2m+1}.

This is illustrated on the left of Fig.1.1. Any such path splits D into a left

and a right piece.

If s1, · · · , s2n+1 is a path from a to b in D and 0 ≤ m < n, the set D ′

obtained by removing from D the sets sl, 1 < l ≤ s2m+1 is still a domain,

and (s2m+1, b) is an admissible boundary condition for D ′.
Our main interest in the next subsections will be in measures on paths

from a to b in D when D is an domain and (a, b) an admissible boundary

condition.

Hexagonal domains have a special property which is crucial for what fol-

lows. Suppose (D, a, b) is an hexagonal domain with admissible boundary

condition. The right (resp. left) hexagons are by de�nition those which

are on the right (resp. left) of every path from a to b in D. Left and

right hexagons are called boundary hexagons. The other hexagons of D
are called inner hexagons2. Color the left hexagons in black (say) and the

right hexagons in white as in Fig.1.2 on the left. If one colors the inner

hexagons arbitrarily in black or white, then there is a single path from a

to b in D such that the hexagon on the left (resp. right) of any of its edges

is black (resp. white). This is illustrated in Fig.1.2 on the right. This path

can be de�ned recursively because a is on the boundary of at least one left

and at least one right hexagon: as a is not in D, in any coloring there is

exactly one edge in D with a on its boundary and bounding two hexagons

of di�erent colors. Start the path with this edge and go on.

If D is an arbitrary domain and λ 6= 0, ρ are complex numbers, one can

approximate D by an hexagonal domain with reference tiling λT + ρ. It

is useful for the general theory to have a quantititive notion of how close

such an approximation is to the original domain and to have quantitiative

notion of convergence of approximations (when λ gets smaller and smaller)

that garanties that some phenomena on discrete domains (for instance some

properties of certain statistical mechanics models) have an interpretation in

the limit. We shall not give a formal de�nition of convergence, but simply

mention that it exists.

All the examples of interfaces we shall deal with in the sequel can be

de�ned on arbitrary hexagonal domains with admissible boundary condi-

2Note that being a boundary or an inner hexagon depends on (a, b).
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Figure 1.2: Left: the boundary of an hexagonal lattice domain with bound-

ary conditions. Right: the interface associated to a con�guration.

tion, though sometimes we shall use square domains. Certain geometrical

examples will de�ne directly a law for the interface or a probabilistic algo-

rithm to construct samples. Examples from statistical mechanics will give a

weight for each coloring of the inner hexagons, and the law for the interface

can be derived (at least in principle) from this more fundamental weight.

The model of interface can depend on some parameters, called collectively

p (for instance, temperature can be one of those).

Consider an interface model with parameter family p on discrete do-

mains. Fix an arbitrary domain with two marked boundary points, (D, a, b)
and approximate it by a �convergent� sequence of discrete domains with

boundary conditions (Dn, an, bn) whose reference tiling λnT has scale λn →
0+. A continuum limit exists when there is a (domain independent) func-

tion p(λ) such that the distribution of interfaces in (Dn, an, bn) with pa-

rameters p(λn) converges to some limit. The limiting value p(0) is called

the critical value pc. The choice p(λ) = pc leads to a scale invariant theory.

A map f : D → D ′ between two domains sending marked boundary

points to marked boundary points (i.e. f(a) = a ′ and f(b) = b ′) is said to

be conformal if it preserves angles. Riemann's theorem, to be explained in

more detail in section 2.1 asserts the existence of such maps. One can then

ask, for a given interface model, whether the distribution of interfaces in

(D, a, b) and in (D ′, a ′, b ′) are conformally equivalent. This can be checked

numerically on good lattice approximations of these domains.
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In two dimensions scale invariance plus locality is often enough to ensure

conformal invariance. Thus the limiting theory of a discrete model at p =

pc is a good candidate for confromal invariance. More generaly, there is

often a threshold function ps(λ) such that if p(λ) − pc = o(ps(λ) − pc) the

limiting continuum theory is the same as the critical theory, if p(λ) − pc ∝
ps(λ)−pc a limiting continuum theory exist but is not scale invariant, and

if ps(λ) − pc = o(p(λ) − pc) the limiting theory either does not exist or

is trivial in some sense (concentrated on a single curve for instance). It is

clear that only the small λ behavior of ps matters and commonly ps(λ)−pc
can be taken to be simply a power of λ. The exponent is one of the critical

exponents of the model.

1.2 Exploration process

1.2.1 De�nition

Let (D, a, b) be an hexagonal domain with admissible boundary condition.

Color the left hexagons in black (say) and the right hexagons in white. If a

is incident to no inner hexagon of D, all paths from a to b in D start with

the same edge. Else, a is incident to exactly one inner hexagon of D. Color
it black or white using a biased coin (say black has probability p and white

1− p), and make a step along the edge of D adjacent at a whose adjacent

faces have di�erent colors. Then remove from D the edge corresponding

to the �rst step and its other end point, call it 
a to get a new domain 
D.
If 
a = b stop. Else ( 
D, 
a, b) is a new hexagonal domain with admissible

boundary condition and one can iterate as shown on the Fig.1.3. Each

choice of color is made independently of the preceeding ones but with the

same bias. This random process is called the exploration process, and by

construction it results in a simple path from a to b.

The fact that at some times the next step can be decided without tossing

(for example, in Fig.1.3, for the transition from the second picture to the

third one, the choice of color for one hexagon is enough to �x two steps of

the exploration path) results in a subtle interaction between the abstract

independant coin tossings and their intricate e�ect on the geometry of the

path.

There is exactly one coin toss for each inner face of D touching an edge

of the path : this toss takes place the �rst time the inner face is touched by
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Figure 1.3: The exploration process.

the tip of the path. In the rest of the process, this face becomes a boundary

hexagon. But the path can have more than one egde along it.

The exploration process has a very important property: locality. It

means that if (D, a, b) and (D ′, a, b), D ′ ⊂ D are two hexagonal domains

with the same admissible boundary condition (a, b), the distributions of

the exploration path in D and D ′ coincide up to the �rst time it touches

a boundary hexgagon of D ′ wich is an inner hexagon of D. This notion of

locality should not be confused with the notion of locality in quantum �eld

theory.

By symmetry, if there is a single value of p for which the theory is

critical, it has to be pc = 1/2 and the numerics con�rms this intuition.

Fig.1.4 shows a few samples of the symmetric exploration process. They

join the middle horizontal sides of similar rectangles of increasing size. The

pseudo random sequence is the same for the four samples.

Even for small samples, the exploration process makes many twists and

turns. By construction, the interface is a simple curve, but with the res-

olution of the �gure, the exploration proacess for large samples does not

look like a simple curve at all!

To estimate the (Hausdor�, fractal) dimension of the symmetric explo-

ration process, one can generate samples in similar rectangular domains

of di�erent sizes and made the statistics of the number of steps S of the

interface as a function of the size L of the rectangle domain. One observes

that S ∝ Lδ and a modest numerical e�ort (a few hour of CPU) leads to
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Figure 1.4: Samples of the exploration process for increasing sizes.

δ = 1.75 ± .01. To get an idea of how small the �nite size corrections are,

observe Fig.1.5.

The exploration process is build by applying local rules involving only

a few nearby sites, and we could wave our hands to argue that its scale

invariance (for p = pc = 1/2) should imply its conformal invariance in the

continuum limit. But the exploration process is one which has been rigor-

ously proved to have a conformally invariant distribution in the continuum

limit, the fractal dimension being exactly 7/4. As suggested by numeri-

cal simulations, the continuum limit does not describe simple curves but

curves with a dense set of double points, and in fact the �to be de�ned

later� SLE6 process describes not only the exploration path but also the

exploration hull, which is the complement of the set of points that can be
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joined to in�nity by a continuous path that does not intersect the explo-

ration path. As we shall mention later, among SLEκ's, SLE6 is the only one

that satis�es locality, so what is really to prove in this case is conformal

invariance in the continuum limit (a nontrivial task), and the value of κ is

for free.

Figure 1.5: The logarithm of the average length of the exploration path

versus the logarithm of the domain size. The numerical results are the

circles, the straight line is the linear regression, the error bars are shown.

1.2.2 Relation to percolation and coupling

The exploration process has been presented as a growth process, but in fact

it is related to statistical mechanics in a simple way. Indeed, suppose that

once the exploration sample has been constructed one tosses repeatedly

(independently) the same coin to color also the hexagons that have not

been colored during the construction of the path. One gets a con�guration

in which all hexagons have been colored independently, and from which the

exploration path can be reconstructed has the sole curve joining the marked

points with bording hexagons all black one the left side and white on the

right side. So one could also construct exploration samples by coloring

all the hexagons independently at once and then drawing the separating

curve. So the exploration path is the interface for the statistical mechanics

of percolation.
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Of course this appproach is a poor idea for numerical simulations of

the exploration process for a �xed p, because many hexagons are colored

for no use. But it has several advantages. First, it shows plainly that the

law for the exploration process is reversible (i.e. the choice of which of

the two marked is used to start the exploration path is irrelevant). Second,

percolation can be studied with other boundary conditions. Third, it makes

it possible to use the powerful probabilistic tool of coupling.

It happens frequently that on some measure space (A,F) one has to deal

with a family of probability laws Pu where u is some parameter. In some

favorable circumstances, one can �nd another probability space (E,G, µ)

and a family of measurable maps fu : E→ A such that the image measure

of µ by fu is Pu: if B is a measurable subset of A (i.e. B ∈ F) then f−1u (B)

is a measurable subset of E (i.e. f−1u (B) ∈ G) and Pu(B) = µ(f−1u (B)).

Thus we can �x a con�guration in E and by changing u see a �movie� of

con�gurations in A. This is known as coupling.

In the case of percolation, it is easy to �nd a coupling. Let the parameter

u vary in [0, 1]. If H is the set of inner hexagons (the ones whose colors

are not �xed by boundary conditions) of some �nite hexagonal domain,

set A = {b,w}H with F = P(A) (all subsets of A are measurable), and

set E = [0, 1]H with µ the product Lebesgue measure. So A is the set of

assignments of a color, b(lack) or w(hite), to each inner hexagon, and E

is the set of assignments of a real number ∈ [0, 1]H to each inner hexagon.

A con�guration in A can be seen equivalently as a map from H to {b,w},

or as a partition of H in black and white. If x ∈ [0, 1], set fu(x) = b if

u < x and fu(x) = w if u ≥ x. Use the product structure of A and E to

de�ne fu : E→ A so that an hexagon h is white if and only if its assigned

value is ≥ u. Obviously the image measure of µ by fu colors the inner

hexagons independently, each being black with probability 1−u and white

with probability u.

