

1953-19

International Workshop on the Frontiers of Modern Plasma Physics

14 - 25 July 2008

Unity Beta -Building a Better Bottle?

S.C. Cowley UKAEA - Culham Division Culham Science Centre U.K.

Unity Beta -- Building a Better Bottle?

Steve Cowley UKAEA Culham and Pierre Gourdain, Cornell.

Better Bottle?

We have a magnetic configuration that will take us to burning plasmas in ITER. This will probably be the configuration of the first generation of fusion reactors.

Can we improve this? What would that mean?

Has every configuration been tried? In 2D?

Requirements For Fusion.

Fusion Power $\propto n_D n_T T^2 \propto \beta^2 B^4$ 10keV < T < 20keV.

Rough criterion for ignition.

$$nT\tau_E > 3 \times 10^{15} cm^3 keV s$$

Physics limits the achievable values of these quantities.

n :Density "Greenwald" limit.

$$nT = \beta \frac{B^2}{8\pi}$$
 : Beta Limit. $\beta = \beta_N \frac{I}{aB}$
 τ_E : Turbulence.

Raising Beta

Radial Force Balance $\nabla \psi \cdot [\mathbf{J} \times \mathbf{B} = \nabla p]$

$$\left[R\frac{\partial}{\partial R}\left(\frac{1}{R}\frac{\partial}{\partial R}\right) + \frac{\partial^2}{\partial Z^2}\right]\psi = -\mu_0 R^2 \frac{dp}{d\psi} - F\frac{dF}{d\psi}$$

Grad-Shafranov Equation.

where

$$\mathbf{B} = \frac{\nabla \psi \times \mathbf{e}_T}{R} + \frac{F(\psi)}{R} \mathbf{e}_T$$

The Small Parameter

$$\begin{aligned} & \left[R \frac{\partial}{\partial R} \left(\frac{1}{R} \frac{\partial}{\partial R} \right) + \frac{\partial^2}{\partial Z^2} \right] \psi = -\mu_0 R^2 \frac{dp}{d\psi} - F \frac{dF}{d\psi} \\ & \text{small} \quad \mathcal{O}(\epsilon) \\ & \mu_0 R^2 \frac{dp}{d\psi} = -F \frac{dF}{d\psi} \end{aligned}$$

$$R=R(\psi) ~~or~~\psi=\psi(R)$$

Straight vertical flux surfaces.

CORE

$$F(\hat{R}) = \sqrt{2\left(C - \mu_0 \int_{R_{\min}}^{\hat{R}} \hat{R}'^2 \frac{dp}{d\hat{R}'} d\hat{R}'\right)}$$

C = constant & p increases and F decreases towards the axis

$$R=R(\psi) ~~or~~\psi=\psi(R)$$

Straight vertical flux surfaces in core

Boundary Layer -- BL

Gradients are large perpendicular to wall ξ = distance to wall.

$$\frac{\partial^2 \psi}{\partial \xi^2} = -\mu_0 (R^2 - \hat{R}^2(\psi)) \frac{dp}{d\psi}$$

Width of Boundary Layer is small and Poloidal Field is strong

$$\left(\frac{\partial\psi}{\partial\xi}\right)^2 = -2\mu_0 \int_R^{\hat{R}} (R^2 - \hat{R}^{\prime\prime 2}) \frac{dp}{d\psi} \frac{\partial\psi}{\partial\xi} d\xi$$

Poloidal field pressure forces balance the residual force from Lack of cancellation of pressure and toroidal field forces.

$$|\mathbf{B}_p| \sim \sqrt{\epsilon p} \ll |\mathbf{B}_T|$$
 UKAEA Fusion ******

Boundary Layer --- BL

$$\xi(R,\hat{R}) = \int_{R_{\min}}^{\hat{R}} \frac{d\hat{R}' \frac{\partial\psi}{\partial\hat{R}'}}{\sqrt{-2\mu_0 \int_{R}^{\hat{R}'} d\hat{R}'' \frac{dp}{d\hat{R}''} (R^2 - \hat{R}''^2)}}$$

$$\delta = a \sqrt{\frac{\epsilon}{q^2 \beta}}$$

Boundary layer width. Expansion works if $\delta < a$

Poloidal field increases outwards in Boundary Layer.

Comparison

Agreement gets better as we increase beta

FIG. 3: Comparison of a equilibrium soluton computed in CUBE (top) and the same solution calculated using the analytic theory (bottom).

Good properties. 1. Good Average Curvature

FIG. 3: Comparison of a equilibrium soluton computed in CUBE (top) and the same solution calculated using the analytic theory (bottom).

UKAEA Fusion

Bad field line curvature in the boundary layer only. Core dominates average

$$< \nabla p \cdot (\mathbf{b} \cdot \nabla \mathbf{b}) > \sim -\frac{p}{aR}$$

Mercier stable and tearing mode stable.

Good properties. 2. Small trapped particle fraction

|B|constant on flux surface in core \Rightarrow no bounce points in core. Trapped particle fraction.....

As beta increases both factors decrease. **|B|**constant on flux surface in BL too **(omnidigeneity)**. The volume fraction in BL is

$$\frac{\Delta V}{V} \sim \sqrt{\frac{\epsilon}{q^2\beta}} \ll 1$$

Good properties. 3. Magnetic well

$$p + \frac{\mathbf{B}^2}{2} = constant$$

|B| is small in the center of The plasma.

$$u = \frac{v_{\perp}^2}{B} = constant$$

Got to give particles energy To get them out. Helps Stability, *Taylor 1963*

Good properties. 4. Short Connection length

B_p is large in BL so distance along field from bad to Good curvature is

 $L_c \sim q R \left| \frac{\epsilon}{q^2 \beta} \right|$

Stabilizing.

Instabilities are heavily sheared by Magnetic shear in BL

Negative Triangularity - Reverse D.

Negative Triangularity - Reverse D. TCV

Less transport In reverse D

Unity beta current hole equilibrium

This equilibrium is stable to all ideal MHD criteria including internal and external modes for n =1, 2 and 3... *Note that the* β_N *is "small" despite the large value of beta.*

Pierre Gourdain's work

R	6 m
а	2 m
B _T	2.5 T
β	100%
<	12%
$\beta_{\rm N}$	4.6
q _{min}	1.5

Flux Surfaces

Toroidal Current Distribution

Unity beta current hole profiles

Internal and external kink stability

DCON finds stability for Mercier, high-n ballooning as well as fixed boundary kink modes (n=1).

The free boundary mode n=1 is also stable (stability criteria obtained for $\psi = 1$).

Stability for n=2 and n=3 was also demonstrated.

Better Bottle?

It certainly isn't clear that we can find a better bottle. But we should use our best tools to look hard.

