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Magnetic energy spectrum in the magnetosheath
downstream of the bow  shock  
(Alexandrova et al., JGR, 2006).

Solar wind turbulent spectrum 
(Alexandrova et al., 2007)

Space plasmas such as the solar wind
or the magnetosheath are turbulent
magnetized plasmas with essentially no 
collisions. 

Observed cascades extend beyond 
the ion Larmor radius: kinetic effects
play a significant role.

Magnetic energy spectrum (mirror modes) in the
magnetosheath close to the magnetopause
(Sahraoui et al., PRL 2006)

High quality in situ measurements (CLUSTER, etc.)



Another issue:

Formation and evolution of small-scale coherent structures
(filaments, shocklets, magnetosonic solitons, magnetic holes) 
observed in various spatial environments.

Typical length scale of the structures: a few ion Larmor radii.



fast magnetosonic shocklets
(Stasiewicz et al. GRL 2003) 

Slow magnetosonic solitons
(Stasiewicz et al. PRL 2003)

Mirror structures in the terrestrial 
magnetosheath

(Soucek et al.JGR 2008)

Signature of magnetic filaments
(Alexandrova et al. JGR 2004)



Strictly speaking, collisionless plasmas require a kinetic description, 

because of 

- the closure problem for the hierarchy of equations governing the fluid moments

- wave-particle resonances such as the Landau damping

- the possible finite Larmor radius effects

Computational cost of kinetic simulations in turbulent regimes is very high,even
in the gyrokinetic description that

involves averaging on the particle gyromotion
is restricited to quasi-transverse low-frequency dynamics

Question: Can fluid models provide an “approximate” alternative   
to kinetic descriptions of low-frequency phenomena in 
magnetized collisionless plasmas?

Two main approaches:

Closing the hierarchy derived from Vlasov-Maxwell equations: Landau fluids

Closing the hierarchy derived from gyrokinetic equation: gyrofluids



• Introduced by Hammett & Perkins (1990) as approximate closures retaining
phase mixing  and linear Landau damping.

• Implemented in the context of large-scale MHD by Snyder, Hammett &
Dorland (1997) to close the hierarchy of moment equations derived from 
the drift kinetic equation: retain  Landau damping.

• Extended to dispersive MHD by including large-scale FLR corrections
computed perturbatively within the fluid formalism (derived from Vlasov-Maxwell 
equations)  [Goswami, Passot & Sulem, PoP 2005].

• Further extension aimed to resolve transverse scales comparable to or smaller
than the ion gyroradius: “FLR-Landau fluid” [Passot & Sulem, PoP 14, 082502, 2007].

FLR-Landau-fluids include a full description of the hydrodynamic nonlinearities,
supplemented by a linear (or semi-linear when the instantaneous variations of the plasma 
mean  quantities, such as pressures, are retained ) description of low-frequency kinetic 
effects.

Landau fluids:



Alternative approach: gyrofluids
(Brizard 1992, Dorland & Hammett 1993, Beer & Hammett 1996, Scott 2005)

• Obtained by taking velocity moments of the gyrokinetic equation.

• Nonlinear FLR corrections to all orders are captured.

• Involve a linear closure of the hierarchy, as the Landau fluids.

• Equations are rather complex because not written in the physical coordinates but in
the gyrocenter variables. The transformation from one set of variables to the other
requires additional approximations.

• All fast magnetosonic waves [that may contribute to the turbulent cascade (Luo & Melrose 07)]
are ordered out, while FLR-Landau fluids retain large-scale fast magnetosonic waves.

Both Landau fluids and gyrofluid neglect wave particle trapping, i.e. the effect of 
particle bounce motion on the distribution function near resonance.



Landau fluids

For the sake of simplicity, neglect electron inertia.

Ion dynamics: derived by computing velocity moments from Vlasov Maxwell equations.

= B / |B|.

rrr nm=ρ

B

Electron pressure tensor is taken gyrotropic (scales >> electron Larmor radius):
characterized by  the parallel and transverse pressures 



For each particle species,

= 0

= 0

Perpendicular and parallel pressures

Nongyrotropic components of the pressure tensor (gyroviscous tensor)
will be evaluated separately by fitting with the linear kinetic theory.

heat flux tensor



Heat fluxes

Nongyrotropic tensor that contributes
at the nonlinear level only 

The gyrotropic heat flux components ⊥q and q obey dynamical equations.



Equations for the parallel and perpendicular (gyrotropic) heat fluxes

stand for the nongyrotropic contributions of the fourth rank cumulants.

