

1952-16

School on Stochastic Geometry, the Stochastic Lowener Evolution, and Non-Equilibrium Growth Processes

7 - 18 July 2008

From Critical to Off-Critical Interfaces (SLE/CFT and application)

Denis BERNARD ENS, Lab. de Physique Theorique F-75231 Paris Cedex 05 France

IJ SLE/CFT and applications First, me shall make contact between some abgebroux as peet of CFT and probabilistic native of - 525. Recall (expected) CFT martingales (via statistical martingales) 1. Loewner eq. (algebraic version of) (in H = upper half plane) For chordal site, Laewner eg. 1) $d_{9_{1}} = \frac{2dC}{3_{1} - 3_{1}}; \quad 3_{1} = \overline{J_{1}} B_{1}$ Conventent to connot he = ge-3t (map the tip of the curre back to the origine 30) $dh_{t} = \frac{2}{h_{t}}dt - d\xi_{t}$ consider now an arbitrary function of he, say Flhe(0) By sto calculus $dF(h_{t}) = \left[\frac{2}{h_{t}}F(h_{t}) + \frac{\kappa}{2}F(h_{t})\right]dt - d\xi F(h_{t}) \int d\xi^{2} = \kappa dt$ $= \left(\frac{x}{2} \frac{p^2}{1} - 2\frac{p}{2}\right) F(h_t) dt - dy \left(\frac{p}{k}\right) F(h_t) dt$ where In are the vector field $l_n = - z^{n+1} \partial_z ,$ $[l_n, l_m] = (n - m) l_m m$ Ck: Recall (as 17. Janer explained last week). we view new the Lowner may as a group dement (group of general holo map at as, with product equels to the composition Action on fendior is g.F=Folg Stochastic og. for § . $S_{E}^{-}dS_{E}^{2} = \left(\frac{k}{2}\int_{1}^{2}-2f_{2}\right)dt - f_{1}dt$ His playan important role in the CFT/SLE compandence

3. CFT markingales
We can now easily prove that CFT correlation
$$f^{d'}$$
 are set nortingals
chindal set and H
eq $O = \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} O = \frac{1}{4} \frac{1}$

τ

• 🕤

ii) GFF and coupling with SLE KK4
Since SLEKK4 corresponds to central charge
$$c = \frac{(6-k)(3k-3)}{2k} < 1$$

we have to add a "background charge" to the GFF. so that now
the prices tensor is Tale - $\frac{1}{2}(2\phi)^2 + i\alpha_0(3\phi)$
 $c = 1 - \frac{12}{2}\alpha_0^2$

In presence of beekground charge the field ϕ is not scalar, (the current $T = i \partial \phi$ is not a primary field of dim 1) there is an anomaly in its conformal transformation. This reflects in the caugling. SLE_{K} / GFF_{QS} .

2st ft in Hy
the connected 2 gt ft is still the Green Junction

$$\langle d(a) d(w) \rangle_{H_{t}}^{s} = G(h_{t}(a), h_{t}(w))$$

so that the full $\cdot 2$ gt jamatica is a martingale M
 $\hat{d} = \sqrt{8/4}$

Pl As Defere, if the one and two point for are mostingale, the same is true for the N. pr jet - exact compling.

From the value of
$$\lambda$$
 and from the anomalous transf of ϕ ,
we read the value of α_0
$$\alpha_0 = \frac{2}{4} \left(\frac{\pi_1 + 4}{4}\right) \rightarrow c = 1 - \frac{12}{4} \alpha_0^2 = 1 - 6 \frac{(c-4)^2}{4k}.$$

$$\frac{\mathrm{RL}}{\mathrm{RL}}; \mathrm{In} \text{ presence of background charge, transformate law are} \\ F = \begin{cases} \langle \phi^{(2)} \rangle_{\mathrm{H}} = \langle \phi^{(f(2))} \rangle_{\mathrm{H}} + \mathfrak{Six} \log f(2), \\ \langle 5^{(2)} \rangle_{\mathrm{H}} = f^{(2)} \langle 5^{(f(2))} \rangle_{\mathrm{H}} + \mathfrak{Six} \log f(2), \\ \end{cases}$$

G? now to describ SLE with more marked prints
eg.
modivation for introducing to
ma statistical/off matingde
We start from chordal SLE from 0 to a in the upper half plane
(with the hydrody name is normalization:
$$dg_t = \frac{2dt}{g_t - g_t}$$

We shall use a teny herma (which is a simple conveguence
of Sto calculus, link to what is called h-transform in
probability othery.
Let Zo(g_t, g_t(m)...) & a martingale for SLE chiradal
(from ob a in the hydro. normalization
 $Z(g_t, g_t(m)...)$ is a martingale for SLE chiradal
(from ob a in the hydro. normalization
 $Z(g_t, g_t(m)...)$ is a martingale for SLE chiradal
(form ob a in the hydro. normalization
 $Z(g_t, g_t(m)...)$ is a martingale
(with dryth) $dg_t = IZ dg_t + \chi (2glog To)(g_t, g_t(m)...) dt$

(dem, see delow)

We apply this to different exemples. The point is that we know (from stat. much previous disaurain) that the martingales of process associated to some stat. much. mudels should be return of portition functions.

