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1. A (physically inspired) introduction to function
theory on a Riemann surface

Felix Klein motivated his notion of “Complex function of position” by
considering steady streamings of a fluid. We will begin by considering
steady streamings in the plane.

Suppose a fluid in the (x, y)-plane has a velocity with x-component
P (x, y), and y-component Q(x, y). Consider an infinitesimal square in
the plane, parallel to the x and y-axis, with sides labeled I, II, III, IV ,
counter-clockwise, and side I parallel to the x-axis, below side III.
Then

flow across side I = Q(x, y) dx

flow across side III = Q(x, y + dy) dx.

So the difference III − I is

∂Q

∂y
dydx.

Similarly, the difference II − IV is

∂P

∂x
dxdy.

The streaming is steady if there are no sources or sinks (we also assume
the fluid incompressible), i.e. there is as much fluid streaming into the
infinitesimal square as there is streaming out:

∂P

∂x
+

∂Q

∂y
= 0 (zero divergence).

The circulation of the fluid around a closed curve C is∫
C

(P dx + Q dy).

The flow is irrotational if the circulation vanishes for all closed curves
C. This implies that P dx + Q dy is an exact differential, i.e. there
exists a “velocity potential” u(x, y) so that

P =
∂u

∂x
= ux, Q =

∂u

∂y
= uy.

The zero divergence property then translates into

uxx + uyy = 0 (Laplace equation),

so that u is harmonic.
A (x(t), y(t)) is an equipotential line if u(x(t), y(t)) = const. Then

uxẋ + uyẏ = 0,
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so that an equipotential line that crosses the x-axis, crosses at an angle
α, where

ẏ

ẋ
= tan α = −ux

uy

if u2
x + u2

y > 0. On the other hand, the velocity vector of the fluid at
that point forms an angle β with the x-axis, where

Q

P
= tan β =

uy

ux

.

Hence
|α− β| = π/2

and the flow is perpendicular to the equipotential lines in the direction
of increasing u. If we interchange streamlines with equipotential lines
we get a “conjugate flow,” whose velocity potential v needs to satisfy

vx = −Q, vy = P (or, alternatively, vx = Q, vy = −P ).

This means u, v satisfy the Cauchy-Riemann equations

ux = vy, uy = −vx.

If we set z = x + iy, and

f(z) = u(x, y) + iv(x, y),

then f is a holomorphic (analytic) function of z. Klein calls f a “com-
plex function of position.” It is also known as the complex potential of
the flow.

1.1. Steady streamings on a surface S. Suppose S is given by the
functions xi = xi(ξ, η), i = 1, 2, 3 of the rectilinear parameters ξ, η and
write x = (x1, x2, x3). A curve C on S is given by x(ξ(t), η(t)). Then
the element of arc length along C is

ds2 = dx · dx = (xξ dξ + xη dη) · (xξ dξ + xη dη)

= E dξ2 + 2F dξdη + G dη2,

with
E = xξ · xξ, F = xξ · xη, G = xη · xη.

Note that ds2 > 0 implies

W 2 ≡ EG− F 2 > 0.

Suppose u is the velocity potential of a streaming on S. By that we
mean that the streaming is orthogonal to the lines u = const., with ve-
locity ∂u/∂n, where ∂n is the normal to the equipotential line. Again,
the streaming is to be steady: Consider the patch in the surface S
corresponding to an infinitesimal square in the (ξ, η)-parameter plane.
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The direction parameters of a ξ-curve, a curve x(ξ, η) where ξ moves
while η is fixed, are

(λ1, λ2) = (E−1/2, 0) (unit length).

The orthogonal unit vector, relative to the metric on S, is

(μ1, μ2) = (−F/(E1/2W ), E1/2/W ).

So the flow at right angle to a ξ-curve is

uξμ
1 + uημ

2 =
1

E1/2W
(−Fuξ + Euη),

while, by symmetry, the velocity of the flow at right angle to an η-curve
is

1

G1/2W
(−Fuη + Guξ).

It follows that the flow across the coordinate curve extending from
(ξ, η) to (ξ + dξ, η) is

1

E1/2W
(−Fuξ + Euη) E1/2 dξ =

1

W
(−Fuξ + Euη) dξ,

while the flow across the curve from (ξ, η + dη) to (ξ + dξ, η + dη) is

1

W
(−Fuξ + Euη) +

∂

∂η

(
1

W
(−Fuξ + Euη)

)
dηdξ,

where the second term is the difference. Adding the difference from the
flow across the other two boundary lines gives the Beltrami equations
for the velocity potential of a steady streaming:

∂

∂ξ

(
Fuη −Guξ

W

)
+

∂

∂η

(
Fuξ − Euη

W

)
= 0.

Interchanging equipotential lines and streamlines we get a conjugate
streaming. The velocity of the conjugate streaming in the ξ-direction
should be the negative of the velocity of the original streaming perpen-
dicular to ξ, i.e.

vξλ
1 + vηλ

2 = −(uξμ
1 + uημ

2),

so that

(1) vξ =
1

W
(Fuξ − Euη).