Involve the 4 th rank gyrotropic cumulants
expressed in terms of the 4 th rank gyrotropic moments by 



2 main problems:

(1) Closure relations are needed to express the 4th order cumulants
(closure at lowest order also possible, although usually less accurate)

(2) (Non-gyrotropic) FLR corrections to the various moments are to be evaluated

The starting point for addressing these points is the linear kinetic theory in 
the low-frequency limit.                                 (Ω: ion gyrofrequency) 

For a unified description of fluid and kinetic scales, FLR-Landau fluids retain
contributions of:
• quasi-transverse fluctuations
• hydrodynamic scales with

Lrk//

Lrk⊥

ε

1

Lr : : ion Larmor radius







Decay and modulational instabilities of circularly polarized Alfvén waves propagating 
parallel to the ambient field. Comparison with kinetic theory and hybrid simulations.
(Bugnon, Passot & Sulem, NPG. 11 609, 2004).

I.  Validation  of the model  for scales large compared with the ion gyroradius



Decay instability of parallel Alfvén waves in the long-wavelength limit
(no dispersion)

Drift-kinetic analysis (from Inhester 1990) Landau fluid simulation

03.0/ =ei PP 20.0/ =ei PP 00.1/ =ei PP

Decay instability of Alfvén wave produces a forward propagating acoustic wave 
and a backward Alfvén wave with wavenumber smaller than that of the pump.



Decay instability of a long-wavelength Alfvén pump (continued)

(                 )00.1/ =ei PP

Significant parallel heating of the ions 
Non negligible parallel heating of the electrons
Cooling in the transverse direction for both ions and electrons.

Decay instability saturates under the effect of Landau damping (rather than mode coupling)

t



Decay instability of dispersive Alfvén waves (continued)

(in units of ion inertial length).

Decay instability makes the density mode m=6 to be the most
unstable at short time. Saturation by Landau damping.

After a while, le mode m=3 starts growing, which induces a
second increase of m=6 (harmonics of m=3).

Further dynamics corresponds to an inverse cascade, 
Involving the successive amplification of the 
(m=2) backward and then (m=1) forward Alfvén modes.

m=6 

m=3

t



Qualitative agreement with hybrid simulations  (Vasquez 1995)

Zero electron temperature

Electrons remain cold

t



Modulational instability (requires dispersion)

(D= 1 ion inertial length)

Confirm the prediction of Mjølhus and Wyller (1988), based 
on the Kinetic Derivative NonLinear Schrödinger equation
(Rodinger 1971), obtained by a long wavelength reductive 
perturbation expansion from Vlasov Maxwell equations, 
that  a small-amplitude, left-hand polarized Alfvén wave is 
modulationally instable for all β (Spangler 1989, 1990; 
Medvedev & Diamond 1996). This contrasts with fluid
description.

pump

side band

k

t = 2000

t = 3500

Reductive perturbative expansion on dispersive
Landau fluids reduces to KDNLS equation up 
to the approximation of the plasma response 
function by means of  Padé approximants.



Modulational instability (nonlinear regime)

Parallel and transverse electron pressures are
proportional to the density variations.
This justifies the description of the electrons as an 
Isothermal fluid.



Modulational instability (continued)

Dominant ion heating in the parallel direction
Some heating in the ions in the perpendicular direction ( ≠ cooling in the case of decay instability)

Presence of plateaux (with duration limited by onset of
new dominant modes).

t



In brief:

perpendicular ion cooling

decay instability:               

dominant parallel ion heating

modulational instability:    

perpendicular ion heating



Filamentation instability: transverse modulational instability of Alfvén waves.
Leads to formation of magnetic filaments (Shukla & Stenflo, 1989)

Requires dispersion: a simple fluid description : Hall-MHD

Hall-MHD equations with a polytropic equation of state

velocity unit: Alfvén speed
length unit : Ri x ion inertial length
time unit: Ri x ion gyroperiod
density unit: mean density
magnetic field unit: ambient field

Exact solutions: (Dispersive) Alfvén waves propagating along the ambient field

The instability turns out to be strongly sensitive to kinetic effects



5.1=β Hall-MHD simulation

Initial conditions: circularly polarized Alfvén wave perturbed at large scales

,(Laveder et al., Physica D 184, 237, 2003)



Large-scale transverse modulation  of a small-amplitude parallel Alfvén wave,
amenable of a multiple-scale asymptotics

k
vg

2
 that Note ≠α

Instability when coefficients of diffraction and of the nonlinear coupling coefficient have the same sign.

In the long-wavelength limit, filamentation instability for   β > 1

σ= +1 or -1 depending on the RH or LH polarization of the wave.

