

1953-55

International Workshop on the Frontiers of Modern Plasma Physics

14 - 25 July 2008

Shear Flow Effects on the Excitation and Evolution of Neoclassical Tearing Modes.

A. Sen Institute for Plasma Research, Gandhinagar, India

Shear Flow Effects on the Excitation and Evolution of Neoclassical Tearing Modes

Abhijit Sen

Collabn: D. Raju, D. Chandra, P.K. Kaw

Institute for Plasma Research, India

Rob La Haye (GA, U.S.A.)

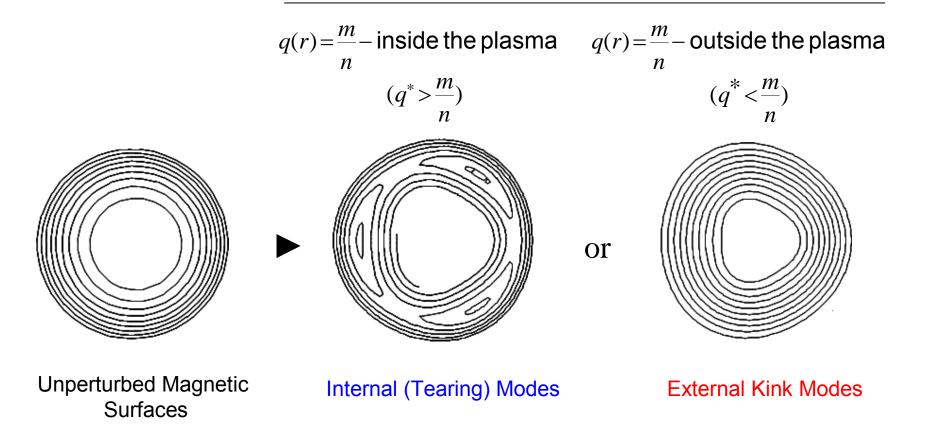
Richard Buttery (UKAEA)

International Workshop on the Frontiers of Modern Plasma Physics, ICTP, Trieste, Italy, July 14-25, 2008

Tokamak Instabilities

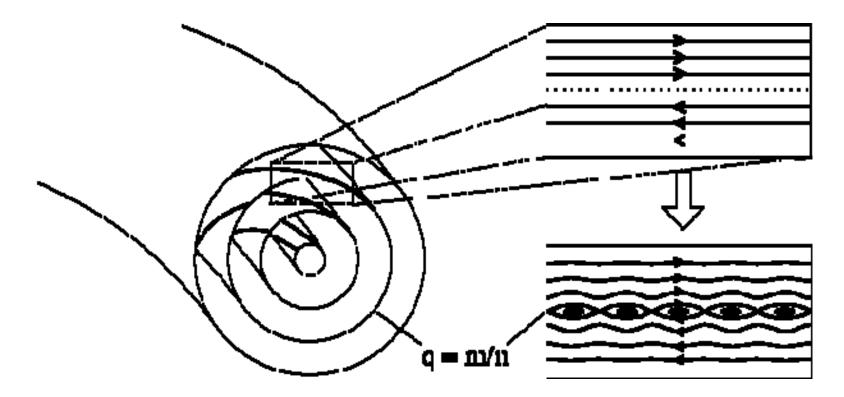
Magnetic field perturbation:

 $\vec{b} = \nabla \varphi \times \nabla \tilde{\psi}$ $\tilde{\psi}(\varphi, \vartheta, r) = \tilde{\psi}_0(r) \cdot e^{i(n\varphi - m\vartheta)}$



Tearing Modes and Magnetic Reconnection

k•**B**=0



``Tearing'' of a current sheet

•Asymptotic theory- uses two regions of the plasma

•Outer region - marginal ideal MHD - kink mode

•Inner region - include effects of inertia, resistivity, nonlinearity, viscosity etc.

• Matching between inner and outer region

$$\frac{1}{2} \Delta' \psi_1 = \mu_0 R \int_{-\infty}^{\infty} d\rho \oint \frac{d\alpha}{2\pi} \cos(m\alpha) J_{\parallel},$$

•Linear theory : $\gamma \sim (\Delta')^{4/5} S^{-3/5}$

Classical TM - contd.

•Near mode rational surface $\mathbf{k} \cdot \mathbf{B} = \mathbf{0}$, $\mathbf{B}_0 = \mathbf{B}(\mathbf{r}=\mathbf{r}_s) - \mathbf{B}_{\theta}(\mathbf{n}\mathbf{q}^{//m})(\mathbf{r}-\mathbf{r}_s)\boldsymbol{\alpha}$, $\boldsymbol{\alpha} = \theta - (\mathbf{n}/m)\varsigma$

 $\delta \mathbf{B} = \delta \mathbf{B}_{\mathrm{r}} \sin(\mathbf{m}\alpha) \mathbf{r}$

- Leads to the formation of a magnetic island
- •Island width $w = 4(\delta B_r r_s / B_{\theta} nq')^{1/2}$