In such a setting, a useful tool is Russo's formula. Let us derive it

abstractly and then interpret it. Suppose we partition A in two subsets

A = B∪W in such a way that being inW is a so-called increasing property :

if γ ∈ W and if γ ′ ∈ A is such that all hexagons which are white in the

con�guration γ are also white in the con�guration γ ′ then γ ′ ∈ W. If

we order {b,w} by saying that w > b and view γ and γ ′ as maps from

H to {b,w}, this says that if γ ∈ W and γ ′ ≥ γ then γ ′ ∈ W. Then it is

intuitively clear, and coupling makes it obvious, that Pu(W) is an increasing
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function of u. If γ ∈ A is a con�guration, call an hexagon h pivotal for

A = B ∪W in the con�guration γ either if γ ∈ B, h is colored in black

and changing it into white yields a con�guration in W or if γ ∈ W, h is

colored in white and changing it into black yields a con�guration in B. In

the �rst case, we say that h is pivotal in γ to enter W and in the second

case that h is pivotal in γ to enter B. In each con�guration γ ∈ A there

is a certain number (possibly 0) of pivotal hexagons Π(γ), and Π is thus a

random variable on A. Russo's formula states that

d

du
Pu(W) = Eu(Π),

i.e. that the derivative of Pu(W) is the expected number of pivotal points

for the probability Pu.

The proof is easy. We shall prove a slightly more re�ned identity, namely

that if ΠW(γ) is the number of hexagons in γ pivotal to enter W then (1−

u) d
du
Pu(W) = Eu(ΠW). By symmetry if ΠB(γ) is the number of hexagons

in γ pivotal to enter B then u d
du
Pu(W) = Eu(ΠB). As Π = ΠW + ΠB, the

sum of these two equalities gives Russo's formula. Suppose 0 ≤ u < v ≤ 1.
By de�nition Pv(W) − Pu(W) = µ(fv(X) ∈W) − µ(fu(X) ∈W) and by the

increasing property of W this is µ(fv(X) ∈ W and fu(X) /∈ W). We can

split this as a double sum to get

Pv(W) − Pu(W) =
∑
β∈B

∑
ω∈W

µ(fv(X) = ω and fu(X) = β).

Note that the summand can be nonzero only if β < ω i.e. if one can go from

β to ω by turning some black hexagons to white ones because this is what

happens to f.(X) for a �xed X by tuning the parameter from u to v. For a

given X the hexagons h that change color are those for which X(h) ∈]u, v],

so in the above double sum only the pairs (β,ω) which disagree on a single

hexagon can contribute to �rst order in v− u.

For instance we can sum �rst over β's to get

Pv(W)−Pu(W) =
∑
β∈B

∑
h pivotal in β

µ(fu(X) = β and X(h) =∈]u, v])+O((v−u)2).

But by the de�nition of µ and fu, µ(fu(X) = β and X(h) =∈]u, v]) =

µ(fu(X) = ω)v−u
1−u

= Pu(β)v−u
1−u

. So

Pv(W) − Pu(W) =
v− u

1− u

∑
β∈B

Pu(β)#{pivotal points in β} +O((v− u)2).
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Figure 1.6: Left: a sample of critical percolation with a black crossing

and no pivotal point. Right: a sample of critical percolation with a white

crossing and several pivotal points. Find these!

The sum is just the expected number of pivotal points to enter W for Pu,

and taking the limit leads to the annouced result :

(1− u)
d

du
Pu(W) = Eu(ΠW).

Had we decided to sum �rst over ω's, we would have obtained

u
d

du
Pu(W) = Eu(ΠB).

Now that we have proved Russo's formula abstractly, let us apply it to

a concrete decomposition of A relevant for percolation. Take a domain and

split its boundary into four segments, such that the colors of the hexagons

are �xed on each segment but alternate from one segment to the next as

on Fig.1.6. Then a simple topological argument shows that in any con�g-

uration either there is a black cluster connecting the two black boundary

componants, or there is a white cluster connecting the two white boundary

componants. In the �rst case put the con�guration in B and in the second

case put it inW. That being inW is an increasing property is clear. Pivotal

hexagons are the ones which change the color of the connecting cluster, so

they have a impact on the long range properties of a con�guration. Fig.1.6

shows two samples.
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Such pivotal points could be called �global pivotal points� because they

are de�ned with respect to global boundary conditions. However, in an

arbitrary con�guration of percolation one can look at windows of a certain

size and de�ne pivotal points with respect to that window. Anyway, at

u = pc = 1/2, the number of pivotal points can be shown to behave like

(L/λ)3/4 where L is the linear size of the system and λ is the scale of the

tiling. So ps(λ)−1/2 = λ3/4 is a good candidate for the threshold function:

by coupling, changing u from the critical value 1/2 to 1/2+gλ3/4 just �ips

of order 1 pivotal points, and Russo's formula indicates that P1/2+gλ3/4(W)−

P1/2(W) is a �nite function of g in the continuum limit. The validity of this

threshold function is in fact rigorously proved (only in some weak sense at

the moment, but progress is rapid).

So even if the exploration process can be de�ned purely as a geometric

random curve model, it proves very useful to introduce a (seemingly trivial)

two dimensional statistical mechanics model from whom the law of the the

exploration process is obtained as a �marginal� of the full distribution.

1.3 Loop erased random walks

This example still keeps some aspects of a growth process, in that new

pieces of the process can be added recursively. Loop-erased random walk

were invented by Lawler as an example of random paths more tractable

than the canonical self avoiding walks. A loop-erased random walk is a

random walk with loops erased along as they appear.

1.3.1 De�nition

More formally, if X0, X1, · · · , Xn is a �nite sequence of abstract objects,

we de�ne the associated loop-erased sequence by the following recursive

algorithm.

Initialize counters l = 0 and m = 1 and set Y0 = X0

Iterate while m ≤ n
{

-If there is a k with 0 ≤ k ≤ l such that Yk = Xm set l = k

-Else increment l by 1 and set Yl = Xm.

}
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The loop-erased sequence is Y0, · · · , Yl.

Let us look at two examples.

For the �month� sequence j,f,m,a,m,j,j,a,s,o,n,d, the �rst loop is m,a,m,

whose removal leads to j,f,m,j,j,a,s,o,n,d, then j,f,m,j, leading to j,j,a,s,o,n,d,

then j,j leading to j,a,s,o,n,d where all terms are distinct.

For the �reverse� month sequence d,n,o,s,a,j,j,m,a,m,f,j, the �rst loop is

j,j, leading to d,n,o,s,a,j,m,a,m,f,j, then a,j,m,a leading to d,n,o,s,a,m,f,j.

This shows that the procedure is not �time-reversal� invariant. More-

over, terms that are within a loop can survive: in the second example m,f,

which stands in the j,m,a,m,f,j loop, survives because the �rst j is inside

the loop a,j,m,a which is removed �rst.

The above algorithm is most useful if the sequence X0, X1, · · · , Xn is

viewed as a stream of data that is treated �on the �y�. If X0, X1, · · · , Xn is

known at once, another algorithm erases the loop in possibly fewer steps.

It goes as follows:

Initialize counters l = 0 and m = n

Until l = m, iterate

{

- Find the largest k ≤ m such that Xk = Xl

- If k > l remove the terms with indices from l + 1 to k, and shift the

indices larger than k by l− k to get a new sequence.

- Decrement m by k− l and increment l by 1.

}

For the month sequence, this leads at once from j,f,m,a,m,j,j,a,s,o,n,d

to j,a,s,o,n,d, and then the counter l is incremented from 0 to 5 without

further removals. For the �reverse� month sequence the counter l is incre-

mented from 0 to 4, a loop is removed leading from d,n,o,s,a,j,j,m,a,m,f,j

to d,n,o,s,a,m,f,j, then the counter l is incremented from 5 to 7 without

further removals.

A loop-erased random walk is when this procedure is applied to a (two

dimensional for our main interest) random walk. In the full plane this is

very easy to do. Fig.1.7 represents a loop-erased walk of 200 steps obtained

by removing the loops of a 4006 steps random walk on the square lattice.

The thin grey lines build the shadow of the random walk (where shadow

means that we do not keep track of the order and multiplicity of the visits)
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Figure 1.7: A loop-erased random walk with its shadow.

and the thick line is the corresponding loop-erased walk. The time asym-

metry is clearly visible and allows to assert with little uncertainty that the

walk starts on the top right corner.

In this setting, it is trivial to get samples but the measure remains in the

background. One possible approach is the following. Consider a symmetric

random walk on the square lattice and view the successive positions as a

stream of data. Remove the loops as they show up, and stop the random

walk at the �rst time n for which the associated loop-erased walk has

reached length N. The probability of the random walk is 4−n. Note that

the set of random walks for which the loop-erasure never reaches size N

has probability 0, for instance as a subset of the set of random walks that

remain in the ball of radius N centered at the origin forever. So the total

probability for the set of random walks stopped when their loop-erasure

reaches length N is 1. This procedure leads to a �nite family of loop-erased

walks, each of them can be obtained via the loop erasure of an in�nite

number of random walks. The probability of a given loop-erased walk is

taken to be sum of the individual probabilities of its random walk ancestors.

This can be adapted to the setting of discrete domains with admissible

boundary condition. Let (D, a, b) be such a domain, and let v be the

valency of the associated tiling, i.e. the number of egdes adjacent to a
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vertex: v is 6 or the triangular tilings, 4 for the square tilings, and 3 for the

hexagonal tilings. Consider the set of walks from a to b in D ∪ {a, b} that

visit a and b only once, and give each step weight v−1, so that the weight

of a walk is the usual random walk probability on the tiling. However, the

total weight of walks from a to b in D ∪ {a, b} is < 1. As before, these

walks can be loop-erased, and the weight of a simple path γ from a to b in

D ∪ {a, b} is taken to be sum of the weights of all random walks from a to

b in D∪ {a, b} whose loop erasure leads to γ. To get a probability measure,

one needs to divide the weight by the total weight of all random walks

from a to b in D ∪ {a, b}. This is easy in principle, and is closely related

to the solution of the discrete Laplace equation with appropriate boundary

conditions; in practice this normalization can be computed explicitely for

only a handful of examples.