Champeaux, Passot & Sulem, JPP 58, 665 (1997)



The conditions for filamentation instability are strongly affected by kinetic effects
(Passot & Sulem, Phys. Plasmas 10, 3887, 2003)

Reductive perturbative expansion performed from Vlasov-Maxwell equations leads to a multidimensional 
Kinetic Derivative NonLinear Schrödinger equation for the Alfvén wave amplitude, coupled to a dynamical 
equation for a mean field including several contributions (among them the parallel velocity  and magnetic field)

A (transverse) modulational analysis then leads to the dissipative 2D NLS equation

that includes a linear diffusive term associated with Landau damping, in addition 
to the diffraction and to the potential <U> to be determined in terms of ψ.

When linearly perturbing a plane wave solution 
with harmonic perturbations of wavenumber K and frequency Ω, one gets
the dispersion relation 

For bi-Maxwellian plasma, < 0
For a plasma fire-hose stable, 

Filamentation instability when coefficient associated 
with Landau damping.



Examples:

Filamentation instability when < 0 

No filamentation instability 
1) Equal and isotropic proton and electron temperatures

2) Isotropic ion and electron temperatures with equilibrium temperature ratio Te/Tp =8

Filamentation instability Temperature anisotropy extends 
the instability range

Landau fluid simulations 
(with D. Borgogno)(theory)



Landau damping leads to an early saturation of the instability, 
leading to magnetic filaments of very small intensity.

More significant amplification is observed in the presence 
of a  density channel.



β=0.1
1/ =ie TT

High density channel: formation of filaments of moderate intensity

1.0=β
05.0=β
2.0=β
5.0=β

1/ =ie TT

5/ =ie TT
1/ =ie TT

10/ =ie TT

β=0.1

Transverse cut 



Mirror instability: Can occur in a plasma with anisotropic ion temperature

Anisotropic ion cyclotron instability  is not captured by low-frequency  asymptotics.

The growth rate of mirror instability in the “quasi-hydrodynamic” limit is accurately
captured by SHD Landau fluid model (in contrast with anisotropic MHD).

SHD: Snyder, Hammett & Dorland (1997)

Quasi-transverse near threshold ( for cold electrons)





T. Passot & P.L. Sulem, Phys. Plasmas 14, 082502 (2007)

(averaged on the domain)

II.  Retaining small quasi-transverse scales (gyrokinetic scaling)



Validation of the FLR –Landau fluid model by 
comparison with  the linear kinetic theory



Mirror modes Comparison FLR-Landau fluid ( + ) with kinetic theory (        )___



Kinetic Alfvén waves quasi-transverse propagation 

01.0/ =ie TT 1/ =ie TTfrequency damping rate frequency damping rate



oblique propagation quasi-parallel propagation

Alfvén waves

damping rate damping ratefrequency frequency



Slow  waves Fast waves01.0=β

frequency frequencydamping rate damping rate



Nonlinear regime

• Nonlinear mirror modes

• Cascades of kinetic Alfvén waves



Nonlinear dynamics of mirror modes is hardly amenable to a 
fluid-like description, even when linear kinetic effects are retained.

Nonlinear kinetic effects, including distortion of the space averaged 
distribution function, seem relevant.

Some aspects of mirror structures are nevertheless qualitatively
reproduced.

Nonlinear Mirror modes



Formation of quasi-static magnetic holes

|b|

n

c
x piω

12000 −Ω= pt

Lr6

The depth of the hole slowly decreases in time

from initial random noise

5.1/    ,5 //// == ⊥ ppp TTβ

2.0cos   ,1/    , 05.0/ ////// === ⊥ θeepe TTTT

Cluster observations 
(Génot et al. 2008)



|b|

n

c
x piω

1850 −Ω= pt

2.0cos   ,1/    , 05.0/ ////// === ⊥ θeepe TTTT

from initial random noise

Formation of magnetic humps

    4.1/    ,20 //// == ⊥ ppp TTβ Cluster observations 
(Génot et al. 2008)

At long times the peak amplitude is observed
to decrease and a hole eventually forms. 



In large domains, these magnetic patterns
are subject to spatio-temporal chaos 

Fixing mean proton temperatures (With D. Borgogno)IC: random noise

In small domain: stationary solution

|b|

n

25.1/    ,5 //// == ⊥ ppp TTβ

2.0cos =θ

1/    , 05.0/ ////// == ⊥ eepe TTTT

43.1/    ,2 //// == ⊥ ppp TTβ34.0cos =θ

Simple way of imposing a forcing which, in real
situations , is obtained through boundary conditions,
such as for example an inflow.