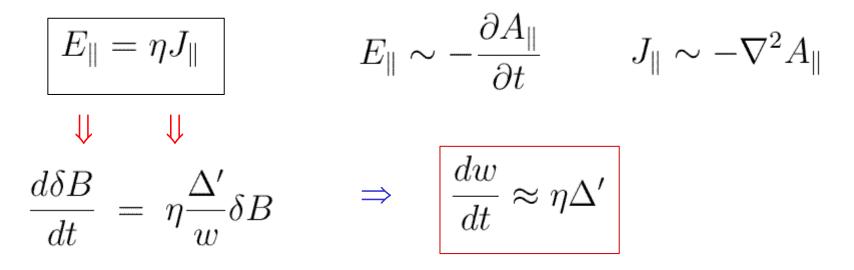
•when w > resonant layer thickness - nonlinear effects important

•Nonlinear Evolution - Rutherford regime

$$\frac{dw}{dt} \approx \eta \Delta'$$

$$\Rightarrow w \alpha t$$

• The form of the Rutherford equation can be traced to the form of Ohm's Law which governs the inner region solution, e.g.



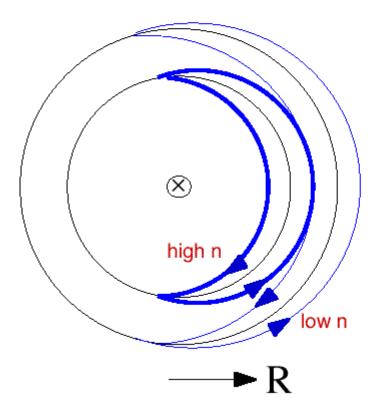
• In high temperature tokamaks neoclassical effects need to be retained

What are NTMs?

- NTMs are relatively large size magnetic islands that develop slowly at mode rational surfaces with low (m,n) mode numbers in high temperature tokamak plasmas.
- Like the classical TMs they are current driven but the current source is the **bootstrap current** a neoclassical (toroidal geometry driven) source of free energy.
- They limit the attainable β in a tokamak to values well below the ideal MHD limit hence they are a major concern for all reactor grade machines i.e. long pulse (steady state) devices.

BOOTSTRAP CURRENT

Projection into a poloidal plane



generated by trapped particles:

example: banana particles

- electrons drift from flux surfaces due to the ∇B-drift
- electrons with low parallel velocity are trapped in the toroidal mirror
 banana orbits
- at the intersection of 2 banana orbits a net current results due to the density gradient
- passing particles exchange momentum with trapped particles
 bootstrap current

similar: helically trapped particles

Modified Ohm's Law

$$\begin{split} < E_{\parallel} > &= \eta J_{\parallel} + \frac{1}{neB} < B \cdot \nabla \cdot \pi_{\parallel e} > \\ & \downarrow \\ \text{Bootstrap current} \\ & \uparrow \\ \frac{1}{neB} < B \cdot \nabla \cdot \pi_{\parallel e} > \approx \frac{\mu_e}{\nu_e} \frac{1}{B_\theta} \frac{dp}{dr} + \eta \frac{\mu_e}{\nu_e} J_{\parallel} \end{split}$$

Electron viscous stress which describes damping of poloidal electron flows - new free energy source.

Dependence on pressure gradient, also fraction of trapped particles

Modified Rutherford Equation

$$\frac{dw}{dt} = \frac{\eta}{\mu_0} (\Delta' + \frac{D_{nc}}{w})$$

$$D_{nc} = -\sqrt{\epsilon} \; \frac{2\mu_0}{B_\theta^2} p' \frac{q}{q'} k_0$$

$$p'q' < 0, \quad D_{nc} > 0$$

Unstable for normal tokamak operation

 $p'q' > 0, \quad D_{nc} < 0$

Stable in reversed shear regions

• Can be unstable for $\Delta' < 0 \Rightarrow$

$$w_{sat} = \frac{D_{nc}}{-\Delta'} \approx \frac{r_s \beta_\theta}{m}$$

• for small islands

$$w \sim \sqrt{\eta t}$$

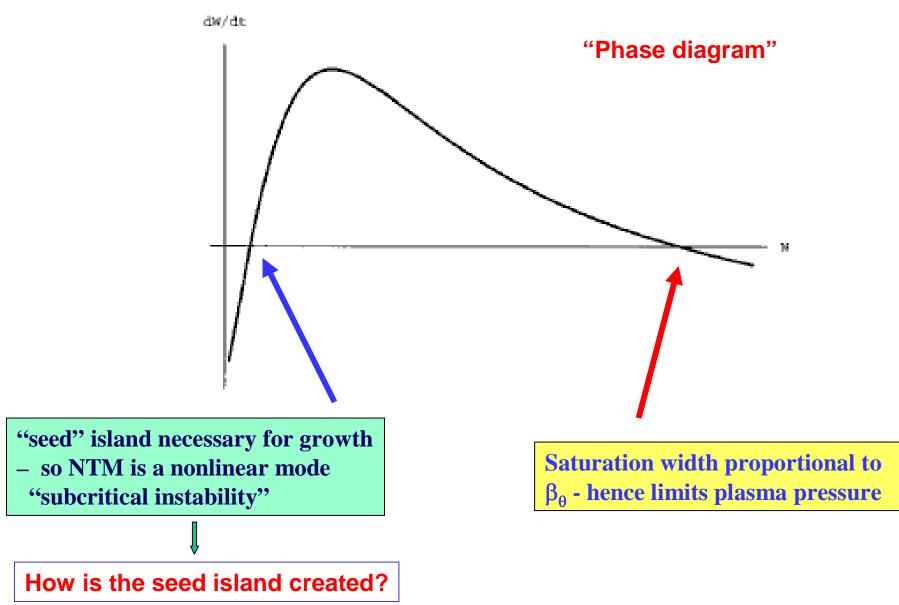
Finite perpendicular thermal conductivity effect

$$\frac{dw}{dt} = \frac{\eta}{\mu_0} (\Delta' + D_{nc} \frac{w}{w^2 + w_c^2})$$
$$w_c \sim \left(\frac{\chi_\perp}{\chi_\parallel}\right)^{1/4} \sqrt{\frac{q^2 R}{mq'}}$$

