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Magnetic energy spectrum in the magnetosheath

downstream of the bow shock
(Alexandrova et al., JGR, 2006).
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Magnetic energy specfPum (mirror modes) in the
magnetosheath close to the magnetopause
(Sahraoui et aI PRL 2006)
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Solar wind turbulent spectrum
(Alexandrova et al., 2007)
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Space plasmas such as the solar wind
or the magnetosheath are turbulent
magnetized plasmas with essentially no

collisions.

. Noutral point

High quality in situ measurements (CLUSTER, etc.)

Observed cascades extend beyond
the ion Larmor radius: Kkinetic effects
play a significant role.



Another issue:

Formation and evolution of small-scale coherent structures
(filaments, shocklets, magnetosonic solitons, magnetic holes)

observed in various spatial environments.

Typical length scale of the structures: a few ion Larmor radii.
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Figure 8. Magnetic field fluctuations, taking T ~ —420 s
(1755:16 UT) as the origin of time. (a) Fluctuations 8By
during 10 s around 7. (b) Fluctuations of the magnetic field
components (88y, 88y, 8B.) for the 2-s period around .
(¢) The z-aligned current tube simulation (88,, 6B, 65.).

Signature of magnetic filaments
(Alexandrova et al. JGR 2004)

50

40

30

nT

20

10

0 L
02:33:00

FIG. 1.

lep‘l }f.}' / f/

e

02:33:40
Time UT

02:33:20

Cluster: 2001-11-25

A large scale soliton observed by Cluster spacecraft

C2 (dashed) and C4 (solid) in the total magnetic field. Marked
curve shows fit of bysech®[(r — 1y)/61] with by = —33 nT and
&t = 4.4 s. The soliton moves with velocity uy = 250 km/s
and has a width of 2000 km. The position of Cluster satellites
was (—4,17,5) Rg GSE.

Slow magnetosonic solitons
(Stasiewicz et al. PRL 2003)

Cluster 3, 01-Mar-2006 (peakness = 0.83, MP distance = 13615.0 km)
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Mirror structures in the terrestrial
magnetosheath

(Soucek et al.JGR 2008)
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fast magnetosonic shocklets
(Stasiewicz et al. GRL 2003)

Figure 2. Pulse-like enhancements of the plasma density
and magnetic field measured on four Cluster spacecrafi:
—C4, which are color coded in sequence: black, red,
green, blue. The measurements represent signatures of fast
magnetosonic shocklets moving with supersonic speed in a
high-3 plasma.
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Strictly speaking, collisionless plasmas require a kinetic description,

because of
- the closure problem for the hierarchy of equations governing the fluid moments

- wave-particle resonances such as the Landau damping

- the possible finite Larmor radius effects

Computational cost of kinetic simulations in turbulent regimes is very high,even
in the gyrokinetic description that

involves averaging on the particle gyromotion

is restricited to quasi-transverse low-frequency dynamics

Question: Can fluid models provide an “approximate” alternative
to kinetic descriptions of low-frequency phenomena in
magnetized collisionless plasmas?

Two main approaches:

Closing the hierarchy derived from Vlasov-Maxwell equations: Landau fluids

Closing the hierarchy derived from gyrokinetic equation: gyrofluids



Landau fluids:

* Introduced by Hammett & Perkins (1990) as approximate closures retaining
phase mixing and linear Landau damping.

* Implemented in the context of large-scale MHD by Snyder, Hammett &
Dorland (1997) to close the hierarchy of moment equations derived from

the drift kinetic equation: retain Landau damping.

» Extended to dispersive MHD by including large-scale FLR corrections
computed perturbatively within the fluid formalism (derived from Vlasov-Maxwell

equations) [Goswami, Passot & Sulem, PoP 2005].

» Further extension aimed to resolve transverse scales comparable to or smaller
than the ion gyroradius: “FLR-Landau fluid” [Passot & Sulem, PoP 14, 082502, 2007].