1) Charded SLE from 0 to a sin H1 (with hydrodynamic)
H
(M) Huese are two boundary condition
thenging operation at 0 and at d.
W W
In the continuum vardel, the pattion function should be (proprihed to,
the 2-point function

$$Z_{(X_{0}, a)} = \langle \Psi(a), \Psi(x_{0}) \rangle$$
 in H4
In the continuum vardel, the pattion function should be (proprihed to,
the 2-point function
 $Z_{(X_{0}, a)} = \langle \Psi(a), \Psi(x_{0}) \rangle$ in H4
In the continuum vardel, the pattion function should be (proprihed to,
 $Z_{(X_{0}, a)} = \langle \Psi(a), \Psi(x_{0}) \rangle$ in H4
In the continuum vardel, the pattion function should be (proprihed to,
 $Z_{(X_{0}, a)} = \langle \Psi(a), \Psi(x_{0}) \rangle$ in H4
In the continuum vardel, the pattion function of the
 $Z_{(X_{0}, a)} = \langle \Psi(a), \Psi(x_{0}) \rangle$ in H4
In the continuum vardel, the pattion function of the context
 $Z_{(X_{0}, a)} = \langle \Psi(a), \Psi(x_{0}) \rangle$ in H4
So the set of provide on that the drift is X_{0} by Z_{0} .
So the set of graves o described by
 $d_{X_{0}} = \frac{2dt}{3t_{0}(2) - \frac{3}{2t_{0}}}$ is $da_{0} = \frac{2dt}{3t_{0}(2) - \frac{3}{2t_{0}}}$
 $d_{X_{0}} = \frac{2dt}{3t_{0}(2) - \frac{3}{2t_{0}}}$ is $da_{0} = \frac{2dt}{3t_{0}(2) - \frac{3}{2t_{0}}}$
 $d_{X_{0}} = \sqrt{2} \quad da_{0} = \frac{2dt}{3t_{0}(2) - \frac{3}{2t_{0}}}$
 $d_{X_{0}} = \sqrt{2} \quad da_{0} = \frac{2dt}{3t_{0}(2) - \frac{3}{2t_{0}}}$
 $d_{X_{0}} = \sqrt{2} \quad da_{0} = \frac{2dt}{3t_{0}(2) - \frac{3}{2t_{0}}}$
 $d_{X_{0}} = \sqrt{2} \quad da_{0} = \frac{2dt}{3t_{0}(2) - \frac{3}{2t_{0}}}$
 $d_{X_{0}} = \sqrt{2} \quad da_{0} = \frac{2dt}{3t_{0}(2) - \frac{3}{2t_{0}}}$
 $d_{X_{0}} = \sqrt{2} \quad da_{0} = \frac{2dt}{3t_{0}(2) - \frac{3}{2t_{0}}}$
 $d_{X_{0}} = \sqrt{2} \quad da_{0} = \frac{2dt}{3t_{0}(2) - \frac{3}{2t_{0}}}$
 $d_{X_{0}} = \sqrt{2} \quad da_{0} = \frac{2dt}{3t_{0}(2) - \frac{3}{2t_{0}}}$
 $d_{X_{0}} = \sqrt{2} \quad da_{0} = \frac{3}{2t_{0}} \quad da_{0} =$

 φ_{1}

Si

· operators Is and Iz at the two marked prints (nith dim Sy and Sz) Ψ2 62

The portation function will be (proportional to) the 3-pt
$$g^{ab}$$

 $Z_{a}(n_{a}, a, b) = \langle S_{a}(a) S_{a}(a) \Psi(n_{a}) \rangle \qquad m H M$
 $= cst. (n_{a}-a)^{-h} (n_{a}-b)^{-h} (b-a)^{-h}$

$$(ab)$$
 $a = g(g+4-k)/4k$; $g = (g+2)(g+6-k)/4k$ (ata)
 $\delta_1 - \delta_2 = \frac{2g+k-6}{2k} = \frac{g}{k} - h_{4k}$

The drift term is given by
$$k(\partial_{5}\log B)(3, q_{5}, b_{7})$$
 so that
 $d_{3_{2}} = [\overline{x} dB_{2} - \frac{s \cdot dt}{3_{2} - b_{2}} + \frac{(s + k - s)dt}{3_{2} - q_{2}}$