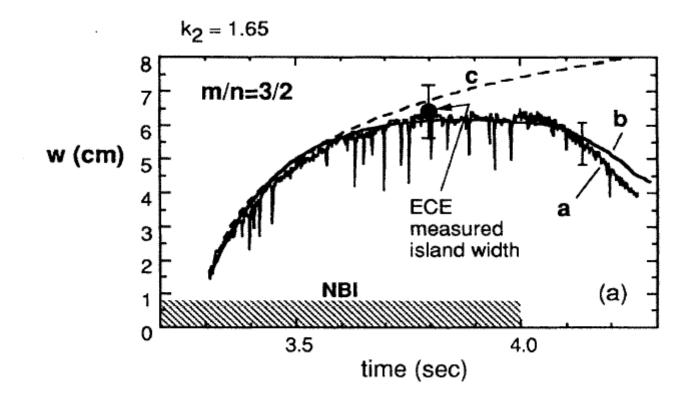
Threshold - "seed" - island size

$$w_{seed} = -\frac{\Delta' w_c^2}{D_{nc}}$$

NTM characteristics

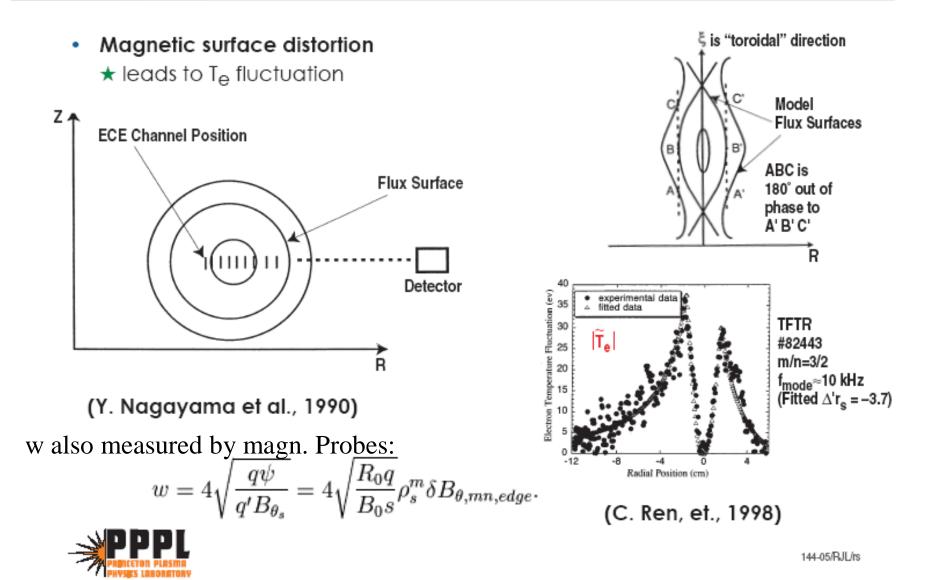


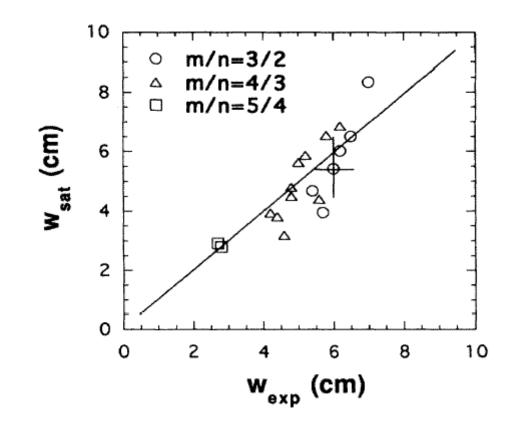
TFTR



Comparison of "measured" island widths with Rutherford model estimates.

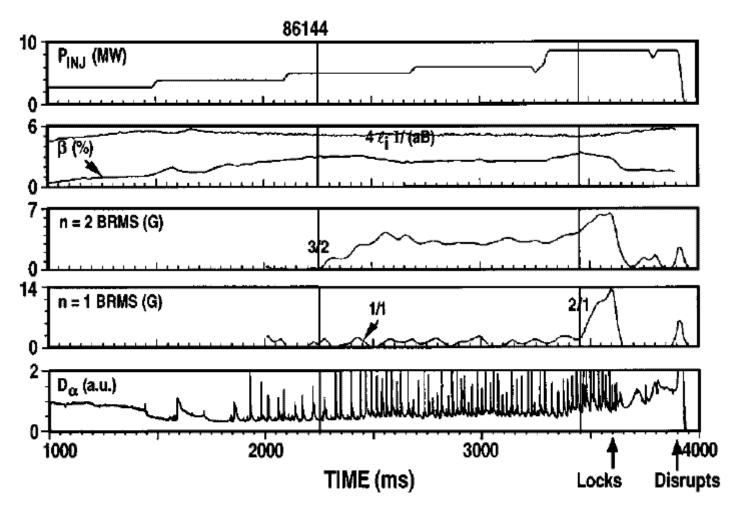
Island Structure Can be Measured by Electron Cyclotron Emission of T_e Fluctuation Radial Profile