FLR-Landau-fluids include a full description of the hydrodynamic nonlinearities,
supplemented by a linear (or semi-linear when the instantaneous variations of the plasma
mean quantities, such as pressures, are retained ) description of low-frequency kinetic

effects.



Alternative approach: gyrofluids
(Brizard 1992, Dorland & Hammett 1993, Beer & Hammett 1996, Scott 2005)

» Obtained by taking velocity moments of the gyrokinetic equation.
* Nonlinear FLR corrections to all orders are captured.
* Involve a linear closure of the hierarchy, as the Landau fluids.

» Equations are rather complex because not written in the physical coordinates but in
the gyrocenter variables. The transformation from one set of variables to the other
requires additional approximations.

* All fast magnetosonic waves [that may contribute to the turbulent cascade (Luo & Melrose 07)]
are ordered out, while FLR-Landau fluids retain large-scale fast magnetosonic waves.

Both Landau fluids and gyrofluid neglect wave particle trapping, i.e. the effect of
particle bounce motion on the distribution function near resonance.



Landau fluids

For the sake of simplicity, neglect electron inertia.

lon dynamics: derived by computing velocity moments from Vlasov Maxwell equations.

Oepp +V - (ppup) = 0 o, =mn,
: : 1 o € 1 uasi-neutrality (n. = ny)
Oyt + ty -V, +—V-p, — —(E +—u, x B) =0 9 ¢ p
Py my, &
| 1 7 1 _ C
B=—2(m=a) ¥ B= oV e )=V X E
; x/
f)t]__)) = —f'T 4 E

Py =pipn+ppp 7+ 1L withn =1 - bband T=b@b, where b=B/ BJ.

Electron pressure tensor is taken gyrotropic (scales >> electron Larmor radius):
characterized by the parallel and transverse pressures pj. and pj..



For each particle species,

Perpendicular and parallel pressures heat flux tensor

/

. . . .
op L +V-(up ) +p, V -u=p . b-Vu-b +5lr V-q=-b-(V-q)-b] =0
5rp||+V'(Ltp||)+2p||6-VLt-[;+5-(V-q)-6 =0

Nongyrotropic components of the pressure tensor (gyroviscous tensor)
will be evaluated separately by fitting with the linear kinetic theory.



Heat ﬂuxeS n=I-50 ?; and T = ?; b. where b = B/|B|

Proton heat flux tensor: q =S + o with 0,51, = 0 and 7,7, = 0.

Fluxes of parallel and transverse heat: S_[U = qijkTik and 25+ = gk,

Parallel heat fluxes of perpendicular and parallel heat ¢, = S+ .b and q = S5 are the only

contribution to the gyrotropic heat flux tensor.

Write S+ = ¢, b+ S+ and S| = q||/f.;+ Sl where the perpendicular heat flux

of perpendicular and parallel heat S| and bl are computed in a linearized
approximation.

The gyrotropic heat flux components (, and ( l obey dynamical equations.



Equations for the parallel and perpendicular (gyrotropic) heat fluxes
N T T P ~ N o~ ~ NG

| G + V- (war) + iV utpy (b VJ(%) * %(&Hm + 3yHyz)
+V - (Fjub) + (CPM - m)% — 711+ F’”L) (V- b)+8.RYY =0

Involve the 4 th rank gyrotropic cumulants 7y, 71, 711
expressed in terms of the 4 th rank gyrotropic moments by

2
s, 3P
P =y — <

PP

Ple=no — .

RTT‘FG and RfG stand for the nongyrotropic contributions of the fourth rank cumulants.



