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Turbulence, MHD turbulence and (formal) dimensional analysis
Scaling and physics- examples from the solar wind
How general is the concept of a Reynolds number?
What turbulence does/ does not have in common with idealized

avalanching systems (SOC)
more details in Chapman et al, GRL 2007, arXiv:0707.3958



Universality- an example
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Similarity in action…



Similarity and universality
 Different systems, same physical model

 The same function (suitably normalized) can describe
them

 This function is universal (the details do not matter)

 The values of the normalizing parameters are not
universal

 How can we find the physical model (solution)?

 Particularly useful in nonlinear systems which are ‘hard’
to solve – i.e. turbulence!

 ‘Classical’ inertial range turbulence- self similarity,
intermittency…



Quantifying scaling/turbulence
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, v, v², B²
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Levy flight -- Fractal P-model -- Multifractal

Kiyani et al, PRL (2007)

Distinguishing self- affinity (fractality) and multifractality



2000 - Solar max
fractal

1996 - Solar min
multifractal

Solar cycle variation WIND -- |B|2Solar cycle variation WIND -- |B|2

Fractal signature ‘embedded’
in (multifractal) solar wind
inertial range turbulence
-coincident with complex
coronal magnetic topology

Kiyani et al, PRL (2007),
Hnat et al, GRL, (2007)



ULYSSES- north polar pass at solar minimum

ULYSSES 60s averages
July-Aug 1995, ~8.5x104 points,
selected as a quiet interval
-Multifractal
-Fractality coincides with topologically
complex coronal fields?



Similarity in action…

Peck and Sigurdson, A Gallery of Fluid Motion, CUP(2003)



1 1..

1.. 1..

System described by ( ... ) where are the relevant macroscopic variables
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1.. 1..

System described by ( ... ) where is a macroscopic variable

must be a function of dimensionless groups ( )

if there are physical dimensions (mass,

Example: simple (nonlinear) pendulum
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1.. 1..

System described by ( ... ) where is a macroscopic variable

must be a function of dimensionless groups ( )

if there are p

Example: fluid turbulence, the Kolmogorov '5/3 power spectrum'
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Turbulence and ‘degrees of freedom’

System is driven on one lengthscale (L) and dissipates on another (η) –forward cascade
Inverse cascade- same thing, just the other way around
System has many degrees of freedom i.e. structures on many lengthscales (eddies here)
System is scaling- structures, processes can be rescaled to ‘look the same on all scales’
These structures transmit some dynamical quantity from one lengthscale to another
that is, over all the d.o.f.
There is conservation of flux of the dynamical quantity- here energy transfer rate
Steady state (not equilibrium) means energy injection rate balances energy
dissipation rate on the average
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1

Generalize the idea of a Reynolds Number

... a control parameter for the onset of 'disorder'

The above is true for other systems
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Avalanching systems and scaling
behaviour

Avalanche models: add grains slowly,
redistribute only if local gradients exceeds a
critical value

Suggested as a model for bursty transport
and energy release in plasmas- solar
corona, magnetotail, edge turbulence in
tokamaks (L-H), accretion disks

Avalanching systems
• Threshold for avalanching
• Avalanches are much faster than feeding

rate
• Avalanches on all sizes, no characteristic

size
• Feeding rate=outflow rate on average only
• System moves through many metastable

states- rather than toward an equilibrium



Statistics of avalanches (rice)

Shown: Statistics of energy
dissipated per avalanche
Power law- no characteristic
event size: scaling
‘finite size scaling’-
Normalize to the size of the box
Frette et al, Nature (1996)

Dynamical quantity- rice
Flux is conserved
d.o.f. are the possible
avalanche (sizes/topplings)
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How is SOC different to turbulence? consider...

Intermediate driving (or what happens as we change ~
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Two runs of the BTW (Bak et al, PRL, [1987]) sandpile driven at
the ‘top’ corner formed by two adjacent closed boundaries, the other
boundaries are open. The box is 100x100 and h is 4 () and 16 (X).
Left: raw results; Right: the h=16 run is rescaled SS/16.



Two runs of the BTW (Bak et al, PRL, [1987]) sandpile
Box 100100, h=4 (); box 400400 and h=16 (X).
Left: raw results; Right: the h=16 run is rescaled SS/16.
h=16, 400400 run has same scaling, dynamic range as h=4, 100100



To Conclude..
 Scaling- a manifestation of universal behaviour of disordered systems
 Intermittency free scaling in MHD turbulence
 Outlined a general framework for identifying a Reynolds number R
 R is the control parameter for a broad range of systems that are many

coupled d.o.f., driven, dissipating and on average in steady state
 Scaling, flux conservation relates the Reynolds number to the number of

d.o.f.
 Discussed avalanche models for bursty dynamics and turbulence
 Avalanche models- maximal d.o.f. (SOC) when R0, in the opposite

sense to fluid turbulence, crossover to laminar flow as we increase R but
if the system is large enough, we still see ‘SOC’ over a range of R- so
applicable to real systems

 Speculate that there are applications elsewhere- level of complexity of
ecosystems, of individual organisms, of organizations…



A Reynolds number for ecosystems

 d.o.f. are ‘meta- species’ i.e. any (interchangeable) species that occupies a particular
niche in the web

 Species all linked by predation/consumption which processes some dynamical
quantity (energy, biomass..)

 System driven by ‘bottom’ species introducing energy/biomass and top predators
removing it

 It does not matter what the dynamical quantity is as long as we can conserve flux
 still ok if there are losses i.e. a fixed fraction is passed from one species to the next,

or if there is recycling (bottom species feeding off dead top predators)
 Steady state: timescale over which we change RB is slow compared to timescale for

d.o.f. to propagate the dynamical quantity through the web (recycling time)



Velocity fluctuations parallel and perpendicular to the
local B field direction

 

( )
,

2

Exponents ( ) for < ~ for

ˆ ˆ. and its remainder .

ˆ( ) ... ( '), ,here ' 2 and ( ) ( )

p pp v

v v

t t t t

  

     

    







  

        

v b v v v b

B
B B B b v v v

B



 

v

v

 

 

conditioningv 