In the same spirit, if we have an arbitrary weight assignment for walks

from a to b in D ∪ {a, b}, we can use it to induce a weight on simple

paths from a to b in D ∪ {a, b} again by taking the weight of a simple

path γ to be sum of the weights of all random walks from a to b in D ∪
{a, b} whose loop erasure leads to γ. What is special about the standard

random walk weight is that, as is well known, the random walk has a scale

invariant limit (Brownian motion of course), so the corresponding loop-

erased random walk can be expected to have a scale invariant limit. The

loop-erased random walk is one of the �rst systems that has been proved to

have a (not only scale but even) conformally invariant continuum limit, the

fractal dimension being 5/4. A naive idea to get directly a continuum limit

representation of loop-erased walks would be to remove the loops from a

Brownian motion. This turns out to be impossible due to the proliferation

of overlapping loops of small scale. However, the SLE2 process, to be

de�ned later, gives a direct de�nition. In fact, it is the consideration of loop-

erased random walks that led Schramm to propose SLE as a description of

interfaces.

1.3.2 Simulation

We have seen that is is very simple to generate loop-erased random walks

of a �xed length N in the plane. We could use this technique to get a

probability measure on the �rst N steps of loop-erased random walks of

lengthM. However, it is unclear whether this probability measure stabilizes
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if we �x N and let M go to in�nity. One of the problems is that in two

dimensions, random walks are recurrent: with probability one they visit

every site (and then they have to do it in�nitely many times). So if we

erase the loops of a random walk, the resulting loop-erased walk never

stabilizes; if we wait long enough, the random walk comes back to the

origin and at that instant the loop-erased walk starts anew from scratch.

The numerical simulation of a loop-erased random walk in domains

(D, a, b) is not easy either, because the random walks have a tendency to

leave D. Note that it would bias the sampling if we would forbid them

to leave by simply dispatching the weight of steps leaving D to the ones

staying in D. What one has to do is to condition on random walks staying

in D. So most samples would have simply to be rejected and only from

time to time would a sample be a walk from a to b in D ∪ {a, b}.

There is one exceptional domain in which at the same time an in�nite

loop-erased random walk can easily be de�ned and simulated. It is when

D is the square tiling of an half-space, conventionally taken to be Hint, the

tiling of the upper-half plane with vertices at the points (n,m) ∈ Z×N, a
is O ≡ (0, 0) (by translation invariance along the real axis, any boundary

vertex would do) and b is in�nity. Let us explain why random walks on

the square lattice conditioned to go from O to in�nity while staying in Hint

have a simple description.

The horizontal steps are not an issue, and we can concentrate on vertical

steps. For a simple random walk in one dimension it is well known that

a walk started at m ∈ [0, l] touches the boundary for the �rst time at the

endpoint 0 with probability 1−m/l and at the endpoint l wiht probability

m/l. Indeed, if p(m) is the probability to touch the boundary for the

�rst time at the endpoint 0, then p(0) = 1, p(l) = 0 and if m ∈]0, l[,

p(m) = 1
2
(p(m − 1) + p(m + 1)) as can be seen by conditioning on the

�rst step of the walk. So by the usual rules of conditional probabilities, if

the random walk is conditioned to exit at l and is at m ∈]0, l[ at time t,

it has probability m+1
2m

to go to m + 1 and m−1
2m

to go to m − 1. This has

three striking consequences. First, the process remains Markov and time

time homogeneous. Second, the transition probabities do not depend on

l, so they can be used even if l is in�nite. Third, taking l in�nite, the

probability, starting at m, never to visit m ′ < m is 1 −m ′/m > 0 as can

be seen by conditioning on the �rst step of the walk.

These three properties imply that each site is visited only a �nite num-
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ber of times, i.e. the walk escapes to in�nity. Let us explain this in more

detail. Suppose the walk starts from 0, goes to 1 at the �rst step, and

then the above transition probabilities are used. Then at the second step

the walk goes to 2. With probability 1/2 it never goes back to 1 again.

With probability 1/2 it comes back to 1 at some point, and then the walk

starts anew. Thus the number of visits to 1 follows a geometric law : 1 is

visited k ≥ 1 times with probability 1/2k. In particular the probability to

visit 1 at least k times is 1/2k−1 which goes to 0 (in fact exponentially).

Hence with probability 1 the number of visits of point 1 is �nite. The same

argument generalizes. First, let s be the probability that point m ≥ 1 is

never visited. Suppose the walk is at point m. With probability m+1
2m

it

goes to m+ 1 and then with probability 1− m
m+1

= 1
m+1

it never goes back

to m again. So the total probability that the walk starting from m never

visits m again is r ≥ 1
2m
> 0. It follows that that the number of visits to m

follows essentially a geometric law : m is visited 0 times wiht probability s

and k ≥ 1 times with probability (1− s)r(1− r)k−1. Again, the probability

to visit m at least k ≥ 1 times is (1− s)(1− r)k−1 which goes to 0 (in fact

exponentially). Hence with probability 1 the number of visits of point m is

�nite. This is true for any m and any starting point for the walk. Hence,

in particular we see recursively that if the walk is at m ′ < m, m will be

visited later with probability one, because with probability 1 all points in

[0,m − 1] are visited only �nitely many times. This means that in fact

r = 1
2m

. To summarize, if the walk starts from 0, the number of visits to

m ≥ 1 is k ≥ 1 with probability 1
2m

(
1− 1

2m

)k−1
. In particular, the walk is

transient, i.e. it escapes to ∞ with probability 1.

So we use the usual random walk in the horizontal direction but the

conditioned random walk in the vertical direction. Explicitely, at the �rst

step the walk goes from (0, 0) to (−1, 1) or (1, 1) with probability 1/2 , and

later, if at (n,m), the walk makes a step in the NE or NW directions with

probability m+1
4m

and in the SE or SW directions with probability m−1
4m

. Call

the vertical coordinate �altitude� for convenience. As explained before, the

altitude of the walk goes to ∞ with probability one, and the associated

loop-erased walk converges. More precisely, for m < M stop the random

walk the �rst time it reaches altitude M and stop the corresponding loop-

erased random walk at altitude m. Then with probability > 1 − m/M

the loop-erased random walk up to altitude m will not be modi�ed by the

subsequent evolution of the random walk. This is because to close a loop,
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Figure 1.8: A sample of the loop-erased random walk.

the walk has to come back to the same point, which is more stringent than

to come back to the same altitude. Hence, letting M go to in�nity, we get

a well de�ned limiting distribution for loop-erased random walks from O

to altitude m for any m, hence for loop-erased random walks from O to∞.

Accurate numerical simulations are made by taking M >> m. However,

the process for which m = M is interesting as well. It has a continuum

limit which can be studied with the so-called dipolar variant of stochastic

Loewner evolutions.

Fig.1.8 shows a sample of lerw of about 105 steps. At �rst glance,

one observes a simple (no multiple points) irregular curve with a fractal

structure. The intuitive explanation why a loop-erased random walk has a

tendency not to come back too close to itself is that if it would do so, then

with large probability a few more steps of the random walk would close a

loop.
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1.3.3 Relation with statistical mechanics

Again, it is useful to make the connexion between the purely geometric

description of loop-erased random walks and more conventional statistical

mechanics.

The starting point of the correspondance is a formula for the expansion

of the determinant of det(1 −A) when A = (Avv ′)v,v ′∈V is a matrix whith

index set V. For later convenience, we call the elements of V vertices.

A cycle of length k ≥ 1 in V is sequence (v1, · · · , vk) of distinct vertices

of V modulo cyclic permutation; so that (v1, · · · , vk), (v2, · · · , vk, v1), · · ·
represent one and the same cycle. Cycles are said to be disjoint if no vertex

appears in more than one of them. The subsets {C1, · · · , Cn} of P(V) made

of n disjoint cycles of V form a set that we denote Cn. The weight of a cycle
C represented by (v1, · · · , vk) is by de�nition w(C) ≡ Av1v2 · · ·Avk−1vkAvkv1
(for k = 1, this reduces to Av1v1) which indeed is invariant under cyclic

permutations.

An elementary reorganization of Cramer's formula yields

det(1−A) =
∑
n≥0

(−1)n
∑

{C1,··· ,Cn}∈Cn

w(C1) · · ·w(Cn). (1.1)

Similarly, for v, v ′ ∈ V we de�ne a walk of k steps from v to v ′ in V to

be any sequence of vertices (v0, · · · , vk) with v0 = v and vk = v ′ but with

v1, · · · , vk−1 distinct from v and v ′. Hence with this de�nition a walk visits

is starting and end point only once. This restriction is a bit unusual, but

it is not really crucial. The weight of a walk W = (v0, · · · , vk) is taken to

be w(W) ≡ Av0v1 · · ·Avk−1vk .

The sequenceW can be loop-erased to yield a path from v to v ′ (remem-

ber that paths are walks in which a given vertex appears at most once). If

γ is a path, we de�ne

�w(γ) ≡
∑
W 7→γw(W),

where the sum is over all walks whose associated loop-erased walk is γ. We

aim at a general formula for �w.

Let γ = (v0, · · · , vk) be a path from v, v ′ ∈ V. Let V (0) ≡ V\{vk, v0}, V
(1) ≡

V\{vk, v0, v1}, · · · . For l = 0, · · · , k − 1 let A(l) be the matrix A restricted

to the vertex set V (l)

A walk W which yields γ after loops have been erased can be decom-

posed as follows (see the second loop-erasing algorithm): the walk (v0, v1),
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followed by an arbitrary number of walks from v1 to v1 in V
(0), followed by

the walk (v1, v2), followed by an arbitrary number of walks from v2 to v2 in

V (1) and so on. Take 1 ≤ l ≤ k−1. Note that if one expands
(

1

1−A(l−1)

)
vlvl

in formal formal power series in the coe�cents of A, one gets exactly the

sum of the weights for the concatenation of an arbitrary number of walks

from vl to vl in V
(l−1). Hence we infer that

�w(γ) = Av0,v1

(
1

1−A(0)

)
v1v1

Av1,v2

(
1

1−A(1)

)
v2v2

Av2,v3 · · ·

· · ·Avk−2,vk−1

(
1

1−A(k−2)

)
vk−1vk−1

Avk−1,vk

But by Cramer's formula for the inverse of a matrix,(
1

1−A(l−1)

)
vlvl

=
det(1−A(l))

det(1−A(l−1))
for l = 0, · · · , k− 1.

Hence the product in the above formula for �w(γ) is telescopic, and we get

the representation we were aiming at :

�w(γ) = w(γ)
det(1−A(k−1))

det(1−A(0))
. (1.2)

A �rst use of this formlual is that is shows clearly that if the matrix A is

symmetric, the loop-erased random walk weight is reversible i.e. the same

for a path and its opposite or time reversal. In all cases the asymmetry

comes solely from the weight of γ.