2 main problems:

(1) Closure relations are needed to express the 4th order cumulants 7. 7L, 7L L
(closure at lowest order also possible, although usually less accurate)

(2) (Non-gyrotropic) FLR corrections to the various moments are to be evaluated

The starting point for addressing these points is the linear kinetic theory in
the low-frequency limit. w/Q ~e <« 1 (Q: ion gyrofrequency)

For a unified description of fluid and kinetic scales, FLR-Landau fluids retain
contributions of:

e quasi-transverse fluctuations (ki /k 1 ~¢) with kyrp ~ 1

» hydrodynamic scales with kyrr ~kirp ~ e

r I' :ion Larmor radius
1L




CLOSURE RELATIONS are based on linear kinetic theory (near bi-Maxwellian

equilibrium) in the low-frequency limit.

For example, for each species, (assuming the ambient magnetic field along the = direction),

2

- b U
Tl = pL(o) (1= R(C) + 2C°R(Q)] [ [26T0(b) — To(b) — 26T1 (b)] — + b[T(b) — Ty (b)) -

B By Tio)

Do(b) = e "I,(b), b= (k1T}”)/(2*m) , I,.(b) modified Bessel function, E, = —,F

R is the plasma response function, { = 7 . (For electrons, b = 0, 'y = 1, I'; = 0)

1vtn

It turns out that 7)), can be expressed in terms of perpendicular gyrotropic heat
flux ¢ | and of the parallel current j.. One has

o(0) | R(c oD (0),_(0) . (0) :
~ 20 (€) + 2C°R(<) PPy T s
L = Lo(b) —T'4(b — 1

The approximation consists in replacing the plasma response function R by the
2 — i /TC
2 — 3i/m¢ — 4¢2 4 2i/7C3

three pole Padé approximant R;(¢) =



1— R(C)+2C°R(C) /7
2CR(¢) —2 + iy7¢’

(A lower order Padé approximant would overestimates the Landau damping in the large ¢ limit).

This leads to the approximation

One finally gets a closure relation in the form of the evolution equation (for each
species)

o (0) 7(0) (0), (0) ,(0) .
a 2 247 . 247 PP T, j:
— - | H.0. |7 + d.[q. + [To(b) =T (b)]————(—— — 1)——] = 0,
[dt VT m 7 m 91+ [To(b) 1(b)] p@vZ ") )e-n,ﬁo)} '

In Fourier space, Hilbert transform H. reduces to the multiplication by 72 sgn k..

Improvement: Retain the evolution of the equilibrium state by replacing the (initial) equilibrium

pressures and temperatures by the instantaneous fields averaged on space.

In the large-scale limit, I'y(0) = 1 and I'1(0) = 0.



At large scales, FLR effects negligible: pressure and heat flux tensors are gyrotropic.
= “Landau fluid model for collisionless MHD" (Snyder, Hammett, Dorland 1997) .

Can be viewed as an extension of anisotropic MHD, including linear Landau

damping (Hilbert transform with respect to the longitudinal coordinate in the closure relations).

Leading order FLR corrections (non gyrotropic contributions to pressure and heat
flux tensors) can easily be supplemented. They induce dispersive effects.

|. Validation of the model for scales large compared with the ion gyroradius

Decay and modulational instabilities of circularly polarized Alfvén waves propagating
parallel to the ambient field. Comparison with kinetic theory and hybrid simulations.

(Bugnon, Passot & Sulem, NPG. 11 609, 2004).



Decay instability of parallel Alfvén waves in the long-wavelength limit

(no dispersion)
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Landau fluid simulation

Maximum growth rates of the density modes versus wavenumber (normalized
by the pump wavenumber) resulting from the decay instability of a non dispersive Alfvén

wave of amplitude by = 0.447 in a plasma with 3, = 0.3 and isotropic temperatures

such that 7\ /7" = 33 (left), T /7" = 5 (middle) and 7" /T") = 1 (right).

Reducing electron temperature tends to broaden the spectral range and to reduce

the growth rate of the instability.

Decay instability of Alfvén wave produces a forward propagating acoustic wave
and a backward Alfvén wave with wavenumber smaller than that of the pump.