Rh.1. The symptoic case corresponds to
$$p = \frac{G-K}{2}$$
, we $\delta_1 = \delta_2 = h_{0;1/2}$
sto SLE - dipolar

and the drift will be
$$\mathcal{K}(2g, U_{1}^{c}, ..., W_{1}^{c}, ...)$$

Application: N-SLE
Y ZV ... D Z Y N interfaces
N boundary changing operators Y
N z Z N
The postitive
$$j^{d}$$
 is $Z_0(z_1, -X_N) = \langle Y(a_N) ... Y(a_d) \rangle$
In Ht, with hydrody names our made zetter, harmes may
abojo, $dg^{(2)} = \sum_{j=1}^{N} \frac{2}{q^{(2)} - q^{\pm}}$
with
 $dx_0^{\pm} = \sqrt{2} dx_0^{(8)} + \sum_{k\neq 0}^{N} \frac{2dt}{q_0^{\pm} - q_0^{\pm}} + \kappa(a_k b_0 Z)(a_{k,1}^{\pm}, q_1^{\pm}) dt$
one end
 $dy_0^{(2)} = \frac{1}{\sqrt{2}} \frac{2dt}{q_0^{\pm} - q_0^{\pm}} + \kappa(a_k b_0 Z)(a_{k,1}^{\pm}, q_1^{\pm}) dt$
one end
 $dx_0^{\pm} = \sqrt{2} dx_0^{\pm} - x_0^{\pm} + \kappa(a_k b_0 Z)(a_{k,1}^{\pm}, q_1^{\pm}) dt$
 $dx_0^{\pm} = \sqrt{2} dx_0^{\pm} - x_0^{\pm} + \kappa(a_k b_0 Z)(a_{k,1}^{\pm}, q_1^{\pm}) dt$
 $dx_0^{\pm} = \sqrt{2} dx_0^{\pm} - x_0^{\pm} + \kappa(a_k b_0 Z)(a_{k,1}^{\pm}, q_1^{\pm}) dt$
 $dx_0^{\pm} = \sqrt{2} dx_0^{\pm} - x_0^{\pm} + \kappa(a_k b_0 Z)(a_{k,1}^{\pm}, q_1^{\pm}) dt$
 $dx_0^{\pm} = \sqrt{2} dx_0^{\pm} - x_0^{\pm} + \kappa(a_k b_0 Z)(a_{k,1}^{\pm}, q_1^{\pm}) dt$
 $dx_0^{\pm} = \sqrt{2} dx_0^{\pm} - x_0^{\pm} + \kappa(a_k b_0 Z)(a_{k,1}^{\pm}, q_1^{\pm}) dt$
 $dx_0^{\pm} = \sqrt{2} dx_0^{\pm} - x_0^{\pm} + \kappa(a_k b_0 Z)(a_{k,1}^{\pm}, q_1^{\pm}) dt$
 $dx_0^{\pm} = \sqrt{2} dx_0^{\pm} - x_0^{\pm} + \kappa(a_k b_0 Z)(a_{k,1}^{\pm}, q_1^{\pm}) dt$
 $dx_0^{\pm} = \sqrt{2} dx_0^{\pm} - x_0^{\pm} + \kappa(a_k b_0 Z)(a_{k,1}^{\pm}, q_1^{\pm}) dt$
 $dx_0^{\pm} = \sqrt{2} dx_0^{\pm} - x_0^{\pm} + \kappa(a_k b_0 Z)(a_{k,1}^{\pm}, q_1^{\pm}) dt$
 $dx_0^{\pm} = \sqrt{2} dx_0^{\pm} - x_0^{\pm} + \kappa(a_k b_0 Z)(a_{k,1}^{\pm}, q_1^{\pm}) dx_0^{\pm}$
 $dx_0^{\pm} = \sqrt{2} dx_0^{\pm} - x_0^{\pm} + \kappa(a_k b_0 Z)(a_{k,1}^{\pm}, q_1^{\pm}) dx_0^{\pm}$
 $dx_0^{\pm} = \sqrt{2} dx_0^{\pm} - x_0^{\pm} + \kappa(a_k b_0 Z)(a_{k,1}^{\pm}, q_1^{\pm}) dx_0^{\pm}$
 $dx_0^{\pm} = \sqrt{2} dx_0^{\pm} - \chi(a_{k,1}^{\pm}, q_1^{\pm}) dx_0^{\pm}$
 $dx_0^{\pm} = \sqrt{2} dx_0^{\pm} - \chi(a_{k,1}^{\pm}, q_1^{\pm}) dx_0^{\pm} + \chi(a_{k,1}^{\pm}) dx_0^{\pm} + \chi(a_{k,1}^{\pm}) d$

-# of conformal blacs (ic stution of diff. eq.) equals He # of inequivalent to pology $\Rightarrow Z^{(1)}$: Bills: both proba. $\frac{Z^{(q)}}{Z}$