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Tokamak Instabilities
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Tearing Modes and Magnetic Reconnection
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“Tearing’’ of a current sheet



s Asymptotic theory- uses two regions of the plasma
*Outer region - marginal ideal MHD - kink mode

Inner region - include effects of inertia, resistivity,
nonlinearity, viscosity etc.

» Matching between inner and outer region
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Classical TM - contd.

*Near mode rational surface k-B =0,
B, = B(r=r,) - By(ng'/m)(r-r)oa , o =0 - (n/m)g

OB =8B, sin(ma) r
* Leads to the formation of a magnetic island

eIsland width w = 4(6B, r,/ B, ng/)Y/?

swhen w > resonant layer thickness - nonlinear effects important

*Nonlinear Evolution - Rutherford regime
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E ~ 'szy = Waol




» The form of the Rutherford equation can be traced to
the form of Ohm’s Law which governs the inner region
solution, e.g.

Ey =) By~ ——F i~ =V
ot
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5B A dw A
wWo n—oB - T 14
dt w -

e In high temperature tokamaks neoclassical effects need to
be retained



 NTMs are relatively large size magnetic islands that develop
slowly at mode rational surfaces with low (m,n) mode numbers in
high temperature tokamak plasmas.

o Like the classical TMs they are current driven but the current
source is the bootstrap current - a neoclassical (toroidal
geometry driven) source of free energy.

 They limit the attainable 3 in a tokamak to values well below the
iIdeal MHD limit - hence they are a major concern for all reactor
grade machines i.e. long pulse (steady state) devices.




BOOTSTRAP CURRENT

Projection into a poloidal plane

generated by trapped particles:
example: banana particles

« electrons drift from flux surfaces
due to the VB-drift

electrons with low parallel velocity are

trapped in the toroidal mirror
= banana orbits

at the intersection of 2 banana orbits a net
current results due to the density gradient

+ passing particles exchange momentum with
trapped particles
= bootstrap current

similar: helically trapped particles



Modified Ohm’s Law

<bky>=ny+—F<B-V-m>
nelB
U
Bootstrap current
fl
1 1. 1 dp Lo .
<B-V- Me > = fe L + f]f—{J

nel3 v. Bg dr U,

Electron viscous stress which describes damping of poloidal
electron flows - new free energy source.

Dependence on pressure gradient, also fraction of trapped particles



Modified Rutherford Equation

dw 1 D
I Af T
where D,. = —/e 210 P 4 kg

p'q <0, Dp.>0

g >0, D,.<0

e Can be unstable for

e for small iIslands

BQ

Unstable for normal tokamak operation

Stable in reversed shear regions
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Finite perpendicular thermal conductivity effect

dw n o w
T e (A! + Dnc 2 2
dt in w? 4 w3
W~ (X_L)lfd ¢*R
’ X mq'

Threshold -“seed” —island size




NTM characteristics

d i dit

“Phase diagram”

“seed” island necessary for growth
— s0 NTM is a nonlinear mode
“subcritical instability”

I

Saturation width proportional to
Be - hence limits plasma pressure

How is the seed island created?
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Comparison of “measured” island widths with Rutherford
model estimates.



Island Structure Can be Measured by Eleciron

Cyclotron Emission of Tq Fluctuation Radial Profile

* Magnetic surface distortion 5 is “toroidal” direction
* leads fo Tg fluctuation
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Theory - experiment comparison of saturated island widths



D- I11- D observations

TIME (ms) Locks  Disrupts

A 3/2 mode is excited at t=2250 - saturates beta; at t=3450 a 2/1 mode
grows to large amp, locks and disrupts. Ideal beta limit is 3.4

[ O. Sauter et al, PoP 4 (1997) 1654]



ITER

Island size would be about 60 to 70 cms at g=2 surface
Would seriously compromise performance of ITER

A control scheme using ECCD has been planned
Many other factors can compromise the effectiveness
of the control scheme

Some unresolved issues: size of seed island, fast particle
Interactions, plasma rotation




ITER NTMs stabilisation goals
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Impact on Q in case of continuous stabilisation (worst case):
* Q drops from 10 to 5 for a (2,1) NTM and from 10 to 7 for (3,2) NTM
* with 20 MW needed for stabilisation, Q recovers to 7, with 10 MW to Q > 8

 note: if NTMs occur only occasionally, impact of ECCD on Q is small



Flows In tokamaks and their possible impact?

* Flows (particularly in the toroidal direction) can arise in a tokamak from
unbalanced neutral beam injection (for heating)

* There is also evidence of spontaneous rotation arising during RF heating

« Such flows can influence both outer layer and inner layer dynamics for
resistive modes including NTMs

* They can also bring about changes in linear coupling mechanisms
such as toroidal coupling between harmonics.