Decay instability of a long-wavelength Alfvén pump (continued)
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Fig. 3. Time evolution of parallel (solid lines) and transverse
(dashed-dotted lines) mean temperatures of the ions (top) and the

electrons (bottom)( P/P, =1.00 )
Decay instability saturates under the effect of Landau damping (rather than mode coupling)



Decay instability of dispersive Alfvén waves (continued)

T,ﬂo)=T(,(0), BiIp=0.21 (corresponding to B=0.42), and a
forward-propagating, right-hand polarized pump with am-
plitude up=0.1 and wave number ko=4 %27/ D=0.64 when
D=6.25 %27 (in units of ion inertial length).

Decay instability makes the density mode m=6 to be the most
unstable at short time. Saturation by Landau damping.

After a while, le mode m=3 starts growing, which induces a
second increase of m=6 (harmonics of m=3).

Further dynamics corresponds to an inverse cascade,
Involving the successive amplification of the
(m=2) backward and then (m=1) forward Alfvén modes.

0 1x10% 2><UJ"‘t 3x10% 4x10*

Fig. 4. Time evolution of the amplitude of the density modes nm=6
(top) and m=3 (bottom) in lin-log scales, for a right-hand polai-
1zed Alfvén wave of amplitude bp=0.1, kg=0.64, 1 a plasma with
Rp=1. p=0.42 and equal electron and ion equilibrium tempera-

tres.



Zero electron temperature

2.05—/f ‘

0 5.0x105 1.0x10° 15x104 2.0x104 2.510¢
t
Fig. 5. Time evolution of the ion mean parallel (solid line) and
perpendicular (dashed-dotted line) temperatures for a right-handed
Alfven wave with amplitude bg=0.5, kg=0.408, 1n a plasma with
B=.45. Rp=1, and zero electron equilibrium temperature.

Electrons remain cold

Qualitative agreement with hybrid simulations (Vasquez 1995)



Modulational instability (requires dispersion)

(forward-propagating) left-hand polarized pump of am plitude by=0.3

and wavenumber k;=0.408=8x2m /) (D=1 ion inertial length)

(0) 0
g=15 T, =2T)"

o |l u ] Confirm the prediction of Mjglhus and Wyller (1988), based
Run ] on the Kinetic Derivative NonLinear Schrodinger equation
t =2000 15_S|de band q

_|WV\, 3 (Rodinger 1971), obtained by a long wavelength reductive
_goi 1 |/ 1 perturbation expansion from Vlasov Maxwell equations,
n [l W that a small-amplitude, left-hand polarized Alfvén wave is
-0 -20 -0 o o 20 3 modulationally instable for all B (Spangler 1989, 1990;

Medvedev & Diamond 1996). This contrasts with fluid
description.

Reductive perturbative expansion on dispersive
Landau fluids reduces to KDNLS equation up
to the approximation of the plasma response
function by means of Padé approximants.

Fig. 7. Spectral density (versus the wavenumber index) in lin-log10
scale for the transverse magnetic field b =b, +iby, at time +=2000
(top) and t=3700 (bottom) belonging, respectively, to the linear and
nonlinear phases for the mthﬂm of a left-hand polarized Alfvén
wave with amplituwand T( )_2T{ ) H08, in a plasma where f=1.5,



Modulational instability (nonlinear regime)
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Fig. 8. Profile of |!)+|2 (top) and (p—1) (bottom) at r+=3700 in the
conditions of Fig. 7. The labels on the abscissa axis refer to the

collocation point indices.
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Fig. 9. Parallel (left) and transverse (right) pressures of the 1ons
(top) and the electrons (bottom) at 7=3700, in the conditions of
Fig. 7. The labels on the abscissa axis refer to the collocation point
mndices.

Parallel and transverse electron pressures are
proportional to the density variations.

This justifies the description of the electrons as an
Isothermal fluid.