It is time to interpret the formulæ obtained so far in connection with

statistical mechanics.

We start with Eq.(1.1) but read from right to left. The right-hand

side can be seen as a partition function for a gas of oriented loops on a

graph. Indeed, if E is an arbitrary subset of V × V, we can consider the

corresponding oriented graph G = (V, E) i.e. view E as the set of edges

if G. We give each edge in (v, v ′) ∈ E the weight Avv ′ and impose that

Avv ′ = 0 if (v, v ′) /∈ E. An oriented loop on G is a sequence (v1, · · · , vk)
of distinct vertices of V modulo cyclic permutation, with the condition

that (v1, v2), (v2, v3), · · · , (vk−1, vk), (vk, v1) are in E. Except for the last

condition, this is what we called a cycle before: note that �cycle� reminds

of the permutation context whereas �loop� reminds of geometric context.
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A con�guration is a family of disjoint oriented loops, each oriented loop

counts for a weight which is the product of the weight of the traversed

edges and an overall factor (−1). Then the partition function, i.e. the sum

of the weights of all possible con�guration is by de�nition the right-hand

side of Eq.(1.1), and this reconstructs the determinant on the left-hand

side. We can specialize more by assuming further that E is a symmetric

subset of V ×V that does not meet the diagonal, and that A is symmetric.

Then there is no loop of length 1, and the loop (v1, · · · , vk) has the same

weight as the loop traversed in the opposite order (vk, · · · , v1). If k = 2 a

loop and its opposite are the same, but not if k ≤ 3. So we get the same

partition function if instead of summing over oriented loops, we sum over

unoriented loops counting each unoriented loop of of length ≥ 3 twice, i.e.
giving unoriented loop of length ≥ 3 a overall factor (−2) instead of (−1).

Finally, we could also give each edge in E the same weight µ so that the

weight of a loop con�guration would be

(−1)# loops of length 2(−2)# loops of length ≥3µ#traversed edges

where of course loops of length 2 count for 2 traversed edges.

This statistical weight could be used as a de�nition of the so-called

O(−2) model, where −2 reminds of the overall weight of each loop (of

length ≥ 3). This model has several avatars, which are supposed to be in

the same universality class, i.e. to describe the same macroscopic physics in

the continuum limit. In certain versions, loops of length 2 are completely

forbidden. Replacing the factor (−2) by a factor n yields the general O(n)

model, which describes other systems of interest. For instance n = 2 is re-

lated to the XY model, the Kosterlitz-Thouless transition and the gaussian

free �eld. Also n = 1 is related to the Ising model, n = 0 to self-avoiding

walks and so on.

Note that the partition function, i.e. det(1 − A) has a simple ��eld

theory� interpretation : if χv and 	χv, v ∈ V are a collection of independant

Grasman variables, the fundamental result of Grasman integration is

det(1−A) =

∫∏
v∈V

dχv d	χve
∑
v,v ′ χv(δvv ′−Avv ′ )	χv ′ .

This is the clue to the quantum �eld theory approach to loop-erased random

walks.
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Before we interpret Eq.(1.2), let us start with a general observation.

Suppose C is a con�guration space, assumed to be �nite for simplicity

and consider a model of statistical mechanics on C. Each c ∈ C has a

weight w(c). The partition function is Z ≡
∑
c∈C w(c). Suppose C can be

partitioned as C = ∪γ∈ΓCγ. Then we can de�ne Zγ ≡
∑
c∈Cγ w(c) for γ ∈ Γ ,

and Zγ can be interpreted as the marginal weight of Cγ. The probability

of Cγ is simply Zγ/Z. In concrete situations, the splitting C = ∪γ∈ΓCγ
will usually have some interpretation. For instance, in the cases we are

interested in in these notes, we shall look at con�guration spaces C that

describe a statistical mechanics model on domains (D, a, b) with boundary

conditions, in such a way that in each c ∈ C we can identify unambiguously

a path γ joining a to b. Of course γ depends on c, and we can use this γ

to split c. Then Zγ/Z is simply the probability to observe the path γ. The

reader should have another glance at Sec.1.2.2 to look at the relationship

between the exploration path and percolation from this viewpoint.

Eq.(1.2) can then be interpreted straightforwardly. We consider now

con�gurations made not simply of (mutually avoiding) loops, but of (mu-

tually avoiding) loops avoiding a path from v to v ′. The total weight of

con�gurations for a �xed path from v to v ′ is simply the numerator of the

right-hand side of Eq.(1.2). The denominator depends on v and v ′ but not

on the simple path between them. So from the point of view of statistical

mechanics explained before, the weight the loop-erased random walk model

assigns to a path γ, , i.e. the left-hand side of Eq.(1.2), is proportional to

the marginal weight of con�gurations of �loops plus that path� in the loop

gas model.

Hence we have succeeded in giving an interpetation of the loop erased

random walks as interfaces in a statistical mechanics model. We are cheat-

ing a bit here because even if we take a positive edge weight µ, because

of the (−) sign associated to each loop, individual con�gurations may well

have a negative weight, so that a straightforward probabilistic interpreta-

tion is not available.

Our interest is of course the case when the graph G is the one associated

with a discrete domain (D, a, b) with admissible boundary conditions. If we

take for the edge weight µ the inverse of the valency v of the tiling, 1−A if

essentially the discrete laplacian with Dirichlet boundary conditions. This

suggests again that a continuum limit exists, for which (continuum) loop-

erased random walks in a (continuum) domain D from a to b are related
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to the �eld theory of so-called symplectic fermions with measure

DχD	χ exp

∫
D
∇χ · ∇	χ

with Dirichlet boundary conditions. This �eld theory is well-known to be

conformally invariant. But µ− 1/v = −λ2 is a scaling function which leads

to the addition of a mass term to the action.

We conclude this section by noting without justi�cation that the way to

impose the existence of a path from a to b is to insert in correlation func-

tions the obervable J(a)	J(b) where J(a) (resp.	J(b)) is the normal derivative

of χ (resp. 	χ) at a (resp. at b).

1.4 Another example of growth: DLA

Up to now, the two growth processes we have de�ned shared some com-

mon features. The next one, DLA, is of a rather di�erent nature. It is

believed to have a scale invariant but not conformally invariant limiting

distribution. Another reason to introduce DLA is that it can also be mod-

elled via Loewner chains, a subject we touch in the next chapter. Finally,

DLA seems to be a relevant model for a variety of phenomena in physics,

for instance aggregation or deposition phenomena, but also in biology, for

instance growth of bacterial colonies under certain circumstances.

DLA stands for di�usion limited aggregation. It refers to processes in

which the domains grow by aggregating di�using particles. Namely, one

imagines building up a domain by clustering particles one by one. These

particles are released from the point at in�nity, or uniformly from a large

circle around the growing sample, and di�use as random walkers. They will

eventually hit the sample and the �rst time this happens they stick to it.

Then the procedure goes on. By convention, time is incremented by unity

each time a particle is added to the domain. Thus at each time step the area

of the domain is increased by the physical size of the particle. The position

at which the particle is added depends on the probability for a random

walker to visit the boundary for the �rst time at this position, which is

essentially what is called the harmonic measure at that position. During

this process the clustering domain gets rami�ed and develops branches and

fjords of various scales. The probability for a particle to stick on the cluster

is much higher on the tip of the branches than deep inside the fjords. This
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property, relevant at all scales, is responsible for the fractal structure of the

DLA clusters.

In a discrete approach one may imagine that the particles are tiny

squares whose centers move on a square lattice whose edge lengths equal

that of the particles, so that particles �ll the lattice when they are glued

together. The center of a particle moves as a random walker on the square

tiling. The probability Q(x) that a particle visits a given tile x satis�es

the discrete version of the Laplace equation ∇2Q = 0. It vanishes on the

boundary of the domain, i.e. Q = 0 on the boundary, because the prob-

ability for a particle to visit a tile already occupied, i.e. a point of the

growing cluster, is zero. The local speed at which the domain is growing

is proportional to the probability for a tile next to the interface but on the

outer domain to be visited. This probability is proportional to the dis-

crete normal gradient of Q, since the visiting probability vanishes on the

interface. So the local speed is vn = (∇Q)n. To add a new particle to the

growing domain, a random walk has to wander around and the position

at which it �nally sticks is in�uenced by the whole domain. To rephrase

this, for each new particle one has to solve the outer Laplace equation, a

non-local problem, to know the sticking probability distribution. This is a

typical example when scale invariance is not expected to imply conformal

invariance.

It is not so easy to make an unbiased simulation of DLA on the lattice.

One of the reasons is that on the lattice there is no such simple boundary

as a circle, for which the hitting distribution from in�nity is uniform. The

hitting distribution on the boundary of a square is not such a simple func-

tion. Another reason is that despite the fact that the symmetric random

walk is recurrent is 2d, each walk takes many steps to glue to the growing

domain. The typical time to generate a single sample of reasonable size

with an acceptable bias is comparable to the time it takes to make enough

statistics on loop-erased random walks or percolation to get the scaling

exponent with two signi�cant digits. Still this is a modest time, but it

is enough to reveal the intricacy of the patterns that are formed. Fig.1.9

is such a sample. The similarity with the sample in Fig.2.1, obtained by

iteration of conformal maps, is striking. But a quantitative comparison of

the two models is well out of analytic control and belongs to the realm of

extensive simulations. There is now a consensus that the fractal dimension

of 2d DLA clusters is Ddla ' 1.71. It has been long debated whether or
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not discrete simulations done right nevertheless do keep a remnant of the

lattice at large distance. There is some consensus now that for instance

the orientation of the lattice can be seen even in the large, and rotation

invariant algorithms should be preferred.

Figure 1.9: A DLA sample.
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Chapter 2

Loewner chains

There are many possible descriptions of subsets of a set. Some may look

more natural than others but it is the problem at hand that decides which

one is the most e�cient. Growth processes in two dimensions involve time

dependent subsets of the complex plane C. Loewner chains have proved

to be an invaluable tool in this context. The simplest situation is when

they are used to describe families of domains. These notes deal (almost)

exclusively with that case.

Loewner chains were introduced (by Loewner!) in the context of the

Bieberbach conjecture, now a theorem proved by de Branges in 1985. It

states that if f(z) = z +
∑
n≥2 anz

n is a holomorphic function injective in

the unit disc U = {z ∈ C, |z| < 1} then |an| ≤ n for n ≥ 2. Bieberbach

proved that |a2| ≤ 2 in 1912, and Loewner proved in 1923 that |a3| ≤ 3
using a dynamical picture of the changes of f(U) when the an's change,

starting from the trivial case f(z) = z.