Similarly, we obtain the companion equation

(2) vη =
1

W
(Guξ − Fuη).

Equations (1) and (2) generalize the Cauchy-Riemann equations to
surfaces.
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Remark 1. (i) That the curves u = const. and v = const. are (in
general) orthogonal can also be seen by noting that

du2 + dv2 = λds2

for some positive function λ (it is an easy exercise to calculate what λ
is). This identity says that the complex function of position

p ∈ S �→ u + iv ∈ C

is conformal (angle preserving).
(ii) If x + iy is another complex function of position, then

dx2 + dy2 = σds2

and the equations (1),(2) become

vx = −uy, vy = ux,

since in this case the same calculation as above can be carried through,
but now with E = G = 1/σ, F = 0. In other words, any complex func-
tion of position is an analytic function of any other complex function
of position.

(iii) If Φ is conformal and orientation-preserving from S with element
of arc-length ds2 to the surface R with element of arc-length ds2

1, then
ds2 = μds2

1, so that du2 + dv2 = λμds2
1. It follows that (u + iv) ◦ Φ−1

is a complex function of position on R.
(iv) The Beltrami equation can be solved under minimal assump-

tions. Thus we can always map a neighborhood of a point p ∈ S
conformally onto a domain of the plane. If (x, y) are the Euclidean co-
ordinates of points in the neighborhood of p, then the map z = x + iy
is called a (local) uniformizer at p.

A Riemann surface is a surface which has uniformizers at each of its
points, a pair of uniformizers valid over a common neighborhood being
related by a conformal mapping.

Example 1 (Riemann sphere). Let S = {x = (x1, x2, x3) ∈ R
3 : |x| =

1} and identify {x3 = 0} with C by (x1, x2, 0) �→ x1 + ix2. Introduce
the following functions: “Sight from north pole”

Φ1 : S\{(0, 0, 1)} → C, Φ1(x) =
x1 + ix2

1− x3
,

and “sight from south pole”

Φ2 : S\{(0, 0,−1)} → C, Φ2(x) =
x1 + ix2

1 + x3
.
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It is well known that these maps are conformal. Furthermore, for x ∈
S\{(0, 0, 1), (0, 0,−1)}

[Φ2(x)]−1 =
x1 − ix2

1− x3
= Φ1(x),

so that Φ1, Φ2 are compatible local uniformizers covering S.

A closed Riemann surface is a sphere with a finite number of handles
attached.

A finite Riemann surface is a closed Riemann surface with a fi-
nite number of disks removed. Points on the boundary are covered
by boundary uniformizers.
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2. Chordal Schramm-Loewner evolution

Consider the upper half-plane H with a simple curve t �→ γt in it,
growing from a point x ∈ R to ∞. For each t ≥ 0 we can use a
streaming, regular except for a dipole singularity at∞, to map H\γ[0, t]
onto H: The streaming is parallel to the boundary, and we set the
potential equal to zero there. We normalize by demanding that the
map has expansion z + a/z + o(1/|z|) as z → ∞. The tip γt of the
curve segment γ[0, t] is mapped to a point on R. In fact, that point
is the value of the conjugate velocity potential at the tip of the slit.
If the curve grows randomly, then the value of the conjugate velocity
potential at the tip is a real-valued random motion βt. If the random
curve γ satisfies the conformal Markov property (plus one reflection
symmetry) then it was shown by Schramm that βt =

√
κBt, where Bt

is a linear standard Brownian motion (E[B2
t ] = t).

If B0 = x ∈ R, then we call the random curve γt chordal SLEκ in H

from x to ∞. For existence and many of its basic results, see Lawler,
and Werner. For κ = 8/3, and only for this value, does chordal SLE
possess the following property: If H is a simply connected domain in
H so that H\H is bounded and bounded away from 0, then chordal
SLE8/3 in the upper half-plane from 0 to ∞ conditioned on γ ⊂ H has
the same law as the image of chordal SLE8/3 in the upper half-plane
from 0 to ∞ under a map Φ which sends H to H and fixes 0 and ∞.
Note that two such maps differ by a scaling factor and that chordal SLE
is scale invariant. If we define chordal SLE8/3 in H from 0 to ∞ as the
image of chordal SLE8/3 in H from 0 to ∞ under a map Φ as above
(again, this is well-defined by scale invariance). Then the restriction
property says that SLE8/3 conditioned to stay in the smaller domain
H is SLE8/3 in that smaller domain.

More generally, suppose we have a family {PD
p,q} of probability laws

of random cross-cuts (simple curves connecting two distinct bound-
ary points), where the family is indexed by simply connected non-
degenerate domains D and boundary points p, q ∈ ∂D. Then we say
that the family satisfies the restriction property if whenever D′ ⊂ D,
p, q ∈ ∂D′ ∩ ∂D so that D\D′ is bounded away from p and q, and γ
has law PD

p,q, then the law of γ conditioned on γ ⊂ D′ is equal to PD′
p,q .