Modulational instability (continued)

160F ' ' ' ' 3
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1.40F Presence of plateaux (with duration limited by onset of
130E new dominant modes).
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Fig. 10. Time evolution of parallel (solid lines) and transverse
(dashed-dotted lines) of the ion (top) and electron (bottom) mean
temperatures in the conditions of Fig. 7.

Dominant ion heating in the parallel direction
Some heating in the ions in the perpendicular direction ( # cooling in the case of decay instability)



In brief:

perpendicular ion cooling

decay instability: 5

> dominant parallel ion heating

modulational instability: J

\ perpendicular ion heating



Filamentation instability: transverse modulational instability of Alfvén waves.
Leads to formation of magnetic filaments  (Shukla & Stenflo, 1989)

Requires dispersion: a simple fluid description : Hall-MHD
The instability turns out to be strongly sensitive to kinetic effects

Hall-MHD equations with a polytropic equation of state

Op+ V. (pu) =0 velocity unit: Alfvén speed
length unit : R, x ion inertial length
time unit: R, x ion gyroperiod
| R density unit: mean density
_Ev 8 (;(V X b) x'b) magnetic field unit: ambient field

| ¥
plopu+uVu) = ——Vp' + (V x b) x b

[

b —V x (uxb)=
V.b=10

Exact solutions: (Dispersive) Alfvén waves propagating along the ambient field



Filamentation of a LH plane polarized Alfvén wave

B=15 Hall-MHD simulation

Direct numerical simulations of 3D Hall MHD (Laveder, Passot & Sulem Phys. Plasmas 9, 293 (2002)).
(Laveder et al., Physica D»184, 237, 2003)

Initial conditions: circularly polarized Alfvén wave perturbed at large scales



Large-scale transverse modulation of a small-amplitude parallel Alfvén wave,
amenable of a multiple-scale asymptotics

2w’
'Z,}g — q_,‘! = -
k(k2 + w?)
y 1 K . fow W2 3k
iOB 4+ oA | B_— ko (—— ) 2B — () ) — . !
t . "y vz AP+ 1wt BB =0, “T\ere) o T 2 — )
Vg
Champeaux, Passot & Sulem, JPP 58, 665 (1997) Note that o # K

B denotes the complex amplitude of the pump, defined by b,+i0b, = Bexpi(kr—wt)

AR?

2
A o= +1 or -1 depending on the RH or LH polarization of the wave.

Instability when coefficients of diffraction and of the nonlinear coupling coefficient have the same sign.

In the long-wavelength limit, filamentation instability for 3> 1



The conditions for flamentation instability are strongly affected by kinetic effects
(Passot & Sulem, Phys. Plasmas 10, 3887, 2003)

Reductive perturbative expansion performed from Vlasov-Maxwell equations leads to a multidimensional
Kinetic Derivative NonLinear Schrodinger equation for the Alfvén wave amplitude, coupled to a dynamical
equation for a mean field including several contributions (among them the parallel velocity and magnetic field)

A (transverse) modulational analysis then leads to the dissipative 2D NLS equation

5y

P,+iPy)A | —k(U)=0,
2Ap1_0:n( 1T 1P2) AL =KUY Y=0.

idrir+

that includes a linear diffusive term associated with Landau damping, in addition
to the diffraction and to the potential <U> to be determined in terms of y.

When linearly perturbing a plane wave solution

with harmonic perturbations of wavenumber K and frequency Q, one gets
the dispersion relation

|*4'r‘ |2 For bi-Maxwellian plasma, 1’<(Q

) 0 . o . -

O=ivK**+ \[2C k) 2 K2+ x*K*. For a plasma fire-hose stable, C'; >0
0

K, . . .
Filamentation instability when Xx= I+p, + (0)..2 <0. K coefficient associated
p U4 with Landau damping.