Theory - experiment comparison of saturated island widths

D-III-D observations



A 3/2 mode is excited at t=2250 - saturates beta; at t=3450 a 2/1 mode grows to large amp, locks and disrupts. Ideal beta limit is 3.4 [O. Sauter et al, PoP 4 (1997) 1654]

ITER

Island size would be about 60 to 70 cms at q=2 surface

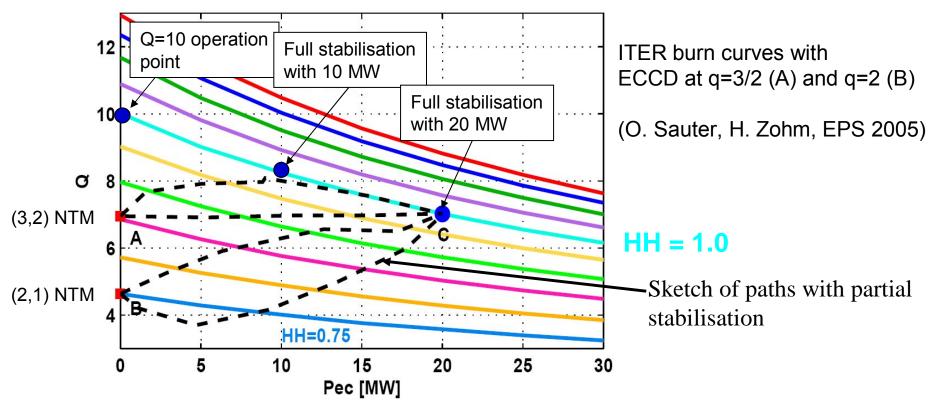
Would seriously compromise performance of ITER

A control scheme using ECCD has been planned

Many other factors can compromise the effectiveness of the control scheme

Some unresolved issues: size of seed island, fast particle interactions, **plasma rotation**

ITER NTMs stabilisation goals



Impact on Q in case of continuous stabilisation (worst case):

- Q drops from 10 to 5 for a (2,1) NTM and from 10 to 7 for (3,2) NTM
- with 20 MW needed for stabilisation, Q recovers to 7, with 10 MW to Q > 8
- note: if NTMs occur only occasionally, impact of ECCD on Q is small

Flows in tokamaks and their possible impact?

- Flows (particularly in the toroidal direction) can arise in a tokamak from unbalanced neutral beam injection (for heating)
- There is also evidence of spontaneous rotation arising during RF heating
- Such flows can influence both outer layer and inner layer dynamics for resistive modes including NTMs
- They can also bring about changes in linear coupling mechanisms such as toroidal coupling between harmonics.
- Past nonlinear studies mainly numerical and often limited to simple situations (e.g. poloidal flows, non-self consistent) reveal interesting effects like oscillating islands, distortion in eigenfunctions etc. for classical tearing modes

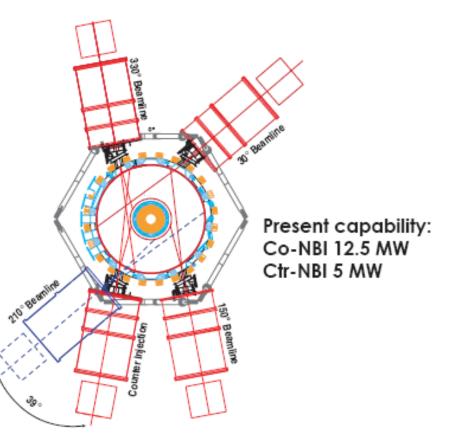
Refs: Chen & Morrison, '92, 94; Bondeson & Persson, '86,'88,'89; M.Chu,'98 Dewar & Persson, '93; Pletzer & Dewar, '90,'91,'94; Experimental Evidence of Flow effects on NTMs

