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ITERITER

Fusion power: 500 MW, Q = Pfusion/Paux >10, Pα/Pheat >0.8, burn time = 300-500 s
Steady state (burn time ~3000 s), Q > 5
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ITER Operation Schedule (Provisional )
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Challenges in ITERChallenges in ITER

• Important step toward Demo
– Demonstration of Q>10, long burn and Q>5 steady state
– Avoidance or significant mitigation of disruptions and ELMs
– Test of reactor-relevant PFCs (tungsten)

• Large stored energy (350 MJ/~10MJ in JET & JT-60U) 
– consequences of disruption and ELMs are much more serious

• Nuclear
– Control of T retention and dust essential

• Long pulse, steady state
– PFCs will be saturated with DT: start-up?

• Diagnostics
– Limited access, irradiation-induced effects, first-mirror coating…
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TokamakTokamak divertordivertor configurationconfiguration
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ImpurityImpurity

• Radiation
• radiation in the core is detrimental for confinement

dW/dt + W/τE = Pheat - Prad
• e.g., with tungsten concentration of >10-5, H-mode 
confinement cannot be sustained
• radiation in the divertor is beneficial for reduction of 
divertor heat load

• Dilution
• electron density has a limit

ne = nDT + Σ Zini
• too much impurity would reduce the fuel density and 
fusion power
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Impurity accumulation in the coreImpurity accumulation in the core

H.Takenaga et al, NF 43 (2003) 1235

with ITB without ITB

ITB acts as a barrier for impurity 
transport as well as for transport 

of fuel ions and energy

Impurity density roughly uniform 
in the absence of an ITB

JT-60U

Impurity accumulation 
increases with ion charge

Inward velocity of impurities 
(neoclassical and turbulent pinch) 

overcomes outward diffusion

Cause for concern for both 
medium and high-Z impurities

Zeff – 1 ~  Prad / ne
2

W. Fundamenski, PSI-2008
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DivertorDivertor configuration and configuration and PFCsPFCs
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New Understanding of IntermittencyNew Understanding of Intermittency
• 2D fluid turbulence simulations reproduce some scaling and 

dynamics

Russell et al, PoP 2006
O. E. Garcia et al., PPCF (2006) , J. Nucl. Mater.,  (2007)  

2D electrostatic fluid turbulence simulations of TCV midplane SOL plasma 
(ESEL code, Risø) – successfully benchmarked against turbulence 
measurements

J. Boedo PSI-2008
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J. Terry PSI-2008
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Physical sputtering 
understood and well 
predictable

Chemical sputtering 
widely investigated and 
well described

The multi-step process 
can be strongly modified 
by material mixing

E. Salonen, Phys.Rev.B 2001, M. Balden, J.Nucl.Mat. 2000

Erosion assessment from laboratory data:

Roth, PSI-2008
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CoreCore--EdgeEdge--SOL InterplaySOL Interplay

• Turbulence and transport lower in H-
mode

• Fueling to the SOL is reduced
• Edge turbulence stabilization by 

Velocity Shear leads to H-mode

R. Moyer, et al, JNM, 96 
C. Ritz, et al; Hidalgo et al, 
Endler et al

J. Boedo et al, PRL 99, Taylor et al
Weynants et al; Jachmich et al
Tynan et al,

ne

Te

˜ n e ne

e ˜ φ e kTe

˜ Γ r

J. Boedo PSI-2008

R. Moyer, et al, JNM, 96 
C. Ritz, et al; Hidalgo et al, 
Endler et al
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Be erosion flux (m-2 s-1)

Lifetime of PFCs

BeBe first wall erosion is calculated first wall erosion is calculated 
based on B2based on B2--Eirene resultsEirene results
ToroidalToroidal peaking may reduce peaking may reduce 
wetted area to  wetted area to  ≈≈ 50m50m22

For For WW erosion due to impurity erosion due to impurity 
sputtering is taken into account;sputtering is taken into account;
here: 0.1% here: 0.1% ArAr in SOL plasmain SOL plasma

Wall erosion in steady state:

0.12 262x1020

0.05W     average
peak poloidal

8
488x1021

0.12Be  average
peak 50m2

g/shotatoms/snm/sWall material K. Schmid PSI-2008

Erosion of Be first wall may 
become a lifetime problem for 
inhomogeneous loading

Roth, PSI-2008
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CFCCFC divertor erosion is calculated divertor erosion is calculated 
using ERO based on B2using ERO based on B2--Eirene Eirene 
resultsresults
(including 0.1% Be(including 0.1% Be2+2+, but reduction of , but reduction of 
chemical erosion due to Be not included)chemical erosion due to Be not included)

Divertor erosion in steady state:

76x10190.3
484x10202W     gross

net

34x10201
3304x1022100CFC gross

net

g/shotatoms/snm/sDivertor mat.
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A. Kirschner PSI-2008

WW erosion mainly due to erosion mainly due to ArAr
impurities (0.1 %) (DIVIMP)impurities (0.1 %) (DIVIMP) CFC divertor, Be wall

Lifetime of PFCs Roth, PSI-2008
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ELM induced erosion: CFC

Lifetime of PFCs

Results from Russian plasma 
simulators: 

Recommended threshold for damage 
0.5 MJm-2 adopted by ITER

Efficient mitigation methods needed
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erosion
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Increasing PA
N

 fibre erosion

Increasing m
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and droplet ejection