Py




Filamentation instability when X4 <0 2
/X* a
]-
Examples: ;
0
1) Equal and isotropic proton and electron temperatures |
No filamentation instability -1+ Yy
-2 T
02040608 1 121416 18 2

Bip

2) Isotropic ion and electron temperatures with equilibrium temperature ratio T /T, =8

IB,(1,1,t)l
4 b
21 X %
0-
Ejf‘\ Py
-.-..2—: { [
43
“
0204 0608 1 12 1.4 1.6 1.8 2 AL S D
> B 0 2000 4000 6000
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Filamentation instability Temperature anisotropy extends Landau fluid simulations

(theory) the instability range (with D. Borgogno)



Landau damping leads to an early saturation of the instability,
leading to magnetic filaments of very small intensity.

More significant amplification is observed in the presence
of a density channel.



High density channel: formation of filaments of moderate intensity
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Mirror instability: Can occur in a plasma with anisotropic ion temperature
_for cold electrons) ('J{ 1p > 1 p)

P

Quasi-transverse near threshold ( % 1>
I

Anisotropic ion cyclotron instability is not captured by low-frequency asymptotics.

The growth rate of mirror instability in the “quasi-hydrodynamic” limit is accurately
captured by SHD Landau fluid model (in contrast with anisotropic MHD).

SHD: Snyder, Hammett & Dorland (1997)

5 T——T &
— Kinetic
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Flgure 5: Mirror mode growth rate (p = Im(w)/(kzvy,) in @ quasi-transverse direction

(cot @ = 0.01), predicted by the kinetic theory and given by time integration of the Landau fluid
model, versus equilibrium temperature anisotropy for a plasma with 5 = (25, + ,3”){3 — 1 and equal

temperatures for electrons and protons.



Mirror instability extends to TRANSVERSE SCALES COMPARABLE TO ION LARMOR
RADIUS. Such scales cannot be ignored.

0.05 T T 0.05 T T
L a BJ_= 1.5 - — b A=15 -
0.04 g y 008 = ey ’
= A=25" ¥ - B pie
— = e . _ N =
s~ 003 & b 4 3 o003 | o P25 —~
~— B ',f - e -\ | - b= Z P - M \‘ —
e ‘,' o _ AN _ = _/ Ve _ A \
Eoags |- Fe ABR Ty O5 4 Boof . B=20 1 -
— S \ 1 = S % 3
I \ \ = — s Y =
Y = g = 001 ~ =7, Mo -
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Instability growth rate versus the transverse wavenumber for various 3 | ,, and anisotropy factor

A= Tﬁ} /Tﬁﬁ) 1 [From Pokhotelov et al. (2004) JGR 109, A09213].

In the quasi-hydrodynamic approach, maximum growth rate proportional to k| ry,
whereas kinetic theory predicts a quenching of the instability for perpendicular
scales of the order of the ion Larmor radius.

Retaining only the large scales leads to an ill-posed problem (the smallest retained
scales are the most unstable).

FLR effects at SMALL transverse scales should be retained to reproduce the
quenching of the mirror instability.



ll. Retaining small quasi-transverse scales (gyrokinetic scaling)

Finite Larmor radius effects:

Gyroviscous tensor: 1T = ﬁJ_ + 11 Db+b® L

It is convenient to write }o)VL I, =-V A+ V| x (B?).
pJ_p

By combining expressions of the various fields provided by the kinetic theory in
order to eliminate the plasma response function, one gets

(1)
_ 'y (b) INTCO N w1,
A= [ S R ath < ) E To(b) (")
~ [To(b) =1 —T1(b) . I'o(b) —T'1(b) B 1 —To(b)
B— - |22 +2(00(b) = L4 (0)) 4 2B T (b) = T () — 22
- R 1—-To(b)] 1
XQBO(?,]{J_ X EJ_) -z + 1——1—‘0(6) [Fo(b) — Pl(b) — %] 5(2.}{J_ . uJ_p)‘
2 (0)
In the large scale limit b = (—)l) e _, 0, the usual fluid estimates are recovered:
(22 m,,