• D-IIID

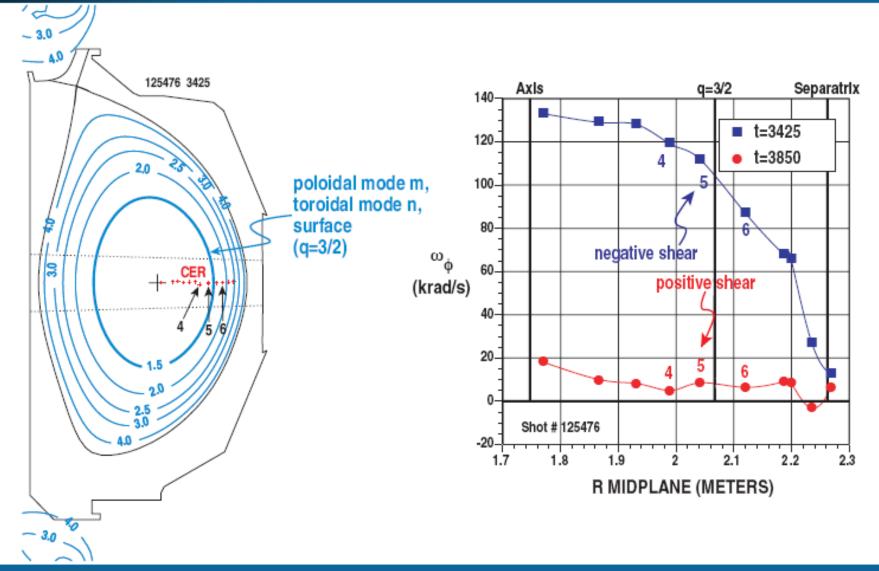
• JET

- Near-toroidal beams inject energy and momentum
 - ★ net torque varied by ratio of co to counter beams
- Changes in tearing mode saturated amplitude observed
 - hybrid scenariosawteething, ELMy H-mode

Plan View of DIII–D Tokamak



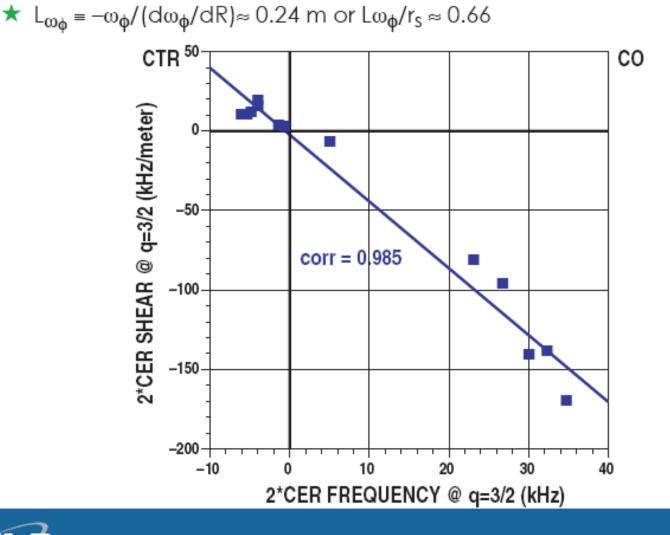
Plasma Rotation Measured by Charge Exchange Recombination of CVI Line



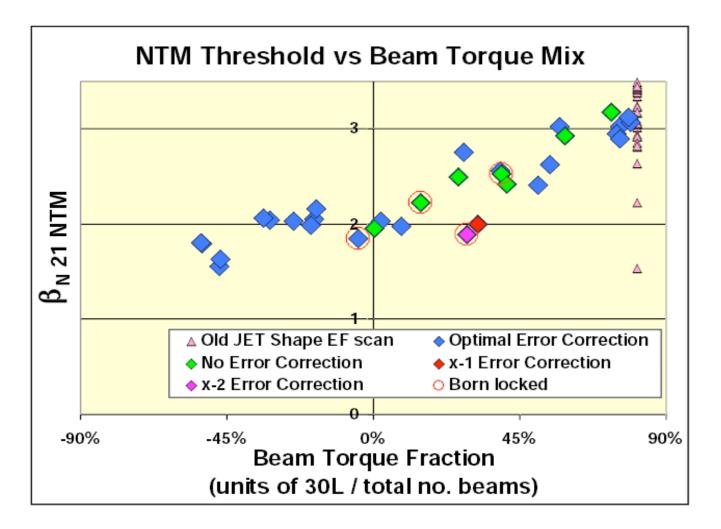
001-08/RJL/jy

Rotation Shear is Well Correlated with Rotation at q=3/2 in Sawteething Plasmas

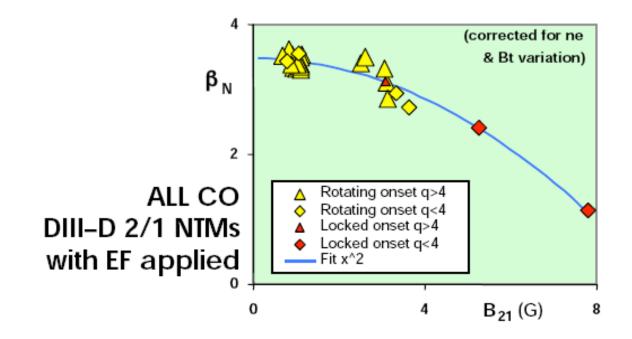
• Unfortunately, one can not separate these, yet, experimentally

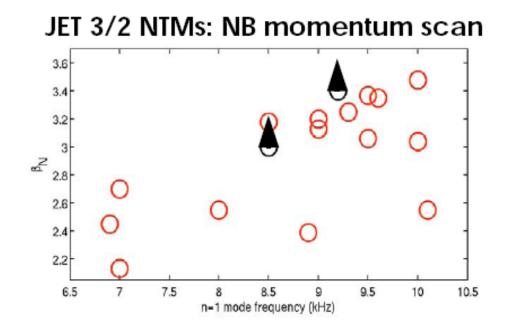


β ramps at fixed co:counter ratio

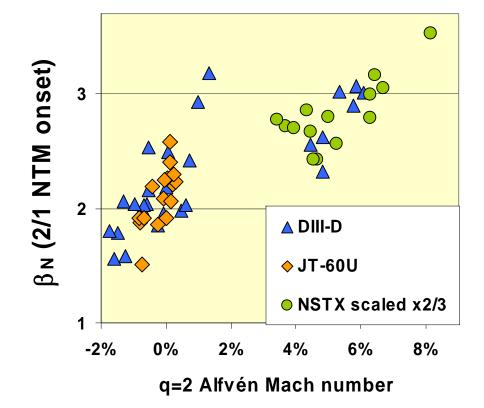


- Clear trend towards lower 2/1 NTM β threshold as rotation balances
 - Suggests thresholds may be lower in ITER

