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Overview

Why look at quantum plasma effects?

Schrödinger’s description.

Non-relativistic single electron dynamics.

Paramagnetic electrons. 

From micro to macro physics.

MHD regime.

Conclusions - what the future might bring.



Quantum plasmas

From G. Manfredi, Fields Inst. Comm 46, 263 (2005)
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Manifold applications (Pines, 1961; Kremp et al. 2005)

Condensed matter systems (Gardner, SIAM J. Appl. 
Math., 1994). 

Astrophysical environments (Harding & Lai, Rep. Prog. 
Phys., 2006). 

Ultracold plasmas (Rydberg states) (Li et al., PRL, 2005). 

Nanostructured materials (Craighead, Science, 2000).

Laser-plasmas (Glenzer et al., PRL, 2007).

Spintronics.

Interesting fundamental aspects of matter dynamics.

Quantum to classical transition?

Collective quantum systems.



Schrödinger description
Electron properties described by complex scalar 
wavefunction     (             probability)

where we have the Hamiltonian operator

and     is the external electrostatic potential and    
being the magnitude of the electron charge.
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Nice approach: allows for easy generalizations, 
new interactions can be incorporated in 
Hamiltonian.

Microscopic equations of motion 

for some operator    ,             Poisson brackets.

Example:

for previous scalar electron description.
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Quantum statistical dynamics

Fluid moments from quantum kinetic 
equation, or from summing up particle 
contributions in Madelung picture.
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Quantum pressure (gradient of Bohm-de 
Broglie potential)

Gives higher order dispersion (spreading 
of electronic wave function).
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Plasmonic devices

Surface plasmon polaritons
propagating on conductor 
surface.

Classically, surface is sharp.

Broadening of surface layer 
due to quantum dispersion.

Finite width gives damping!
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Spin contributions
Electron properties described by complex spinor
wavefunction (spin degrees of freedom)      

and the Pauli Hamiltonian operator

Here     is the vector potential,     is the spin 
operator,                             is the Bohr magneton.
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Quantum equations of 
motion for electrons

where                         .
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For spin systems: Decompose spinor wave 
function                                               ,       unit 
spinor      . 

Electron fluid equations (not complete!)
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Maxwell’s equations
Due to the intrinsic magnetization, given by

                                            , 

Ampère’s law is modified according to

Gives dynamic spin contribution to Maxwell’s 
equations.
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MHD regime
Single fluid dynamics (for lowest order coherent spin)

Model magnetization using Brillouin function for spin-1/2 
particles (for long enough time scales)

where the Zeeman energy                              gives the degree 
of alignment through the Brillouin function. For high 
temp., magnetization            0.
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For high densities
/low temperature:
only electrons 
above Fermi level
contribute to 
magnetization; 
implies reduced
magnetization. 



Instabilities and 
ferrofluids
Ferrofluids   Nanostructured paramagnetic fluids. Formalism 
similar to the above applicable.

Normal field instability - saturated by gravity and surface 
tension (Cowley & Rosensweig 1967).( y g 9 7)

http://mrsec.wisc.edu/Edetc/cineplex/ff/text.html



Spin kinetics

Spin dependent distribution function: 

(see also Cowley et al. Phys. Fluids 1986; Kulsrud et al. 
Nucl. Fusion, 1986)

Quantum equations of motion gives semiclassical 
dynamics. 

See Gert Brodin’s talk.
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Formal structure: Wigner matrix from density matrix

Distribution function defined by  

Evolution determined by governing equation for density 
matrix. Lowest order terms gives semiclassical kinetic 
equation. Generalized spin Wigner equation (J. Zamanian 
et al., submitted; Arnold & Steinrück, ZAMP, 1989).  
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Issues in relativistic 
quantum plasmas

Pair production: “Schwinger mechanism” for fields 
with spatial and temporal variation.

Temporal compression: increased production rate.

Spatial compression: lower production rate.

Laser fields             production rate unknown.

Strong fields + relativistic plasma particles: can 
computational models be developed?

Quantum field theoretical models (Melrose, 
2008)?
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Gigagauss laboratory 
fields

Currently, gigagauss laboratory fields 
generated in solid-laser interactions.

Look for quantum plasma effects:

Landau quantization.

Spin effects.

...



Conclusions
New important effects appear from collective 
quantum domain.

Wide ranging possibilities for applications.

Nanomaterials.

Astroplasmas.

Ultracold plasmas.

Interesting future possibilities:

Theoretical development: Dense, relativistic 
plasmas using computationally viable models.

Solitons and plasmonics.