2.1 Around Riemann's theorem

A domain D is a non empty connected and simply connected open set

strictly included in the complex plane C. Simple connectedness is a notion

of purely topological nature which in two dimensions asserts essentially

that a domain has no holes and is contractile: the domain has the same

topology as a disc.

Riemann's theorem states that two domains D and D ′ are always con-
formally equivalent, i.e. there is an invertible holomorphic map g : D 7→ D ′
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between them.

Riemann stated the theorem but his argument had many gaps. This

was at least partly at the origin of the formidable development of functional

analysis in the twentieth century but it took decades before a proof meeting

modern standards was found.

Extending g to the boundary of D is impossible in general if the naïve

notion of boundary is used, i.e. if the boundary of D is taken as the

complement of D in its closure. As an example, take D to be the upper

half plane H with the vertical line segment ]0, ia] removed and D ′ = H.

The naïve boundary of D is the union of R and ]0, ia]. The limits of g(z)

when z approaches a given point of the segment ]0, ia] from the left or

from the right must be distinct. But another notion of boundary can be

de�ned for which a continuous extension at the boundary is always possible.

Intuitively, this more involved notion keeps track of the di�erent sides from

which a naïve boundary point can be approached. This is trivial in our

simple example but the general case is involved and we shall not give a

precise de�nition. We shall freely use the word �boundary� in the sequel,

leaving to the reader the task of deciding from the context which kind of

boundary we have in mind. In case when there is only one way to approach

naïve boundary points the two notions coïncide.

In simple cases, the map f can be found in closed form. For instance,

the upper-half plane H and the unit disc {z ∈ C, |z| < 1} centered on the

origin are two domains. The conformal transformation f(z) = i1−z
1+z

maps

the unit disc biholomorphically onto the upper half plane with f(0) = i and

f(1) = 0. But the general case is another matter.

The upper half plane has a three dimensional Lie group of conformal

automorphisms, PSL2(R), that also acts on the boundary of H. This group

is made of homographic transformations f(z) = az+b
cz+d

with a, b, c, d real

and ad − bc = 1. To specify such map we have to impose three real

conditions. Hence, there is a unique automorphism � possibly followed by

a transposition � that maps any triple of boundary points to any other triple

of boundary points. Similarly there is unique homographic transformation

that maps any pair made of a bulk point and a boundary point to another

pair of bulk and boundary points. By Riemann's theorem, any domain has

a Lie group of conformal automorphisms isomorphic to PSL2(R) and the
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same normalization conditions can be used.

Riemann's theorem is used repeatedly in the rest of these notes. It is the

starting point of many approaches to growth phenomena in two dimensions

since it allows to code the shapes of growing domains in their uniformiz-

ing conformal maps. To make the description precise one has to choose

a reference domain against which the growing domains are compared. By

Riemann's theorem we may choose any domain as reference domain � and

depending on the geometry of the problem some choices are more conve-

nient than others. The unit disc and the upper half plane are often used

as reference domains.

2.2 Hulls

One can be a more explicit when the domain D di�ers only locally from

the upper half plane H, that is if K = H \ D is bounded. Such a set K is

called a hull. The real points in the closure of K in C form a compact set

which we call KR. In that case, H is the convenient reference domain. Let

g : D 7→ H be a conformal bijection. For z ∈ D de�ne g(z) ≡ g(z). If z

approaches a point x on the real axis while staying within D, g(z) has a real
limit which we denote by g(x). It follows that g extends to a holomorphic

map on the connected open set D ∪ D ∪ (R \ KR) ∪ ∞ of the Riemann

sphere, which contains a neighborhood of ∞. This is an illustration of the

Schwartz re�ection principle. One can use the automorphism group of H to

ensure that g(z) = z+O(1/z) for large z. This is called the hydrodynamic

normalization. It involves three conditions : g maps ∞ to ∞, has unit

derivative there, and has no constant term. These three condition are real

because ∞ is on the boundary of the upper half plane seen within the

Riemann sphere. There is no further freedom left. Thus any property of g

is an intrinsic property of K.

We shall denote this special representative by gK. The inverse map fK
is holomorphic on the full Riemann sphere except for cut along a compact

subset of R across which its imaginary part has a positive discontinuity (in

general this is a measure) dµ(x). Away from the cut, fK has the standard

representation

fK(w) = w−
1

π

∫
R

dµ(x)

w− x
.
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The coe�cients of the expansion of fK at in�nity are essentially the mo-

ments of µ. I particular, they are real. Each of them quantify an intrinsic

property of K. The number CK ≡ 1
π

∫
R dµ(x) is the total mass of µ. It is

positive (or 0 is K is empty). Note that fK(w) = w− CK/w+ · · · at large
w and by inverting, gK(z) = z + CK/z + · · · at large z. The coe�cient

CK plays an important role. It is called the capacity of K seen from ∞.

It's positivity is intuitively related to the fact that one removes a piece

from H. Capacity is trivially translation invariant (x + K, the translate

of K by x units along the real axis, and K have the same capacity) and

has weight 2 under dilations (CsK = s2CK if s is a positive scale factor).

Capacity has an additive property: simple series manipulations show that

if K ′ and K ′′ are two hulls and K = K ′ ∪ g−1
K ′ (K ′′) (which is another hull)

then C(K) = C(K ′) + C(K ′′). .

2.3 Basic examples

Example 1 : The semidisc.

Maybe the simplest example is when K is a semidisc {z ∈ H, |z−b| ≤ r}
for a real b and real positive r. Then gK(z) = z+ r2/(z− b). Expansion at

large z shows that CK = r2.

Example 2 : The vertical line segment.

In the example when K is the vertical line segment ]0, ia], one gets

gK(z) =
√
z2 + a2, a formula by which we mean that analytic continuation

of the function z
√
1+ a2/z2 were the square root is de�ned by its usual

power series around 1 when z is large. Expansion at large z shows that

2CK = a2.

Example 3 : The oblique line segment.

The case when K is an oblique line segment ]0, aeiπb] making an angle

πb with respect to the real positive axis (b ∈]0, 1[) yields

z = (gK(z) − x+)b(gK(z) − x−)1−b,

where the real parameters x− < 0 < x+ satisfy bx+ + (1 − b)x− = 0 and

(−x−)bx1−b+ = a. Expansion at large z shows that 2CK = b(1−b)(x+−x−)2.
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The closer the line is to the real axis (i.e. the closer b is to 0 or π) and the

larger a has to be to reach a given capacity.

Example 4 : Arc of circle.

An instructive example is when K is the arc ]r, reiϑ] of a circle centered

at 0 of radius r. Some of the following computations require to keep a

precise track of the determination of the square root that appears in the

formula for gK because it is crucial for the interpretation. The map f(w) =

(w − r)/(w + r) sends the arc to the vertical line segment ]0, i tan ϑ/2], so

that by the previous example, w 7→√
f(w)2 + tan2 ϑ/2 is a conformal map

from D to H. However, this map sends ∞ to 1/(cos ϑ/2), not to ∞. To get

the hydrodynamic normalization, we have to compose with an appropriate

automorphism of H. This yields

gK(w) = r
−(2− cos2 ϑ/2) cos ϑ/2

√(
z−r
z+r

)2
+ tan2 ϑ/2+ 2− 3 cos2 ϑ/2

cos ϑ/2
√(

z−r
z+r

)2
+ tan2 ϑ/2− 1

,

whose expansion at∞ starts like gK(w) = w+(1−cos4 ϑ/2)r2/w+O(1/w2).

Hence the capacity is CK = (1− cos4 ϑ/2)r2.

The tip of the arc, reiϑ is mapped to (3 cos2 ϑ/2−2)r by gK. One checks

that

(gK(w) − gK(reiϑ))
∂gK(w)

∂ϑ
= 2r2 sin ϑ/2 cos3 ϑ/2,

which is w-independent.

Moreover limw 7→r− gK(w) = r(1−2 sin ϑ/2−sin2 ϑ/2) and limw 7→r+ gK(w) =

r(1+ 2 sin ϑ/2− sin2 ϑ/2). The behavior of gK when ϑ 7→ π− is interesting.

In this limit, K becomes a semicircle. Let �K = {w ∈ H, |w| ≤ r} be the

corresponding semidisc. The points w inside �K are cut away from∞ when

ϑ 7→ π−, and one checks that limϑ7→π− gK(w) = −2r for these points, i.e.

they are swallowed in the limit. However, the points {w ∈ H, |w| > r} are

mapped to limϑ7→π− gK(w) = w+ r2/w = g�K(w).

2.4 Iteration of conformal maps

With Riemann's theorem at our disposal, we can start to encode growth

processes. Suppose than the initial domain is the upper half plane and that
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a small amount of matter is removed at each time step (so that in fact it

is the lower half plane that grows). At time step n, a certain Kn has been

removed from H. Let gn ≡ gKn denote the corresponding map and fn its

inverse. Then gn(Kn+1 \ Kn) describes a small amount of matter removed

to H. If gn(Kn+1 \Kn) has typical size s and is located in the neighborhood

of point x on the real axis, Kn+1 \ Kn, which is what is really removed at

time n+ 1 has typical size s|f ′n(x)|.

Example 5 : Simple iteration.

Choose a small number ε. Let bn, n > 0 be an independent sequence

drawn from some chosen probability distribution. At time step n+ 1 take

gn(Kn+1 \ Kn) to be the semidisc {z ∈ H, |z− bn+1||f
′
n(bn+1)| ≤ ε}, so that

gn+1(z) = gn(z) +
ε2

|f ′n(bn+1)|2(gn(z) − bn+1)
.

This de�nes a random growth process were at each time step a small

semidisc-like grain of matter of size ∼ ε is removed. Despite its simplicity,

little is known (at least to the author) about this process.

Many other (probabilistic or deterministic) rules can be invented, but

the resulting processes are mostly impossible to study analytically at the

moment. Let us simply note to conclude that the samples obtained by

methods (but using the disc geometry) look strikingly like DLA. Fig.2.1 is

obtained by iteration of conformal maps, compare with Fig.1.9.

2.5 Continuous time growth processes

Our aim is to motivate the introduction of Loewner chains.

If K is not simply a semidisc, but an union of well-separated small

semidiscs of radii rα centered at bα, a moment of thought leads to realize

that

gK(z) ∼ z+
∑
α

r2α
z− bα

.

The large z expansion yields CK ∼
∑
α r

2
α, a positive number as expected.
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Figure 2.1: A shape produced by iteration of random conformal maps.