Afiuia = 56(VL X ui) 2 Bpwia = 55(VL - ul)

In order to reproduce the leading-order nonlinear fluid theory, replace p(f; by p1,
(averaged on the domain)

T. Passot & P.L. Sulem, Phys. Plasmas 14, 082502 (2007)



Validation of the FLR —Landau fluid model by
comparison with the linear kinetic theory



Mirror modes

Comparison FLR-Landau fluid ( + ) with kinetic theory (— )

Normalized growth rate w; /€2, versus l{: LTL
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Kinetic Alfvén waves quasi-transverse propagation
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FIG. 1: Normalized frequency w.,.,f’(A:HrA‘) (left) and damping FIG. 2: Normalized frequency u;;.,f’(.l.-;”-uj (left) and damping
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Alfvén waves B =1

oblique propagation quasi-parallel propagation
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Slow waves

frequency damping rate
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FIG. 5: Normalized frequency w;/(kjcs) (left) and damp-
ing rate —w;/(kjcs) (right) for slow waves with 7 = 100,
0 = tan '(1000) versus k| pg for 3 = 0.01 (top), 3 = 0.1
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Nonlinear regime

« Nonlinear mirror modes

» Cascades of kinetic Alfvén waves



Nonlinear Mirror modes

Nonlinear dynamics of mirror modes is hardly amenable to a
fluid-like description, even when linear kinetic effects are retained.

Nonlinear kinetic effects, including distortion of the space averaged
distribution function, seem relevant.

Some aspects of mirror structures are nevertheless qualitatively
reproduced.



from initial random noise T,/T,,=005, T,/T,=1 cosd=0.2
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Formation of quasi-static magnetic holes
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The depth of the hole slowly decreases in time



from initial random noise
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Formation of magnetic humps

At long times the peak amplitude is observed
to decrease and a hole eventually forms.



Fixing mean proton temperatures
Simple way of imposing a forcing which, in real

IC: random noise (With D. Borgogno)

situations , is obtained through boundary conditions,

such as for example an inflow.

In small domain: stationary solution
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In large domains, these magnetic patterns
are subject to spatio-temporal chaos

Presence of large-scale compression waves.
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T,/1,,=005, T,/T,=1



Evidence of bistability

Stationary solution obtained by continuation below the threshold of mirror instability
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Nonlinear Kinetic Alfvén waves

Kinetic Alfvéen waves (and slow modes, but these ones are highly dissipative).
have been clearly identified using k-filtering technique by CLUSTER mission
in the cusp region of the magnetosheath (Sahraoui et al. AIP 932, 2007).
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Another medium where KAWs play a fundamental role is the solar corona,
where they are believed to mediate the conversion of large scale modes
into heat.



Decay and cascades of kinetic Alfvén waves
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|.  The initial wavelength is of the order or smalle
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An instability develops (when k ,p;2 0.8) =4

(growth rate increases with wave amplitude)

It is observed that:

T=

_

200.000

A LA

A A

I 0N A

1

L
TRTAY

i
i

—

|
l

M
[

|

N
L

A

I
TATR
UL

U

0

50

100

i
vy
200

250
X

- the magnetic energy spectrum increases for k>k,

- the wave’s amplitude slowly decays by Landau

damping and nonlinear transfer.

- at the same time the wave slows down, stops and
starts propagating backward with a very nonlinear

profile. =2
-3

- The parallel electron temperature increases but E%
not the ion temperature. =t
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- The perpendicular temperatures remain constant.

The problem need to be addressed with a
Vlasov code to saturate the small-scale cascade.
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Growth rate of the high-k modes proportional to k.
(Small-scale kinetic effects missing ?)
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The b, specf‘rum is flatter: turbulence of magnetosonic modes.

The density mode 2k, is highly excited and often dominates.



