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In this lecture we will give a direct construction of Werner’s mea-
sure, the unique conformally invariant measure on self-avoiding loops
in Riemann surfaces.

1. From Cross-cuts to boundary bubbles

Let μH

z,−1/z(x,∞) be as defined in the first lecture, i.e. the law of
chordal SLE8/3 in the upper half-plane from x to ∞. By a formula of
Schramm,

μH

z,−1/z(x,∞)[γ passes to the right of i] =
1

2

(
1 +

x√
1 + x2

)

=
1

2
(1− cos θ),(1)

where x = − cot θ is the angle of the straight line segment from x to i
with the real axis.

If Φ(z) = −1/z, then Φ maps the upper half-plane conformally onto
itself, sending i to i, 0 to ∞, and ε to −1/ε. Then, by definition,

μH

z,z(ε, 0)[γ disconnects i from ∞]

= (Φ′(ε)Φ′(0))
5/8

μH

z,−1/z(−1/ε,∞)[γ passes to right of i]

= ε−5/4 1

2
(1− (1 + ε2)−1/2) = ε−5/4(ε2/4 + o(ε2)),

since Φ′(ε) = −ε2, and Φ′(0) = 1 with respect to the chosen uniformiz-
ers. This asymptotic behavior suggests the following ansatz for the
definition of a measure on boundary bubbles:

μH,i
z (0) = lim

ε→0
4ε−3/4μH

z,z(0, ε) �[γ disconnects i from ∞],

where μ �A stands for the restriction of the measure μ to the set A.
More generally, for a simply connected domain D, a point r ∈ D,
q ∈ ∂D, u a boundary uniformizer at q, and s another boundary point,
set

μD,r
u (q) = lim

p→q
4|u(p)− u(q)|−3/4μD

u,u(p, q) �[γ disconnects r from s] .
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Then

μD,r
u (q)

= lim
p→q

4|u(p)− u(q)|−3/4μH

z,z(ε, 0) �[γ disconnects i from ∞] ◦Φ (Φ′(p)Φ′(q))5/8

= Φ′(q)5/4 lim
p→q

∣∣∣∣Φ(p)− Φ(q)

u(p)− u(q)

∣∣∣∣
3/4

lim
ε→0

4ε−3/4μH

z,z(ε, 0) �[γ disconnects i from ∞] ◦Φ

= Φ′(q)2μH,i
z (0) ◦ Φ,

(2)

and, if v is another uniformizer at q,

μD,r
v (q)

= lim
p→q

∣∣∣∣ v(p)− v(q)

u(p)− u(q)

∣∣∣∣
−3/4

4|u(p)− u(q)|−3/4μD
u,u(p, q)

(
du

dv
(p)

du

dv
(q)

)5/8

=

(
du

dv
(q)

)2

μD,r
u (q).

Thus bubble measures transform as quadratic differentials.

2. Existence of the limit

The existence of the limit, namely as a weak limit of measures is
a subtle problem. Our normalization with the factor ε−3/4 only guar-
anteed that the total mass of the measure converges. However, it is
possible that, in the end, some or all of the mass escapes. For example,
the cross-cut measures are supported on curves of Haussdorf dimen-
sion 4/3 and we would like the bubble measures to also be supported
on curves of Haussdorf dimension 4/3. For weak convergence one usu-
ally has to establish that the sequence of measures is tight, i.e. that
all the measures are nearly supported on one common compact set of
curves. However, using Schramm’s result, we will go a different route.