Taking a naïve limit, one gets that if ε is a small positive number, v(x)

is a nonnegative function on R and K = {z = x+ iy ∈ H, y ≤ εv(x)} then

gK(z) ∼ z+
ε

π

∫
R

v(u)du

z− u
.

Indeed, using that, if v(x) 6= 0, limε7→0+=m (x+ iεv(x) − u)−1 = πδ(u− x)

one checks that =m 1
π

∫
R

v(u)du
x+iεv(x)−u

∼ −v(x) so that to �rst order in ε gK(z) is

real when z is on the boundary of K. Even more generally, one could replace

the positive measure v(u)du by any positive measure dρ(u). A naïve large

z expansion, certainly valid if the function v (or more generally the measure

dρ) has compact support and �nite mass, gives CK ∼ ε
π

∫
R v(u)du (more

generally CK ∼ ε
π
ρ(R), again a a positive number.

Now think about a continuous time growth process for which Kt has

been removed from H at time t. Let gt ≡ gKt denote the corresponding map

and ft its inverse. Fix t and a small positive ε. Then gt(Kt+ε\Kt) describes

a small amount of matter removed to H. We could take as a de�nition of

continuous time growth that the associated map gt+ε ◦ ft is described by a

nonnegative function vt(u) or more generally a positive measure dρt(u) as

above. Taking the limit ε 7→ 0+ leads to
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∂gt(z)

∂t
=
1

π

∫
R

dρt(u)

gt(z) − u
. (2.1)

Such an evolution equation is called a Loewner chain with reference

domain H. The analogous equations with reference domain the unit disc

can be obtained straightforwardly by the same arguments. The large z

expansion yields
dCKt
dt

=
1

π
ρt(R).

So if hulls are constructed little by little by a growth process, the positivity

of capacity is obvious.

In principle, if the family of measures ρt is given, one can solve for gt(z)

with the initial condition g0(z) = z. Again, ρt can be random or deter-

ministic. We should note that Loewner chains are in some sense kinematic

equations that give a general framework to encode growth processes. But

in a real dynamical problem ρt has to be speci�ed. It may depend explicitly

on gt. For instance dρt(u) = |f ′t(u)|−2du is related to Laplacian growth,

though the unit disc geometry is the relevant one in that case. The expo-

nent −2, which we already interpreted for discrete iteration, ensures that

the size of Kt grows linearly with time. But other exponents between 0

and −2 are interesting too. Note that DLA provides a discrete analogue of

Laplacian growth. The particle size plays the role of an ultraviolet cuto�.

2.6 Geometric interpretation

One can give a the following geometric interpretation of Loewner chains.

Set gt(z) ≡ zt, view zt as the position of a �uid particle as time goes by, and

suppose for simplicity that dρt(u) = vt(u)du so that the Loewner chain

becomes
dzt

dt
=
1

π

∫
R

vt(u)du

zt − u
.

Hence 1
π

∫
R
vt(u)du
z−u

plays the role of a time dependent holomorphic vector

�eld on the manifold with boundary H. At point z = x + iO+ i.e. close

to the the real axis (the boundary of H) this vector �eld has imaginary

part −v(x), so that when x is away from the support of ρt, (that is, when

vt(.) = 0 in a neighborhood of x), the vector �eld is real, i.e. tangent to

the boundary. However, if x is on the support of ρt the vector �eld has a
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�nite negative imaginary part, which means that some �uid particles that

started inside H can be swallowed by the boundary. In fact Kt is nothing

but the set of �uid particles which where in H at t = 0 but have hit the

boundary before time t.

The reader is urged to review the examples 1-4 in this light. For the

semidisc case, take r as time, either with b = 0 or with b = r. For the

case of line segments, take a constant b and use a as time. For the arc

of circle, using ϑ as time, with special care in the limit ϑ 7→ π−. It is

instructive to compute the measure ρt in each case and to check that the

above interpretation of Kt is correct.

Another, more abstract, geometric interpretation is also possible. Let

N− be the group of series of the form z +
∑
m≤−1 gmz

m+1 with real coe�-

cients and convergent for large z (the domain of convergence may depend

on the series, so N− is made of �germs�, and is in fact the group of germs

of holomorphic functions �xing ∞ and with derivative 1 at ∞). In the

same spirit, let O∞ be the space of germs of holomorphic functions at in-

�nity. We let N− act on O∞ by composition, γg · F ≡ F ◦ g. Observe that
γg1◦g2 = γg2 · γg1 so this is an anti-representation.

Note that the gt's of a Loewner chain with bounded Kt belong to N−.

If F ∈ O∞ and if z is large enough, F(z) is well de�ned as well as F(zt) for

small t (where the meaning of small may depend on z and F) and

dF(zt)

dt
=
1

π

∫
R

dρt(u)

zt − u

∂F

∂z
(zt),

which can be rewritten

d

dt
(γgt · F) = γgt · (vt · F)

where vt(z) ≡ 1
π

∫
R
dρt(u)
z−u

∂
∂z

is a germ of vector �eld.

So the Loewner chain equation can be viewed as a �ow on N−

d

dt
γgt = γgt · vt.

The group N− has an interesting representation theory, related to that of

the Virasoro algebra, which can be used as a probe for this �ow.

37



2.7 Local growth

Suppose that as time goes by the measures ρs are δ-peaks of height πas/2

(the factor 2 is purely historical) at position ξs. In the upper half plane

reference geometry, the growth process will be described by an equation of

the type
∂gs(z)

∂s
=

2as

gs(z) − ξs
.

Note that examples 2-4 fall in this category. The formula was given for

example 4 if s = ϑ and the other cases lead to simple computations left to

the reader.

If one is interested only in the growth of the hull, but not in the way the

evolution is parameterized, one can make change the time variable without

arm. The statement that ξs changes quickly or slowly makes sense only

compared with the changes in as. For instance, suppose that the function

as vanishes in some interval, while ξs keeps on changing so that it has a

di�erent value at the beginning and at the end of the interval. During that

interval gs has not changed but when as starts moving again, the place

at which the hull resumes growth can be far from the place where it was

growing before the pause. This is a limiting case of what happens when

variations of ξs are large with respect to those of as. This means that if,

at s0, ξs starts to move very fast with respect to as, the growth takes place

very near Ks0 or the real axis. This conclusion is supported by example 3.

We also infer that to have local growth, i.e. to have the position where

the hull grows vary continuously, we need to impose that ξs stops if as does.

To make this statement precise, it is convenient to go to a special time

parameterization. The capacity of the hull at time s is CKs = 2
∫s
0
ds ′ as ′,

a non-decreasing function of s. De�ne t =
∫s
0
ds ′ as ′ , take t to be the new

time variable and by abuse of notation write ξt for ξs(t), Kt for Ks(t) and

so on. Then by construction CKt = 2t and the equation reads

∂gt(z)

∂t
=

2

gt(z) − ξt
(2.2)

We take as a de�nition of local growth that ξt is continuous function

of t. The function ξt is often called the driving function of the Loewner

evolution. It is sometimes convenient to normalize ξt by ξ0 = 0 or what
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amounts to the same to impose that the hull starts growing from point 0.

A broad class of growing hulls that can be described by such an equation

is given by continuous simple curves started on the boundary of H and

staying in H thereafter. Let γ[0,∞] be a parameterized simple continuous

curve from 0 to ∞ in H and assume that the capacity parameterizations

has been chosen, so that Kt ≡ γ]0,t] is a hull with capacity 2t. When ε

is small, Kε,t ≡ gt(γ]t,t+ε]) is a tiny piece of a curve. The support of the

discontinuity measure dρfε,t is small and becomes a point when ε goes to

0. Measures supported at a point are δ functions, so there is a point ξt
such that, as a measure, dρfε,t/dx ∼ 2εδ(x− ξt) as ε→ 0+.

For a general local Loewner growth process, one de�nes γt = ft(ξt +

i0+) ≡ limε7→0+ ft(ξt+ iε) (remember ft is the inverse map of gt). We shall

often use the shorthand notation γt = ft(ξt). The set γ]0,t] ≡ ∪s∈]0,t]γs

is called the trace of the growth process. If the hull is a simple curve,

the notation is consistent. Whether the trace is a curve (simple or not) in

general is highly non obvious, but this will be the case for all examples in

these notes, though proving it can be a formidable task.

At time t, growth takes place at point ξt in the gt plane i.e. at point

γt in the original �physical� plane. Thus it is tempting to conclude that Kt

coincides with γ]0,t]. Though this picture works nicely for examples 2-3, it

is slightly too naïve and fails in the example 4 when the trace, which is an

arc of circle closes to a semicircle and the corresponding semidisc completes

the hull.

For a given z with =mz ≥ 0 and z 6= ξ0, the local existence and unique-

ness of solutions to eq.(2.2) is granted by general theorems on ordinary

di�erential equations, but problems may arise if a time τz (depending on

z in general) exists for which gτz(z) = ξτz. One possibility is to declare

gt(z) unde�ned for t ≥ τz. But it is often the case that, as suggested by

examples 2-3, the two limits limx7→ξ±τz gt ◦ fτz(x) exist, allowing to think

that after τz, gt(z) has split in two real trajectories.

There is regularity criterion on the function ξ. that guaranties that if

x 6= ξ0 is real, τx is in�nite. It is su�cient that for each t,

lim
s7→t− sup

t ′∈[s,t[

|ξt − ξt ′ |

|t− t ′|1/2
< 4. (2.3)

To prove this criterion, it is convenient to consider Xt ≡ gt(x) − ξt, a
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continuous function which satis�es the integral equation Xt = x−ξt+
∫t
0
2ds
Xs

.

As this implies that ξτ−ξt = Xt−Xτ+
∫τ
t
2ds
Xs

, we can see ξ. as a functional

of X.. The task is to control its behavior if Xt has a given sign, say positive,

on [0, τ[ and vanishes at τ. It is clear that the two terms in Xt+
∫τ
t
2ds
Xs

vary

in opposite directions, in that the faster Xt goes to 0 , the slower is the

vanishing of
∫τ
t
2ds
Xs

at t = τ. So the mildest behavior of the sum as t goes

to τ is when the two terms have a similar behavior. A detailed analysis

requires some care, but a quick and dirty way to retrieve the criterion is

to impose that the two terms be equal, which gives Xt = 2
√
τ− t hence

ξτ − ξt = 4
√
τ− t as announced.

Example 6 : Square root driving term.