If now D′′ ⊂ D′ ⊂, p, q ∈ ∂D′′∩∂D so that these points are bounded
away from D\D′′, then

PD
p,q(γ ⊂ D′′) = PD

p,q(γ ⊂ D′′|γ ⊂ D′)PD
p,q(γ ⊂ D′)

= PD′
p,q (γ ⊂ D′′)PD

p,q(γ ⊂ D′).(3)
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If we identify pairs of simply connected domains D′ ⊂ D with the
(equivalence class of) conformal maps fD′,D from D′ onto D fixing p, q,
then we can write (3) as

F (fD′′,D) = F (fD′′,D′
)F (fD′,D)

for some function F .
If, in addition, the family of probability laws is also conformally

invariant in the sense that for any conformal map Φ on D

Φ∗PD
p,q = P

Φ(D)
Φ(p),Φ(q),

then we can fix a reference domain, D, denote by fD′
the conformal

map from D′ onto D fixing p, q, and conclude from (3)

PD
p,q(γ ⊂ D′′) = PD

p,q(γ ⊂ fD′
(D′′))PD

p,q(γ ⊂ D′),

I.e. we may express as

G(fD′′
) = G(f fD′

(D′′))G(fD′
).

Since

fD′′
= f fD′

(D′′) ◦ fD′

we have a homomorphism of semigroups and Lawler, Schramm, and
Werner used this semigroup to show that then

PD
p,q(γ ⊂ D′) = [(fD′

)′(p)(fD′
)′(q)]α

for some α > 0, and that in the particular case of SLE8/3 where, in
addition, the domain Markov property holds, α = 5/8.

3. Chordal restriction on finite Riemann surfaces

Let S be a finite bordered Riemann surface, p, q ∈ ∂S distinct bound-
ary points, γ a cross-cut connecting p and q, and U a “strip” connecting
p, q, i.e. a simply connected domain in S whose boundary is the disjoint
union of two cross-cuts and two open segments of the boundary of S,
one containing p, the other containing q. Let u, v be local uniformizers
at p and q, respectively.

Define a measure on cross-cuts connecting p and q by

μS
u,v(p, q)[γ ⊂ U ] = (Φ′U(p)Φ′U(q))5/8,

where

ΦU : U → H, {p, q} �→ {0,∞}
and Φ′(p), Φ′(q) are defined relative to uniformizers u, v at p, q, and
z,−1/z at 0,∞.
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If x, y is another pair of uniformizers at p, q, then

μS
x,y(p, q)[γ ⊂ U ] = μS

u,v(p, q)[γ ⊂ U ]

(
du

dx

dv

dy

)5/8

.

This behavior under change of uniformizer means that the invariant
object is

μS
u,v(p, q)[γ ⊂ U ](dudv)5/8,

a boundary bi-differential of weight 5/8.
Does this indeed define a measure? Countable additivity?
Consider all strips U ′ connecting p, q which are contained in a strip

U connecting p, q. Then

μU
u,v(p, q)[γ ⊂ U ′] = (Φ′U ′(p)Φ′U ′(q))5/8

(4)

=
[
(ΦU ′ ◦ Φ−1

U ◦ ΦU)′(p) (ΦU ′ ◦ Φ−1
U ◦ ΦU)′(q)

]5/8

= [Φ′U(p)Φ′U(q)]
5/8

P H

0,∞(γ ⊂ ΦU(U ′)).

This shows that μU
u,v(p, q) is a measure on the σ-algebra generated

by the events {γ ⊂ U ′}
It is not hard to show that there is a countable collection {Un} of

strips such that any strip is an increasing union of a sub-collection of
{Un}. Also, any cross-cut connecting p and q is contained in at least
one Un. By standard measure theory, the family {μUn

u,v(p, q)}Un defines

a unique measure μS
u,v(p, q) such that μUn is the restriction of μS to

{γ ⊂ Un}, IF the family is compatible:

if U ′ ⊂ U ∩ Ũ , then μU
u,v(p, q)[γ ⊂ U ′] = μŨ

u,v(p, q)[γ ⊂ U ′].

But this follows from the first line of (4).

Remark 2. (i) The measures μS satisfy the conformal restriction prop-
erty: I. If Φ : S → T is conformal, then the pull-back of μT is μS, where
the pullback acts on both, the measure and the differential form. II. If
S ⊂ T , then μT restricts to μS.

(ii) Up to a multiplicative constant, this is the unique conformal
restriction family.

(iii) If A is an event in the σ-algebra generated by the events γ ∈ U ,
U a strip in S, then μS[A] is a positive boundary bi-differential which at
the boundary points p, q takes the value μS

u,v(p, q)[A] in the uniformizers
u, v.

(iv) If f is an observable on the space of cross-cuts, then
∫

f dμS

is a boundary differential of weight 5/8 on S. Here f needs to be
μS

u,v(p, q)-integrable for some uniformizers u, v at each p, q.
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References for Riemann surfaces
For an introduction to the classical aspects of the theory with some

good motivation,
(1) Felix Klein, An introduction to algebraic differentials and their

integrals,
(2) Schiffer and Spencer, Functionals of finite Riemann surfaces,
(3) G. Springer, Introduction to Riemann surfaces.
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