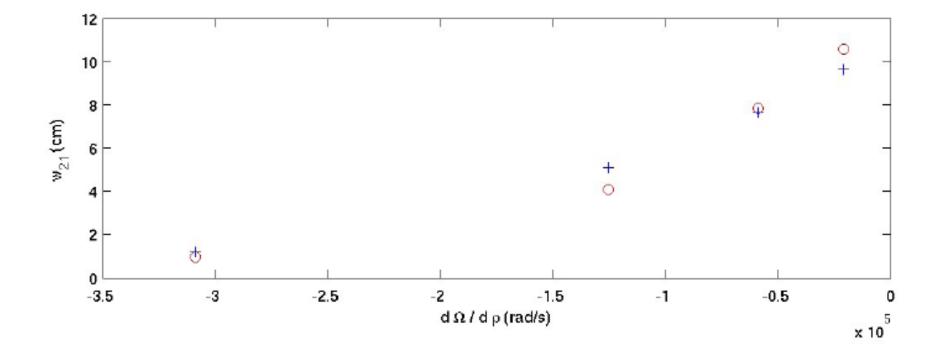




Experimental evidence of flow effects on NTM onset



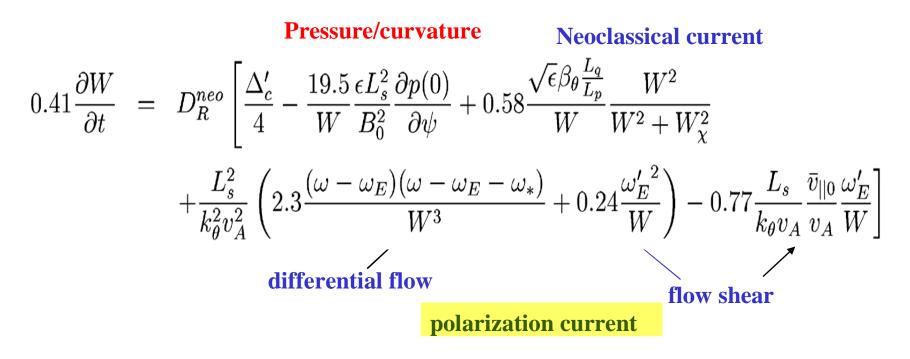
Experimental evidence of flow effects on NTM saturation



How is flow affecting the stability properties of NTMs?

- Is it changing the inner layer dynamics?
- Is it affecting the outer layer dynamics?
- Is it changing toroidal coupling properties?
- What is the role of flow shear? does the sign matter?

Island equation with sheared flow



drift freq, $\omega_E = k_{\theta} c \Phi'_0(r = r_s)/B_0$; flow shear, $\omega'_E = k_{\theta} c \Phi''_0(r = r_s)/B_0$ $\bar{v}_{\parallel 0}$ = average value of equilibrium parallel flow

Island saturation width determined by balance between the Δ term and the bootstrap contribution

$$W_{sat} \sim \frac{\beta_{\theta}}{(-\Delta')} \frac{L_q}{L_p}$$

Experimental evidence suggests that β_{θ} and $\frac{L_q}{L_p}$ do not change significantly with changing flow

So something is happening to Δ'

What is the dependence of Δ' on flow shear?

Heuristic Model

- rotation shear provides additional drive to alter field line pitch
- can increase or decrease field line bending energy and thereby change Δ^\prime

$$\Delta' r_s = C_1 + C_2 \left(-\frac{d\omega_\phi}{dR} L_s \tau_A \right)$$

Simplest empirical form

Can one see this scaling from theoretical models ?

• RMHD code

• Newcomb eqn. with flow

Code NEAR

- NEAR fully nonlinear toroidal code that solves a set of RMHD eqns. and contains neoclassical viscous terms as well as toroidal flow
- Has been benchmarked to reproduce linear (classical) tearing mode dynamics as well as nonlinear saturated behaviour
- It has also reproduced well the dynamics of NTMs e.g. threshold dynamics, scaling with β_p , island saturation etc.
- Have examined the scaling of Δ' with toroidal flow shear for classical tearing modes