« Past nonlinear studies — mainly numerical — and often limited to
simple situations (e.g. poloidal flows, non-self consistent) reveal
Interesting effects like oscillating islands, distortion in eigenfunctions
etc. for classical tearing modes

Refs: Chen &Morrison, 92, 94: Bondeson & Persson, '86,’88,’89; M.Chu,’98
Dewar & Persson, '93; Pletzer & Dewar, ’90,’91,’94;



Experimental Evidence of Flow effects on NTMs
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Near-toroidal beams
inject energy and momentum

* net torque varied by ratio of co
to counter beams

Changes in tearing mode
saturated amplitude observed

*hybrid scenario
ssawteething, ELMy H-mode

Plan View of DII11-D Tokamak

Co-NBI 12.5 MW
Cir-NBI 5 MW



Plasma Rotation Measured by Charge Exchange
Recombination of CVI Line
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Rotation Shear is Well Correlated with Rotation at g=3/2

in Sawteething Plasmas

* Unfortunately, one can not separate these, yet, experimentally
* Lyy = —wg/ (dwg/dR)= 0.24 m or Log/rs = 0.66
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B ramps at fixed co:counter ratio

NTM Threshold vs Beam Torque Mix
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* Clear trend towards lower 2/1 NTM B threshold as rotation balances

- Suggests thresholds may be lower in ITER
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Experimental evidence of flow effects on NTM onset
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Experimental evidence of flow effects on NTM saturation
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How is flow affecting the stability properties of NTMs?

- Is It changing the inner layer dynamics?
e |s It affecting the outer layer dynamics?
* IS it changing toroidal coupling properties?

* What iIs the role of flow shear? — does the sign matter?



Island equation with sheared flow

Pressure/curvature Neoclassical current
L
() 418_W — neo Aé B 1956143 ap([]) L0 58\/E59L—z WQ

L (2.3(“’ “wr)e —wpmw) | 0.2&2) gyl To

]Cg’i)% W3 W kg?),q vg W
differential flow \ﬂow Shear/

polarization current

drift freq, wr = kec®y(r = r,)/B, ; Tlow shear, wg = kyc®;(r = 75)/By
o0 = average value of equilibrium parallel flow

Island saturation width determined by balance between the
A’ term and the bootstrap contribution
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Experimental evidence suggests that 5y and Lq do not

change significantly with changing flow Ly

So something is happening to A’

What iIs the dependence of A’ on flow shear?



Heuristic Model

e rotation shear provides additional drive to alter field line pitch
e can increase or decrease field line bending energy and thereby
change A’

{'!]-LLJﬁ:; ) Lo
A'ry = C1 4 O ( (m' LJ.q) Simplest empirical form

Can one see this scaling from theoretical models ?

« RMHD code
* Newcomb eqn. with flow




Code NEAR

 NEAR - fully nonlinear toroidal code that solves a set of
RMHD egns. and contains neoclassical viscous terms as well
as toroidal flow

 Has been benchmarked to reproduce linear (classical) tearing
mode dynamics as well as nonlinear saturated behaviour

* It has also reproduced well the dynamics of NTMs - e.g.
threshold dynamics, scaling with 3, island saturation etc.

« Have examined the scaling of A’ with toroidal flow shear
for classical tearing modes



Model Equations (GRMHD)

ov | 1
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Equilibrium flow

e Neoclassical closure
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« appropriate for long mean free path limit
e reproduces poloidal flow damping
e gives appropriate perturbed bootstrap current
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Toroidal flow profiles
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Profile with positive flow shear at (2,1) surface
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 Looked at single helicity mode dynamics
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Results from NEAR
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Newcomb Equation with sheared flow:
d* dH d) g g 1d dE\ |
H—+|—+h; | — — ——— (H— )| ¢¥ =0
dr? i ( dr i 2f> dr [F 2 T F? i Fdr ( dr )] i
h; and g; are additional contributions due to flow

e Limit: hy, g = 0, Furth, Rutherford, Selberg equation
[Phys. Fluids 16, 1054 (1973)]

e Limit: slab geometry, (1/r) = 0, d/dr = d/dx, m/r %Kk,
Chen-Morrison Equation [Phys. Fluids B 2, 495 (1990)]
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Conclusions and Future Work

o Strong experimental evidence for toroidal shear flow induced
modification of NTM threshold 3 and saturated island size

» Main effect appears to arise from change in A’/

 Heuristic model and empirical fitting gives linear scaling of
A’ with flow gradient

 Preliminary investigations with resistive MHD code NEAR
and Newcomb equation analysis supports above scaling

» Necessary to carry out better numerical investigations e.g. using
PEST3 or other codes

» Need analytic modeling for better understanding of the underlying
physics