Crack formation was observed at 
energy densities ≥ 0.7 MJ/m2.
Repetitive sub-threshold ELM 
investigations ongoing in JUDITH2

Roth, PSI-2008
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Disruption induced erosion:

Lifetime of PFCs

ITER assumptions:
30 disruptions in about 2000 discharges
10 % of melt layer lost in the case of W divertor plates
5 kg erosion per disruption

Federici, Strohmayer
RACLETTE
Riccardo, Federici
Nuclear Fusion 2005

Vapour shielding 
reduces CFC evapo-
ration by factor 10

S. Pestchanyi PSI-2008

Predicted ITER 
disruptions exceed 
the 300 disruptions 
lifetime limit for W 

Efficient mitigation 
methods needed

Evaporation 
reduced by 
vapour shielding

Roth, PSI-2008
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Tritium inventory
Erosion determines co-deposition:

Rough estimate: total net erosion rate x co-deposition concentration
Detailed evaluation: impurity transport including re-erosion, 
co-deposition concentration depending on final deposition conditions 
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Co-deposition with C and Be 
depends on deposition conditions:
energy, deposition rate, 
temperature

8x10– 44x1017W divertor

3.22x1021CFC 
divertor

1.83x1020Be wall
g/shotatoms/s

G. De Temmerman
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Review for PPCF, 
submitted March 2008

Sum of both processes:
comparison of 
materials options

EU assessment

Tritium inventory Roth, PSI-2008
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Plasma Facing Material ChoicePlasma Facing Material Choice
• In the initial operation ITER 

uses beryllium FW, tungsten 
divertor baffle and dome, and 
carbon target plates to 
maximize the operation 
flexibility

• Before DT operation, the 
divertor target will be 
changed to tungsten to 
minimize the tritium retention

• Scenarios with Be/W PFC 
must be developed
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Dust generation

Potential release in environment 1000 kg limit
W is the major radioactive source
Dust contains trapped Tritium

Hydrogen production when hot dust reacts with steam
Be major contributor     
with carbon: 6 kg C, 6 Be, 6 kg W limit
without carbon: 11 kg Be, 230 kg W limit

Possible pure Dust or Hydrogen/Dust explosion
Be, C, W involved

Droplets from arcingFlaking of carbon layers

Collection July 2000 Collector probes 2007
AUG 
full-C and full-W phase

J. Sharpe, V. Rohde et al.,  JNM 2003
M. Balden et al, PSI-2008

Potential safety concerns:

Roth, PSI-2008



SHIMADA, PWI Issues in ITER, Trieste, 22 July 2008
28

Dust generation
Total dust generation:

Assumption:
Dust generation dominated by erosion, deposition, layer disintegration
Conversion from erosion to dust for safety reasons: 100 %
(about 10 % in Tore Supra and JT-60U)

Total dust limit not reached 
before scheduled 
maintenance and exchange 
of divertor cassettes

What fraction of dust 
resides in hot (>600°C) 
areas?
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Roth, PSI-2008
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Dust generation
Dust on hot areas:

Assumption:
On hot plasma (>600°C) wetted areas deposits and dust will only survive 
in castellation
Need to estimate the fraction of impurity deposition in gaps from 
experimental data base   see A. Litnowski PSI-2008

Assume dust at hot area collects only in gaps:

Flux of Be to outer target hot zone (DIVIMP):
2×1019/m2s

Area of hot zone: 8m2

Total Be flux: 1.6×1020/s ≈ 1g/discharge
Gap area 2%

Hot Be dust rate: 0.02g/discharge

11kg Be dust for W/Be wall in 60000 disch.

If tugnsten dust is produced on hot surfaces in the order of a few kg, significant 
cleaning efforts must be made before the next operation (the acceptable amount 
of tungsten in the core is ~0.2 mg)

Roth, PSI-2008
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SummarySummary

• To facilitate ITER operation, R&D in 
following areas are essential

– Avoidance or significant mitigation of 
disruptions/VDEs and ELMs

– Development of scenarios with Be/W PFCs
– Control of T retention and dust
– Development of understanding of sol 

transport during steady state and off-normal 
events

– Development of wall conditioning scenarios
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Invited talks at PSIInvited talks at PSI--2008 (International Conference on 2008 (International Conference on 
Plasma Surface Interactions in Controlled Fusion Plasma Surface Interactions in Controlled Fusion 
Devices) : Devices) : 
http://psi2008.ciemat.es/talks.shtmlhttp://psi2008.ciemat.es/talks.shtml

Proceedings of IAEA Fusion Energy Conferences:Proceedings of IAEA Fusion Energy Conferences:
http://wwwhttp://www--naweb.iaea.org/napc/physics/ps/conf.htmnaweb.iaea.org/napc/physics/ps/conf.htm

Progress in the ITER Physics Basis (comprehensive Progress in the ITER Physics Basis (comprehensive 
review paper ~400 pages):review paper ~400 pages):
http://www.iop.org/EJ/toc/0029http://www.iop.org/EJ/toc/0029--5515/47/65515/47/6

Useful Free URLs
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Progress in the ITER Physics Basis (comprehensive review Progress in the ITER Physics Basis (comprehensive review 
papers ~400 pages):papers ~400 pages):

http://www.iop.org/EJ/toc/0029http://www.iop.org/EJ/toc/0029--5515/47/65515/47/6

Summary: Chapter 1

Downloading free of charge up to 31 Dec. 2008
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PWI: Chapter 4