The Loewner equation when ξτ−ξt = 4α
√
τ− t can be solved in closed

form for any α though the formulæ are cumbersome. We normalize ξt so

that ξ0 = 0, i.e. take ξt = 4α(
√
τ −
√
τ− t). By left-right symmetry, we

can assume that α ≥ 0. For α ∈ [1,+∞[ it is convenient to set α ≡ coshη,

η ∈ [0,+∞[. One parameterizes time as

2e−η cothη sinhη

sin(2ϑ sinhη)

(sin(ϑeη))
(cothη+1)/2

(sin(ϑe−η))
(cothη−1)/2

=

√
τ− t

τ
,

with ϑ ∈ [0, πe−η]. As a function of ϑ, the hull builds the curve{
2
√
τ

(
e−η −

2 sinhη sin(ϑe−η)

sin(2ϑ sinhη)
eiϑe

η

)}
ϑ∈[0,πe−η]

.

For ϑ = πe−η the curve closes a whole domain, just as in the arc of circle

example 4, which in fact is the special case α = 3
√
2.

For α ∈ [0, 1[ it is convenient to set α ≡ cosϕ, ϕ ∈]0, π/2]. The

formulæ can be obtained by analytic continuation η 7→ iϕ, this time with

a parameter ϑ ∈ [0,∞]. The hulls remain simple curves even for ϑ =∞.

Fig.2.7 illustrates the di�erent behaviors.

The very same criterion on the behavior of the function ξ. is also su�-

cient for to ensure that the hull Kt is a simple continuous curve, say {γs, s ∈
]0, t]}, and γt = ft(ξt), i.e. that our naïve expectation Kt = ∪s∈]0,t]fs(ξs) is

ful�lled.
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Figure 2.2: The hull at time τ for α = 0, 1, 2, 3, 4, 5, 6

The two properties � �gt(x)) for real x does not hit ξt� and �the hull is a

simple curve�� are in fact equivalent. The intuitive reason is the following.

The fact that gt(x)) for real x hits ξt at some time τ is the sign that at time

τ the hull �swallows a whole piece of H�. The previous example illustrates

this relationship when the hull hits the real axis. But from the point of

view of iteration, if s ≥ 0 is �xed, it is obvious that when t ≥ 0 varies the
function �gt,s(z) ≡ gt+s ◦ fs(z+ ξs) − ξs satis�es the Loewner equation (2.2)

with driving function �ξt ≡ ξt+s−ξs. So if the driving function �ξt ≡ ξt+s−ξs
leads to a hull hitting the real axis, the driving function ξt leads to a hull

hitting itself or the real axis. This discussion also explains why, if the trace

is a continuous curve, it can have double points but no crossings.
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Chapter 3

Stochastic Loewner evolutions

Stochastic Loewner evolutions were introduced by Schramm in 1999 as a

general framework to study random curves satisfying certain properties.

His speci�c interest was to prove that loop erased random walks (in short

lerw's, the precise de�nition is irrelevant here) on a two dimensional lat-

tice have a conformally invariant continuum limit. Schramm observed that

these walks have on the lattice the so-called domain Markov property (to be

de�ned below) a property that can that can be rephrased in the continuum.

Though he was not able at that time to prove the existence of a conformally

invariant limit of lerw's, he recognized that conformal invariance and the

domain Markov property brought together would have remarkable conse-

quences, and was able to prove that the probability measures on random

curves in the continuum satisfying at the same time conformal invariance

and the domain Markov property formed a one parameter family. Crucial

to the proof and the explicit description of these measures was the idea of

viewing curves as hulls and to use Loewner evolutions. That in this context

the most useful description of a curve is by encoding it into a growth pro-

cess via a Loewner chain is at �rst sight very surprising and may explain

why physicists who had understood the importance of conformal invari-

ance to study many examples of random curves in the early 1980's failed

to �produce Schramm's argument before Schramm�.

The general idea is to impose properties relating di�erent members in a

family of probability measures on continuous curves without crossings, but

possibly with multiple points. Let us note that curves here are considered

modulo reparameterizations, but not simply as subsets of the plane. For

simple curves, this would essentially make no di�erence, but curves with
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Figure 3.1: A percolation sample

multiple points require more care.

In the discrete setting, it is a fact that interfaces on appropriate lattices

are simple curves, so why bother to deal with non simple curves ? The an-

swer is that even if at the scale of the lattice spacing the interface is simple,

when one tries to take a continuum limit by looking at a macroscopic scale

while taking a smaller and smaller lattice spacing, a curve that makes a

large excursion and then comes back close to itself, say a few lattice spac-

ings away, has a double point from the macroscopic viewpoint. While in

some models �like lerw's, Schramm's initial motivation� the interface re-

main simple when the lattice spacing gets smaller, some other models �like

percolation� clearly exhibit multiple points in the continuum limit. This

is clearly seen on samples, see Fig.3.

In the following three sections, we suppose that we are given a family

of probability measures {PD,a,b} indexed by triples consisting of a domain

D and two distinct boundary points a, b of D. For a given triple (D, a, b),
PD,a,b is a a measure on ΩD,a,b, the set of continuous curves without cross-

ings within D �the union of D and its boundary (in the re�ned sense alluded

too in section 2.1)� joining a to b (it is understood that a and b are not

multiple points).
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First, we want do de�ne what it means for the family {PD,a,b} to be

conformally invariant and to have the domain Markov property.

3.1 Conformal invariance

By Riemann's theorem, if (D, a, b) and (D, a ′, b ′) are any two triples, there

is a conformal map g : D 7→ D ′ such that g(a) = a ′ and g(b) = b ′. It is

clear that g induces a bijection, which we call �g, from ΩD,a,b to ΩD ′,a ′,b ′.

Conformal invariance of the family {PD,a,b} is the statement that �g is mea-

surable and the image measure PD,a,b ◦ �g−1 coincides with PD ′,a ′,b ′, i.e. if

C ′ is a measurable subset of ΩD ′,a ′,b ′ then �g−1(C ′) is a measurable subset

of ΩD,a,b and PD,a,b(�g
−1(C ′)) = PD ′,a ′,b ′(C

′).

Conformal invariance by itself is a rather weak constraint. Indeed, sup-

pose that a probability PD0,a0,b0 on ΩD0,a0,b0 has been de�ned for a single

triple D0, a0, b0 and that it is invariant under the conformal transforma-

tions of D0 �xing a0 and b0. Such transformations form a group with one

real parameter. Then the direct image PD0,a0,b0 by any conformal trans-

formation g will de�ne unambiguously Pg(D0),g(a0),g(b0). By the Riemann

mapping theorem, this de�nes PD,a,b for any triple, and the resulting family

of probabilities is clearly conformally invariant.

To get a more rigid situation, one has to impose another constraint on

the family {PD,a,b}. Schramm translated in the continuum a property that

holds for loop erased random walks in the discrete setting : the domain

Markov property, to which we turn our attention now.

Before doing so, let us remark that this strategy is rather typical. If

continuous curves without crossings are replaced by general hulls joining a

to b in D the notion of domain Markov property does not make sense but

another one, restriction, turns out to be fruitful and allow for another com-

plete classi�cation. We shall have little to say about these nice �restriction

measures� in the sequel.

3.2 Domain Markov property

Fix a triple (D, a, b) and consider an element γ ∈ ΩD,a,b. If a real con-

tinuous parameter along γ is given and s is any intermediate value of the

parameter, the past and the future of s split γ in two (not necessarily dis-
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joint) curves without crossings. The curve corresponding to the past of s

starts at a and is called an initial segment of γ. The curve corresponding

to the future of s ends at b and is called a �nal segment of γ. The �nal

segment starts at some point c ∈ D which is also the end of the initial

segment. We use the notation γ]a,c] for such an initial segment with point

c included and γ]c,b] for the �nal segment. Beware that the notation is a

bit ambiguous, because of possible multiple points on γ.

Several curves γ ′ share the same initial segment γ]a,c], and the discussion

that follows focuses on the question : if an initial segment is given, what is

the distribution of the �nal segment?

Making sense of this question is not so obvious. First, there should be

enough measurable sets in ΩD,a,b. We shall for a while assume that this is

so. But even in that case, the event �γ ′ starts exactly withγ]a,c]� is more

than likely to occur with probability 0. Vaguely, what may have a nontriv-

ial probability is the event �γ ′ has an initial segment that is close (in some

quanti�ed sense) to γ]a,c]�. Probabilists have invented so called conditional

expectations and regular conditional probabilities just to deal with that

kind of situations. Starting from PD,a,b this allows to de�ne new probabil-

ity measures, denoted PD,a,b( |γ]a,c]), read �conditional probability given

the initial segment γ]a,c]�, that can be manipulated just as conditional prob-

abilities when the state space is discrete1.

The set of points in D that cannot be joined to b by a continuous curve

in D without hitting the initial segment form a set that we call a hull2 and

denote by Kc. This notation is again slightly ambiguous. Note that D \ Kc

is again a domain. If the initial segment is γ]a,c], the �nal segment starts at

c and never enters inside Kc. So the support of the conditional probability

PD,a,b( |γ]a,c]) is included in ΩD\Kc,c,b. But on this set we have another

probability measure, namely PD\Kc,c,b, and the two can be compared.

We say that a set {γ]a,c]} of curves in D without crossings starting at

a is a set of distinct representatives if any curve in ΩD,a,b has exactly one

of its initial segments in {γ]a,c]}. For instance, for the triple (H, 0,∞), the

1There is a small price to pay, however. For instance, the de�nition of this conditional
probability may fail or be ambiguous for certain γ]a,c] but these nasty initial segments
form altogether a set of probability 0 for PD,a,b.

2If (D, a, b) = (H, 0,∞), this is consistent with our initial de�nition, and with the new
de�nition, conformal maps send hulls to hulls
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initial segments whose associated hull has capacity t form a set of distinct

representatives. Intuitively, to get the expectation of a random variable

on ΩD,a,b, one can compute its conditional expectation on γ]a,c], and then

integrate over γ]a,c] in a system of distinct representatives.

The family {PD,a,b} is said to have the domain Markov property if, for

any triple (D, a, b), PD,a,b( |γ]a,c]) = PD\Kc,c,b except maybe for a set of

initial segments whose intersection with any system of distinct representa-

tives is of measure 0 for PD,a,b.

This expression of the domain Markov property is more intuitive on

the lattice in the discrete setting �because the interfaces are simple curves

and because conditional probabilities have a much simpler de�nition� and

it holds in many examples. It is vaguely related to the notion of locality

in physics. The reader can check it straightforwardly for the exploration

process. Eq.(1.1) makes the domain Markov property plain for loop-erased

random walks as well, whereas a direct proof using the original de�nition

is more cumbersome.

3.3 Schramm's argument

Our aim is to explore the interplay between conformal invariance and the

domain Markov property of the family {PD,a,b}.