To establish convergence it is enough to do it in one geometric set-up,
i.e. a simply connected domain, an interior point, a boundary point,
and a uniformizer. It then follows for all other set-ups. So consider

μH,i
−1/z(∞) = lim

x→−∞
4|x|3/4μH

−1/z,−1/z(x,∞) �[γ passes to right of i]

= lim
x→−∞

4|x|2μH

z,−1/z(x,∞) �[γ passes to right of i] .(3)

We will now reparametrize time for the SLE-curve, namely by con-
formal radius from i. The SLE maps gt are given by solving

∂tgt =
3/4

gt(z)− Ut

, g0(z) = z,
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where Ut = −Bt for a standard Brownian motion with B0 = x. Here
we follow Lawler’s notation. Let γ[0, t] be the SLE-curve up to time
t. Define the conformal radius r of a point z in a simply connected
planar domain as follows: If D = H, then r = 1/�z, while otherwise
r = |Φ′(z)|/�Φ(z), where Φ maps D onto H. Set Zt = Xt + iYt =
gt(i) − Ut and θt = arg(Zt). Then the conformal radius rt of H\γ[0, t]
(as seen) from i is

rt =
|g′t(i)|
�gt(i)

,

and by Itô’s formula

∂trt = rt
(3/2)Y 2

t

(X2
t + Y 2

t )2

dθt = −(1/2)
XtYt

(X2
t + Y 2

t )2
dt− Yt

X2
t + Y 2

t

dBt.

In particular, rt is strictly increasing. Change time so that r̂t = rσ(t) =

e3t/2, if r∞ = lims→∞ rs ≥ e3t/2. Then θ̂t = θσ(t) satisfies

dθ̂t = −1

2
cot θ̂t dt + dB̂t,

where B̂t is also a standard Brownian motion. The solution to this
stochastic differentia equation is known as a Legendre process on [0, π]
of index −1. It is absorbed when it reaches the boundary. Its behavior
near the boundary is that of a 0-dimensional Bessel process. In par-
ticular, the event θ̂ is absorbed before time t corresponds to the event
r∞ < e3t/2.

By Schramm’s formula

μH,i
−1/z(∞) = lim

x→−∞

μH

z,−1/z(x,∞) �[γ passes to right of i]

μH

z,−1/z(x,∞)[γ passes to right of i]

= lim
x→−∞

μH

z,−1/z(x,∞)[ · |γ passes to right of i],(4)

where the first line is to be read as “the left-hand side, which is a
limit, exists, if and only if the limit on the right exists, in which case
they are equal.” The second equality is the definition of conditioning.
The conditioning can be done by an h-transform, using the probability
from Schramm’s formula, which is “harmonic” for the generator of the
Legendre process of index -1. The additional drift is the logarithmic
derivative of this probability

∂

∂θ
log[

1

2
(1− cos θ)] = cot

θ

2
.
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Thus, θ̂ for the conditional SLE satisfies the equation

(5) dθ̂t = (cot
θ̂

2
− 1

2
cot θ̂) dt + dB̂t

The boundary behavior of this process at the point 0 is that of a 4-
dimensional Bessel process, i.e 0 is an entrance boundary never to be
reached again, while at π the boundary behavior is unchanged, i.e that
of a 0-dim. Bessel process, and the process is absorbed once it reaches
π. The solution of (5) is known to be a Feller process. In particular,

if Pθ is the law of the solution to (5) with θ̂0 = θ, then θ → θ′ implies
the weak convergence of Pθ to Pθ′ . Since the weak convergence of the
driving function θ̂ for the SLE-curve γ implies the weak convergence
of the SLE-curve itself (in an appropriate topology on the space of
curves), we get the existence of the desired limit.

3. Werner’s measure: The conformally invariant measure
on self-avoiding loops

A loop is a homeomorphism φ from S1 into C. We consider two
such homeomorphisms φ1, φ2 equivalent if there exists a homeomor-
phism h : S1 → S1 such that φ1 = φ2 ◦ h. An annular region U is a
doubly connected domain whose boundary components are both non-
degenerate, i.e. contain more than one point. In fact, usually we will
assume that both boundaries are loops. An annular region U is confor-
mally equivalent to an annulus {1 < |z| < ρ} for a unique ρ ∈ (1,∞).
The annulus {1 < |z| < ρ} is conformally equivalent to

Aρ ≡ H\{|z − i
ρ2 + 1

ρ2 − 1
| ≤ 2ρ

ρ2 − 1
}

under the map z → i(w + 1)/(w − 1).
Suppose μ = μC is a measure on loops 	 ∈ C. For any planar domain

D, set μD = μ �[�⊂D]. μ is said to satisfy conformal restriction if

whenever Φ : D → D′ is conformal and onto, then μD = Φ∗μD′ .