Presence of large-scale compression waves.  



Stationary solution obtained by continuation below the threshold of mirror instability

Evidence of bistability

Statistics of structures 
observed in the 
magnetosheath

Courtesy of
V. Génot.

25.1/    ,5 //// == ⊥ ppp TTβ 2.0cos =θ



Kinetic Alfvén waves (and slow modes, but these ones are highly dissipative).
have been clearly identified using k-filtering technique by CLUSTER mission
in the cusp region of the magnetosheath (Sahraoui et al. AIP 932, 2007).

Another medium where KAWs play a fundamental role is the solar corona,
where they are believed to mediate the conversion of large scale modes
into heat.

Nonlinear Kinetic Alfvén waves



Decay and cascades of kinetic Alfvén waves

Several regimes are observed

I. The initial wavelength is of the order or smaller
than the ion gyroradius ρi with β=0.1, b0 =0.02, 
θ=87,1o, Te/Ti=10-3 ,  k┴0 ρi =1.58.

An instability develops (when k┴0 ρi ≥ 0.8)
(growth rate increases with wave amplitude)

It is observed that:

- the magnetic energy spectrum increases for k>k0

- the wave’s amplitude slowly decays by Landau 
damping and nonlinear transfer.

- at the same time the wave slows down, stops and
starts propagating backward with a very nonlinear
profile.

- The parallel electron temperature increases but 
not the ion temperature.

- The perpendicular temperatures remain constant.
Growth rate of the high-k modes  proportional to k.

(Small-scale kinetic effects missing ?)
The problem need to be addressed with a 
Vlasov code to saturate the small-scale cascade.



II. The initial wavelength is much larger
than the ion gyroradius with β=0.01, 
b0 =0.1, , θ=81,4o, Te/Ti=10-1

Choosing k┴0 ρi =0.05, we observe an 
inverse cascade characterized by:

- A bump in the spectrum corresponding to
a slow drift of the wave mode and its satellites 
towards the  smaller wavenumbers.

-The higher-k spectrum remains unchanged
- In physical space, the wave is a modulated train  

whose carrying wave gradually coarsens with
alternating propagation directions. 

Times in unit of 5*Ωi
-1



By
Bz

Density

The bz spectrum is flatter: turbulence of magnetosonic modes.
The density mode 2k0 is highly excited and often dominates.



Time evolution of the mean
parallel electron temperature:
heating by Landau damping

Time evolution of the mean
parallel ion temperature:
due to the inverse cascade

Perpendicular temperatures remain constant



Electron temperature

Ion temperature

Large amplitude 
density fluctuations

III - Intermediate case where low and high-k instabilities
coexist, 

( β=0.01, b0 =0.1, θ=87,1o, Te/Ti=10-3 and k┴0ρi =0.2)

The by profile becomes very nonlinear while the wave starts
propagating backward with modulation at a lower k-value



The previous results can be partly interpreted using the theory of  Voitenko JPP 60, 497 (1998)
JPP 60, 515 (1998)

Calculations on the Vlasov equations at small β show that the decay process is of the form :
KAW -> KAW + KAW

Gowth rate varies like k┴2 both in the  k┴ ρi <<1 and k┴ ρi >>1 limits.

small wavelength domain: decay more effective into waves propagating in the same direction.

long wavelength domain: decay more effective into conter-propagating waves.

Amplitude threshold for decay decreases with higher k
=> KAW become nonlinear at very small amplitude.

Weak KAW turbulence induced by 
3-wave interactions among waves propagating in the same direction, has

an  inverse cascade for  k┴ ρi <1 and a direct cascade for  k┴ ρi >1
3-wave interactions among counter-propagating waves (usually more effective) results in an

inverse cascade over the whole k┴ range.

Quantitative discrepencies due to 1D: the most unstable modes lie at ~ 45o from (k,B0)-plane : 
3D simulations are needed.



SUMMARY

FLR-Landau fluid model        

• extends the Landau-fluid model developed by Snyder et al. (1997)
for (non-dispersive) MHD scales,  to quasi-transverse kinetic scales

• retains all the hydrodynamic nonlinearities, but kinetic effects
(Landau damping and FLR corrections) are treated (quasi-)linearly

• provides an accurate description of the dispersion and collisionless
damping of the low-frequency waves

• reproduces decay and modulational instabilities and their nonlinear developments 

• can address a broad range of parameters and degrees of anisotropy

• should be useful for simulations of turbulence in a collisionless magnetized plasma  
for  a range of scales extending from  hydrodynamic scales to a fraction of the ion 
Larmor radius (work in progress).