First, by conformal invariance, we may concentrate on the triple (H, 0,∞).

We choose a parameterization of curves in ΩH,0,∞ in such a way that

the hull Kt ≡ Kγt associated with the initial segment γ]0,t] ≡ γ]0,γt] of

γ ∈ ΩH,0,∞ has capacity 2t. Because of the underlying continuous curve γ,

the growth of Kt is local, and the associated gt satis�es a Loewner equation
∂gt(z)
∂t

= 2
gt(z)−ξt

for some continuous function ξt. The probability PH,0,∞
on ΩH,0,∞ induces a a random process on the set of initial segments γ]0,t],

hence on the set of hulls Kt, and on the set of continuous functions ξt.

Our next aim is to derive consequences for the stochastic process ξt of

the domain Markov property and conformal invariance.

First for �xed (H, 0,∞) there is a remnant of conformal invariance :

dilations. Hence for λ > 0, the hull 1
λ
Kλ2t must have the same distribution

as a Kt. The corresponding Loewner map is 1
λ
gλ2t(λz), whose driving func-

tion is 1
λ
ξλ2t. Hence the processes ξt and

1
λ
ξλ2t have the same law. We say

that ξt has dimension 1/2
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Given Kt, the domain Markov property states that γ]t,∞] is distributed

according to PD\Kt,γt,∞. The conformal transformation gt(z) − ξt maps

D \ Kt to H, γt to 0 and ∞ to ∞. By conformal invariance, gt(γ]t,∞]) − ξt
is distributed according to PH,0,∞. In particular for s ≥ 0 gt(γ]t,t+s]) − ξt
has the same distribution as a γ]0,s] hence is independent of γ]0,t]. But the

Loewner map for gt(γ]t,t+s]) − ξt is gs+t ◦ ft(z + xit) − ξt (remember ft is

the inverse of gt), whose driving function is ξt+s − ξt. We infer that the

random function ξ· is such that for any t, s ≥ 0, ξt+s − ξt is independent

of {xit ′}, t
′ ∈ [0, t] and distributed like a ξs.

To resume our knowledge, the random process ξ· has continuous sam-

ples, independent identically distributed increments and dimension 1/2.

By a deep general result, a random process with continuous samples and

independent identically distributed increments is of the form
√
κBt+ρt for

some nonnegative κ and some real ρ. Obviously it has dimension 1/2 if

and only if ρ = 0.

To conclude, Schramm's argument shows that if a family of probabilities

{PD,a,b} on curves without crossing indexed by triples (D, a, b) is confor-

mally invariant and has the domain Markov property, the law induced by

PH,0,∞ on initial hulls of capacity 2t by is described by a stochastic Loewner

evolution
∂gt(z)

∂t
=

2

gt(z) −
√
κBt

(3.1)

for some κ ≥ 0 and some normalized Brownian motion Bt.

A priori, this does not show that each κ is realized via some family

{PD,a,b} (because the Loewner evolution deals wit hulls, not with curves).

3.4 Basic properties

The �rst important property is a kind of converse to Schramm's result. If

κ ≥ 0 is a real number, and Bt a continuous realization of a normalized

Brownian motion, a deep theorem states that the trace associated to the

stochastic Loewner evolution eq.(3.1) is almost surely a continuous curve

joining 0 to∞. This curve is simple and stays in H if κ ∈ [0, 4], has double

points and hits the real axis if κ ∈]4, 8[ and is space�lling if κ ∈ [8,+∞[.

At the time Schramm introduced stochastic Loewner evolutions, this

very hard theorem was not known (he contributed to prove it later).
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As explained before, a continuous trace cannot have crossings. Thus for

any κ ≥ 0, the stochastic Loewner evolution de�nes a probability measure

Pκ on continuous curves without crossings joining 0 to ∞ in H. This

measure is scale invariant. Hence, for each κ, conformal transformations

can be used to de�ne in a consistent way a family of probabilities {PκD,a,b}.

This family is trivially conformally invariant, and it is easy to check that

is satis�es the domain Markov property.

This �nishes the complete classi�cation.

Taking the existence of a curve for granted, the change of behavior from

simple curves to curves with double points at κ = 4 can be understood as

follows. First, the necessary condition (negation of eq.(2.3) for the existence

of multiple points is ful�lled for all values of κ, though in some kind of

marginal way, for if ξt =
√
κBt where Bt is a normalized Brownian motion,

the law of the iterated logarithm states that, with probability one

lim
s7→t− sup

t ′∈[s,t[

|ξt − ξt ′ |

|t− t ′|1/2 log log |t− t ′|−1
=
√
2κ.

So the stochastic Loewner source is wilder by a log log |t − t ′|−1 than the

criterion. The fact that for κ ≤ 4 the Loewner trace is a simple curve

shows that, as should be expected, the criterion is only necessary, but not

su�cient. Intuitively, Brownian motion is more singular than necessary,

but for κ ≤ 4 with too little correlation time to behave consistently for

long enough periods to produce multiple points.

This fact is related to another well studied question : recurrence of

Brownian motion. If space dimension d is 1, Brownian motion passes in-

�nitely many times at any point, if d = 2, it passes in�nitely many times

in the any neighborhood of any point, but not exactly at any given point,

and if d ≥ 3, it has a nonzero probability to remain at a given �nite dis-

tance of any point. So dimension 2 is somehow a marginal case. Now let

Rt be the norm of a d-dimensional Brownian motion. Assume R0 > 0.

One can show using stochastic calculus that Wt ≡ −Rt + d−1
2

∫t
0
ds
Rs

is a

standard 1-dimensional Brownian motion. In this equation, d appears as

a an explicit parameter, and one can reverse the logic : given a standard

1-dimensional Brownian motion Wt what are the properties of Rt, called

the d-dimensional Bessel process mathematics. Setting κ = 4/(d − 1) one

sees that Xt ≡
√
κ(Rt +Wt) satis�es the equation dXt

dt
= 2

Xt−
√
κWt

so �rst,

indeed from Wt on can retrieve Rt by solving a di�erential equation and
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second, the Bessel process is essentially a stochastic Loewner evolutions

but looking only at the boundary of H. For general d, the Bessel processes

behave with respect to visits to 0 just like the recurrence properties of

Brownian motion for integer d suggest: the d-dimensional Bessel process

hits the origin in�nitely many times if d < 2, but never if d ≥ 2. Equiv-

alently, if κ ≤ 4, Xt −
√
κWt never vanishes, but vanishes in�nitely many

times if κ > 4. But we already know that the vanishing of Xt −
√
κWt is

the sign that the growing curve hits itself or the real axis.

Another very hard result is the fractal dimension : the measures PκD,a,b
is concentrated on curves with fractal dimension min{1+ κ/8, 2}.

Two additional properties have been used to constraint further the sit-

uation.

The �rst one is locality. Let L be a hull in D bounded away from

a and b. To each curve in ΩD,a,b we can associate its smallest initial

segment that hits the boundary of L (we take this initial segment to be the

curve itself if it never hits L. These initial segments form a system Σ of

distinct representatives both in ΩD,a,b and in ΩD\L,a,b. Thus both PD,a,b

and PD\L,a,b induce a probability measure on Σ. The property of locality is

the statement that these two measures coincide. In a more mundane way,

if L is a hull in D bounded away from a and b, the distribution of curves

up to the �rst hitting of L are the same in D and in D \ L. Stochastic

calculus can be used to show that the family {Pκ=6D,a,b} is the only one to

have the locality property. Let us note that it is no surprise that a value of

κ satisfying locality is > 4. Indeed, if κ ≤ 4, the traces are simple curves

that do not hit the boundary. Then no trace touches L for PD\L,a,b, but

hitting L for PD,a,b has a �nite probability if L is nontrivial, so that the

supports of the two probability measures induced on Σ are not the same.

On the lattice, percolation is modelled by coloring each site with one

of two colors, independently of the other sites. The associated interfaces

have obviously the locality property, so the only candidate if percolation

has a conformally invariant continuum limit is the family with κ = 6. That

percolation has a conformally invariant continuum limit has indeed been

proved.

The second one is the restriction property. Again, let L be a hull in

D bounded away from a and b. Consider the subset ΓL of ΩD,a,b made
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of curves that do not hit L, and the associated conditional probability

PD,a,b( |ΓL). Note that ΓL is a subset of ΩD\L,a,b. The restriction property

is the statement that PD,a,b( |ΓL) = PD\L,a,b. Stochastic calculus can be

used to show that the family {P
κ=8/3
D,a,b } is the only one to have the restriction

property. This restriction property was alluded to before. Indeed, properly

de�ned restriction measures form a one parameter family of measures on

hulls, which intersect the SLE family at κ = 8/3. Let us note that the �lling

of a Brownian excursion is another example of restriction measure. Again,

it is no surprise that a value of κ satisfying restriction is ≤ 4. Indeed, if

κ > 4, the probability of hitting L under PD\L,a,b would be nonzero, so that

ΓL would not have full measure in ΩD\L,a,b.

On the lattice, the weight of a self avoiding walk is given in the plane,

and then the same weight is used for this curve in any domain that con-

tains it. So self avoiding walks on the lattice have the restriction property.

So the only candidate if self avoiding walks have a conformally invariant

continuum limit is the family with κ = 8/3. But this time a proof of the

existence of a continuum limit of self avoiding walks is still to come.

Recently, two important conjectures on SLE have been proven.

One of them is reversibility. The treatment of random curves by a

Loewner evolution is quite asymmetric by de�nition. However interfaces

between two points in physics (i.e. in statistical mechanics models) quite

generally make no di�erence between the two ends. So it was conjectured

very early that interfaces generated by an SLE process were reversible. One

di�culty is with the parameterization. Take an SLE sample in H from 0 to

in�nity, parameterize it with capacity. Apply the transformation z 7→ −1/z

and parameterize the inversed sample with capacity. Now any point on

the curve has two parameters attached to it. One of the troubles is that

the relationship between the two parameters is extremely wild. Anyway,

reversibility is now a theorem.

The second one is duality. Take an SLEκ sample with κ > 4 and look

at the boundary of Kt. This is simple curve, and one can expect that its

distribution is conformally invariant in some sense. So it is natural to ask

if and how it �ts in the SLE framework. It was conjectured by physicists

that it is related in some sense to an SLE16/κ, and that in particular it has

dimension 1+ 2/κ. Though this is correct, the precise recent theorem that
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gives an explicit description involves nontrivial extensions of SLE where

the driving function is
√
16/κBt plus some rather complicated drift terms.
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