Proposition 1 (Werner). If μ exists, it is unique (up to a multiplicative
constant). In fact, if z ∈ D′ ⊂ D, where D and D′ are simply connected
domains, then

μ[	 ⊂ D, 	 � D′, 	 disconnects z from ∂D] = c log Φ′(z),

where Φ : D′ → D is conformal and onto with Φ(z) = z, Φ′(z) > 0.
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Proof. Let D = {|z| < 1} and suppose 0 ∈ D′′ ⊂ D′ ⊂ D. Then

F (ΦD′′) ≡ μD[	 � D′′, 	 disconnects 0 from ∂D]

= μD′ [	 � D′′, 	 disconnects 0 from ∂D′]

+ μD[	 � D′, 	 disconnects 0 from ∂D]

= μD[	 � ΦD′(D
′′), 	 disconnects 0 from ∂D]

+ μD[	 � D′, 	 disconnects 0 from ∂D],

= F (ΦD′′ ◦ Φ−1
D′ ) + F (ΦD′),

where ΦD′ , ΦD′′ are conformal from D′, resp. D′′ onto D, which fix
0 and have positive derivative there. Thus the map ΦD′ �→ F (ΦD′)
is a homomorphism from the semigroup of conformal maps ΦD′ under
composition into the additive semigroup R+.

Consider the family of domains Dt ≡ D\[rt, 1), where rt is such that
Φ′Dt

(0) = et. Then, by symmetry,

ΦDt(Dt+s) = D\[rt+s,t, 1) ≡ Dt+s,t

for some rt+s,t. But ΦDt+s = ΦDt+s,t ◦ ΦDt , so that

et+s = Φ′Dt+s
(0) = Φ′Dt+s,t

(0)et.

This implies Φ′Dt+s,t
(0) = es and hence Dt+s,t = Ds and ΦDt+s = ΦDt ◦

ΦDs so that t → ΦDt is a semigroup. Since t �→ F (ΦDt) is a non-
decreasing function from (0,∞) into (0,∞) such that

F (ΦDt+s) = F (ΦDt) + F (ΦDs),

it follows that

F (ΦDt) = ct = c log Φ′Dt
(0)

for some constant c > 0.
For each θ ∈ [0, 2π), t > 0, set Dt,θ = D\[rte

iθ, eiθ), with the rt from
above. Then, by rotational invariance of D, Φ′Dt,θ

(0) = et, and, by

rotational invariance of μD,

F (ΦDt,θ
) = F (ΦDt).

Next, consider the semigroup U of conformal maps generated by the
family {ΦDt,θ

: t > 0, θ ∈ [0, 2π)}. If Φ ∈ U , then

Φ = ΦDt1,θ1
◦ · · · ◦ ΦDtn,θn

,
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and, by the semigroup property of F ,

F (Φ) = F (ΦDt1,θ1
) + · · ·+ F (ΦDtn,θn

)

= c
(
log Φ′Dt1,θ1

(0) + · · ·+ log Φ′Dtn,θn
(0)

)
= c log Φ′(0).(6)

Finally, the family U is “dense” in the class of conformal maps ΦD′ for
arbitrary simply connected subdomains 0 ∈ D′ ⊂ D. This means there
exists a sequence of domains D′

n belonging to maps from U such that
D′

n ↘ D′. This implies

Φ′D′n(0) ↗ Φ′D′(0),

and also 	 � D′ if and only if 	 � D′
n from some n on. Hence

F (ΦD′) = lim F (ΦD′n) = c lim Φ′D′n(0) = cΦD′(0).