Model Equations (GRMHD)

$$\frac{\partial \Psi}{\partial t} - (\boldsymbol{b}_0 + \boldsymbol{b}_1) \cdot \nabla \phi_1 - \boldsymbol{b}_1 \cdot \nabla \phi_0 = \eta \tilde{J}_{||} - \frac{1}{ne} \boldsymbol{b}_0 \cdot \nabla \cdot \boldsymbol{\Pi}_e$$

bootstrap current

$$\begin{split} \nabla \cdot \left(\frac{\rho}{B_0} \frac{d}{dt} \frac{\nabla \phi_1}{B_0} \right) + \left(\boldsymbol{V}_1 \cdot \nabla \right) \left(\nabla \cdot \left(\frac{\rho}{B_0} \frac{\nabla \phi_0}{B_0} \right) \right) &= (\boldsymbol{B}_0 \cdot \nabla) \frac{\tilde{J}_{||}}{B_0} + (\boldsymbol{B}_1 \cdot \nabla) \frac{J_{T||}}{B_0} \\ &+ \nabla \cdot \frac{\boldsymbol{B}_0 \times \nabla p_1}{B_0^2} + \nabla \cdot \frac{\boldsymbol{B}_0}{B_0^2} \times \nabla \cdot \boldsymbol{\Pi} \\ & \mathbf{GGJ} \\ \frac{dp_1}{dt} + (\boldsymbol{V}_1 \cdot \nabla) p_0 + \Gamma p_T \nabla \cdot \boldsymbol{V}_1 = (\Gamma - 1) \left[\eta J_{T||}^2 - \boldsymbol{\Pi} : \nabla \boldsymbol{V} + \boldsymbol{\Pi}_{\boldsymbol{e}} : \nabla \frac{\boldsymbol{J}}{n\boldsymbol{e}} - \nabla \cdot \boldsymbol{q} \right] \\ & \mathbf{heat flow} \end{split}$$

$$\rho \frac{d\widetilde{V}_{\parallel}}{dt} + (\boldsymbol{V}_1 \cdot \nabla) V_{\parallel_0} = -\boldsymbol{b}_0 \cdot \nabla p_1 - \boldsymbol{b}_1 \cdot \nabla p_T - \boldsymbol{b}_0 \cdot \nabla \cdot \boldsymbol{\Pi}$$
$$\frac{d}{dt} = \frac{\partial}{\partial t} + \boldsymbol{V} \cdot \nabla$$

$$\boldsymbol{V} = \Omega(\psi)R^2\boldsymbol{\nabla}\zeta + \boldsymbol{V}_1 = \frac{\boldsymbol{B}_0 \times \nabla\Phi_0}{B_0^2} + V_{0\parallel}\boldsymbol{b}_0 + \frac{\boldsymbol{B}_0 \times \nabla\Phi_1}{B_0^2} + \tilde{V}_{\parallel}\boldsymbol{b}_T$$

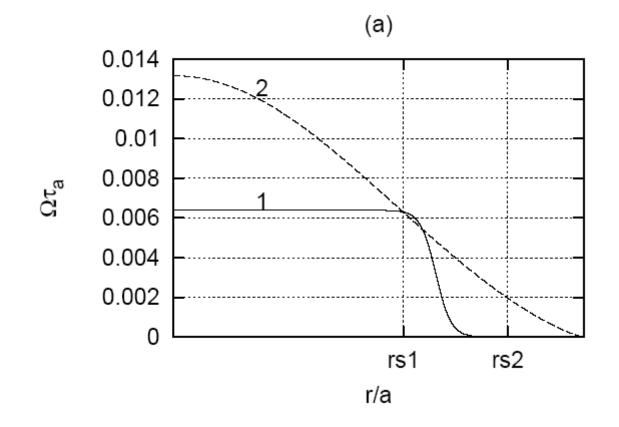
Equilibrium flow

• Neoclassical closure

$$\vec{\nabla}\cdot\Pi_s = \rho_s\mu_s\left\langle B^2\right\rangle \frac{\vec{V_s}\cdot\vec{\nabla}\Theta}{\left(\vec{B}\cdot\vec{\nabla}\Theta\right)^2}\vec{\nabla}\Theta,$$

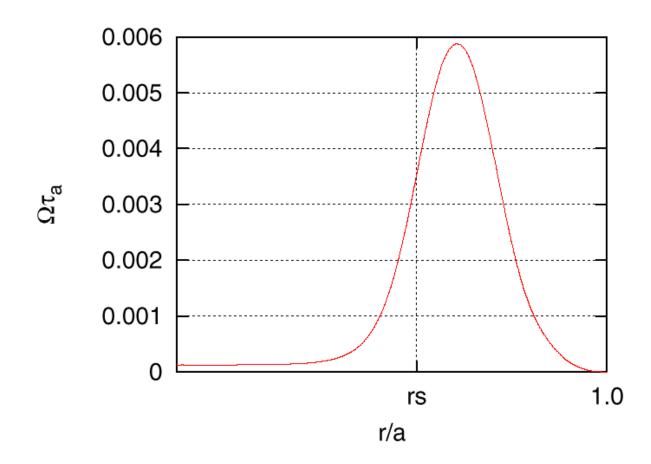
- appropriate for long mean free path limit
- reproduces poloidal flow damping
- gives appropriate perturbed bootstrap current