T 11| 1 T1 T ] 1T T¢ [ T 1T T T T [ T Vv T | T T T
0.20 ./.;—d-'-

3 1
0.18 i ,—/

Time evolution of the mean - ///

parallel electron temperature: o161

heating by Landau damping . / -

0.12 /

0 2.0x10% 4.0x10° 6.0%10% 8.0x10% 1.0x10* 1.2x10* 1.4x10*

:
2.0? _’_’,_;L—-l’ -
18f — -

Time evolution of the mean 1.6 x/ -

parallel ion temperature: : / ]

due to the inverse cascade B S -
1.2 i / :

0 2.0x10° 4.0x10° 6.0x10° 8.0x10° 1.0x10* 1.2x10* 1.4x10*
T

Perpendicular temperatures remain constant



by

by

by

vt A AT 1l - Intermediate case where low and high-k instabilities
ot NI N A A coexist
Pen YR AVAFANEVAVAVINE: ,
0 100 200 300 400 500 ( B=0.01, bO =0.1, 6=87,1°, Te/Ti=1O_3 and kJ_Opi =02)
. Ef\j’\vﬁuﬁwnvwi\ T The by profile becomes very nonlinear while the wave starts
: ™ '1L propagating backward with modulation at a lower k-value
o 50 100 1L50L M‘JZOCL) N 250
T=1000
oo T ] : I M o*FEjooton temperature.
ot PR AN A A ey | Flectron temperature
Do IWEAVAVAVAVANVA A ATAN: el VIV VIV VLY - 0.6}
0-05ENTTN = 3 0 100 200 300 400 500 T
0 100 200 300 400 500 [
0.4
o EAL R E i
:i A \lf\',h\(, i :g %va“vf\r”‘wr A % 02
ok - 38E M S ’
-10E Lttt e D 50 100 150 200 250 0 500 10'00 15'00
50 100 150 200 250 K
§ Large amplitude i
g 122000 . density fluctuations e
AN PN AN VN :
S AN AW AN A 1201 10N temperature
sV Y VATV L ;
g \ Vv E 1.15F
0 100 200 300 400 500 X
1.10F
:ifl\ﬁm 1osk
:g% MW”‘*W E 1.00 Lne? ., . .
_10E T 0 500 1000 1500
50 100 150 200 250



The previous results can be partly interpreted using the theory of Voitenko JPP 60, 497 (1998)
JPP 60, 515 (1998)

Calculations on the Vlasov equations at small B show that the decay process is of the form :
KAW -> KAW + KAW
Gowth rate varies like k.? both inthe k. p, <<1 and k. pi >>1 limits.

small wavelength domain: decay more effective into waves propagating in the same direction.
long wavelength domain: decay more effective into conter-propagating waves.

Amplitude threshold for decay decreases with higher k
=> KAW become nonlinear at very small amplitude.

Weak KAW turbulence induced by

3-wave interactions among waves propagating in the same direction, has
an inverse cascade for k, p, <1 and a direct cascade for k, p; >1

3-wave interactions among counter-propagating waves (usually more effective) results in an
inverse cascade over the whole k. range.

Quantitative discrepencies due to 1D: the most unstable modes lie at ~ 45° from (k,B,)-plane :
3D simulations are needed.



SUMMARY

FLR-Landau fluid model

» extends the Landau-fluid model developed by Snyder et al. (1997)
for (non-dispersive) MHD scales, to quasi-transverse kinetic scales

* retains all the hydrodynamic nonlinearities, but kinetic effects
(Landau damping and FLR corrections) are treated (quasi-)linearly

* provides an accurate description of the dispersion and collisionless
damping of the low-frequency waves

* reproduces decay and modulational instabilities and their nonlinear developments
 can address a broad range of parameters and degrees of anisotropy
* should be useful for simulations of turbulence in a collisionless magnetized plasma

for a range of scales extending from hydrodynamic scales to a fraction of the ion
Larmor radius (work in progress).