�

4. Existence of μ

For an annular domain U , denote 〈U〉 the set of non-contractible
loops in U . Let σ(Aρ) be the σ-algebra on the space 〈Aρ〉 generated by
events 〈U〉, where U is an annular region in Aρ containing at least one
loop which is non-contractible in Aρ. We say U is an annular region
properly contained in Aρ. If U is conformally equivalent to the annulus
{1 < |z| < ρ′}, then we say the modulus of U is

mod (U) = − ln ρ′

Note that 1 < ρ′ < ρ. Denote γ an oriented simple curve which begins
on the real line and ends at i. Then

• form γ ∩U , which consists of at most countably many oriented
and ordered components,

• remove all components after the first component that ends on
“inner” boundary of U ,

• add left endpoints of all remaining components.

We call this the crossing of U induced by γ. Denote crossing also by
γ. Then the crossing can be parameterized on [− ln ρ′, 0] so that

U\γ[− ln ρ′, t] has modulus t.

Define a measure μρ,γ on (〈Aρ〉, σ(Aρ)) by

μρ,γ =

∫ 0

− ln ρ

dt(ϕρ,γ
t )∗μH,i

z (0) �〈Ae−t 〉,
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where Aρ\γ[− ln ρ, t] has modulus t and ϕρ,γ
t maps Aρ\γ[− ln ρ, t] con-

formally onto Ae−t , sending the tip γt to 0. Then

μρ,γ[〈U〉] =

∫ 0

− ln ρ

dt μH,i
z (0)[〈ϕρ,γ

t (U)〉]

=

∫ 0

− ln ρ

dt μH,i
z (0)[〈Φt ◦ ϕρ,γ

t (U)〉]Φ′t(0)2

=

∫ 0

− ln ρ′
μH,i

z (0)[〈Ae−s〉].(7)

The first equality in (7) is merely the definition of the pull-back of the
measure μH,i

z (0) under ϕ, in the second equality Φt is the conformal
map from ϕρ,γ

t (U) onto Ae−s , where s is the modulus of ϕρ,γ
t (U), and

the appearance of the factor Φ′t(0)2 is due to a well-known argument
of Beffara, and the third equality stems from the fact that under the
transformation Φt the resulting crossing is no longer parameterized by
modulus, the relation between the parameterizations being given by
ds = Φ′t(0)2dt. But the last expression in (7) shows that μρ,γ[〈U〉] and
hence the measure μρ,γ are independent of the crossing γ. Call these
measures

μρ, ρ > 1.

If U is an annular region (not necessarily planar) with mod (U) =
− ln ρ, define μU by

μU = Φ∗μρ, where Φ : U → Aρ.

If U is properly contained in Aρ′ and V is an annular region properly
contained in U with mod (V ) = ρ′′, then

μU [〈V 〉] = μρ[〈Φ(V )〉]

=

∫ 0

− ln ρ′′
ds μH,i

z (0)[〈Ae−s〉]

= μρ′ [〈V 〉].(8)

So μρ′ �〈U〉= μU . Similarly, if U, V are two annular regions and E ∈
σ(U) ∩ σ(V ), then

μU [E] = μV [E],

i.e., the measures on annuli are compatible. By general measure theory,
this implies that

Theorem 2 (Werner’s measure). Given any Riemann surface S there
exists a unique measure μS on loops in S such that if U is an annular
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region in S of modulus − ln ρ, then

μS[〈U〉] =

∫ 0

− ln ρ

dt μH,i
z (0)[〈Ae−t〉].

The measures μS satisfy conformal restriction, i.e.

• if Φ : R → S is conformal, then μR = Φ∗μS;
• if T ⊂ S, then μT = μS �[�⊂T ].

Up to a multiplicative constant, the the family {μS} is the only family
satisfying conformal restriction.
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