Toroidal flow profiles



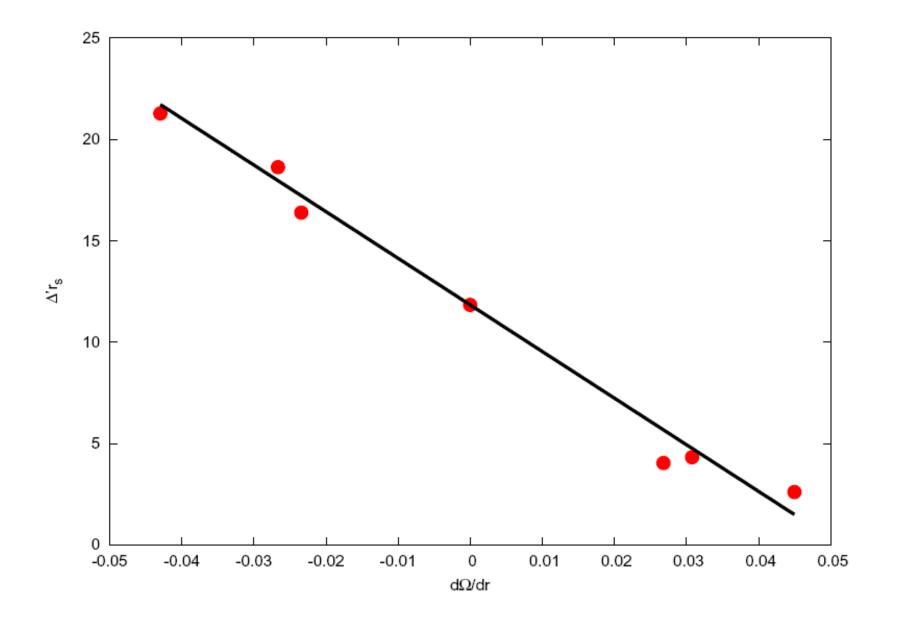
1- differential flow
2- sheared flow

Profile with positive flow shear at (2,1) surface



• Looked at single helicity mode dynamics

Results from NEAR



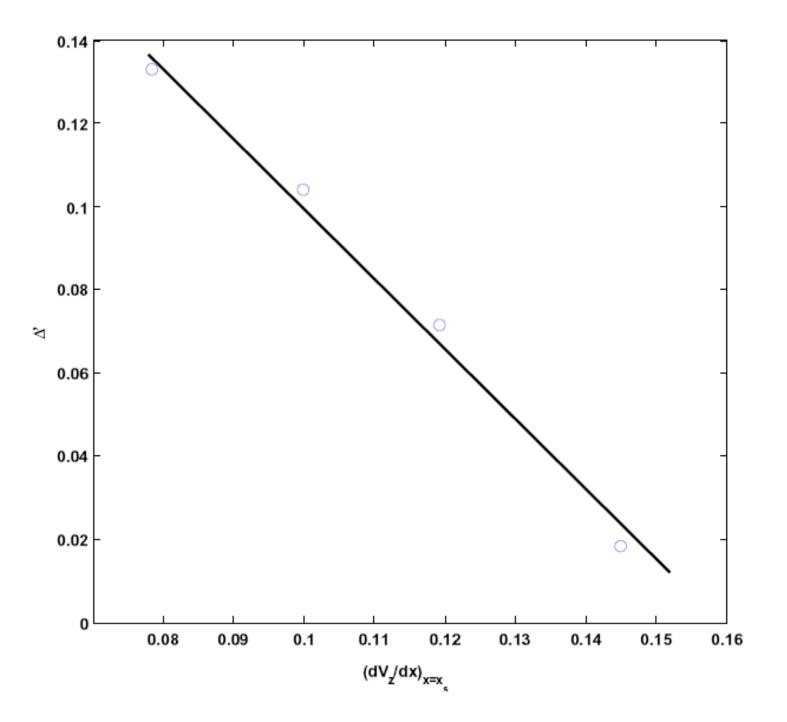
Newcomb Equation with sheared flow:

$$H\frac{d^2\psi}{dr^2} + \left(\frac{dH}{dr} + h_f\right)\frac{d\psi}{dr} - \left[\frac{g}{F^2} + \frac{g_f}{F^2} + \frac{1}{F}\frac{d}{dr}\left(H\frac{dF}{dr}\right)\right]\psi = 0$$

 $\mathbf{h}_{\mathbf{f}}$ and $\mathbf{g}_{\mathbf{f}}$ are additional contributions due to flow

- Limit: $h_f, g_f \rightarrow 0$, Furth, Rutherford, Selberg equation [*Phys. Fluids* 16, 1054 (1973)]

$$\Delta' = -\frac{1}{r_s \psi_s^2} \int_0^a \left[\left(\frac{d\psi}{dr} \right)^2 + \left\{ \frac{g}{HF^2} + \frac{1}{HF} \frac{d}{dr} \left(H \frac{dF}{dr} \right) - \frac{2m^2 k_z^2}{(k_z^2 r^2 + m^2)^2} + \frac{g_f}{HF^2} + \frac{1}{2r} \frac{d}{dr} \left(\frac{rh_f}{H} \right) \right\} \psi^2 \right] r dr$$



Conclusions and Future Work

- Strong experimental evidence for toroidal shear flow induced modification of NTM threshold β and saturated island size
- Main effect appears to arise from change in Δ'
- Heuristic model and empirical fitting gives linear scaling of Δ' with flow gradient
- Preliminary investigations with resistive MHD code NEAR and Newcomb equation analysis supports above scaling
- Necessary to carry out better numerical investigations e.g. using PEST3 or other codes
- Need analytic modeling for better understanding of the underlying physics