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Outline

Motivation: In magnetically confined plasmas turbulent - anomalous -
transport is the dominant mechanism for transport of mass, energy
and momentum! (Balescu, Aspects of Anomalous Transport in
Plasmas, CRC Press 2005)

• Turbulent dispersion and mixing of (passive) particles:
- in drift wave turbulence

- in global interchange turbulence in the edge/scrape-off-layer,
SOL

• Relation between the passive particle diffusion and bulk plasma
transport - the turbulent density flux

• Passive tracer particles/fields are used to model impurity transport

• Inertia effects; pinching and clustering in 2D drift wave turbulence

• Particle mixing and transport in strongly intermittent turbulence in
SOL: Curvature pinch in inhomogeneous magnetic fields.



Particle dispersion in plasma turbulence

Vorticity

Drift-wave turbulence
Hasegawa Wakatani Equations
PRL 50, 682 (1983)

Particles convected by
fluctuating ExB velocity
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Basu et al Phys. Plasmas 10, 2696 (2003);

Comm.Nonlinear Sci. Numer. Simul. 8, 477 (2003)



Dynamics of passive tracers
• Investigation of mixing and diffusion properties of turbulence -

provides a diffusion coefficient - turbulent flux via Fick's law.

• Passive tracers or passive fields are also widely applied for
modelling impurity ion transport in plasmas :: impurities are all
materials besides the bulk plasma species; but here is does not
include dust particles, only impurity ions are treated!

• Impurities, e.g., originate from sputtering off plasma facing
components, PFC

• Passive tracers/fields do not contribute to charge neutrality
and do not dynamically react back on the turbulence

• Severe condition: impurity density should be much smaller than
density of bulk ions and contribution to quasi-neutrality condition
much smaller than each of the contributing terms. (Naulin et ai Phys.
ScriptaT122, 129(2006)).

Passive scalar dynamics is a classical problem in fluid dynamics
Falkovich et al. Rev. Mod. Phys. 73, 913 (2001);
Warhaft, Ann. Rev. Fluid Mech. 32, 203 (2000)



Tracing particles in the turbulence

Up to 100.000 particles are adverted in resistive drift-wave turbulence — Hasegawa-
Wakatani (PEL 1983) model 2D.

x(t) = / v{x{t%t')dt
Jo

Principal component of v = (u,v) is the E x B-velocity, i^:: Ideal inertia-less
particles.

Inertial effects : adding the polarization drift, vp

d

r _ .
L

n

Important for heavier impurities!

Inertia effects make the advection velocity compressible!



Particle dispersion

Absolute dispersion. C=5.0 Absolute Disperison in HW C=5, radial

10 10

The mean square particle
displacement radially and poloidally.
x - radial direction,
y - poloidal direction
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The radial particle displacement.
Fit: Afl + B for t > 400; 0 = 1.
Asymptotically normal diffusion!

Diffusion coefficient Dx= <X2(t)>/2t

Particle trapping in moving vortical structures:



Diffusion coefficient and flux
D and r for different C. (Normal viscosity).

Particle density flux:

Fick's law:
= - D d..n0
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Comparison between Dx for tracer particles and D from the flux l~; D = - I7dxnx " 0

For the present case - HWe, fluctuations around a frozen
background profile - passive particle diffusion really
mimics bulk plasma transport! 7



Evolution of impurities as a passive field

The impurities are treated as a passive scalar advected by
the turbulent fluctuations, i.e., the the impurities do not act
back on the turbulence or the background plasma profile.

+ V • (vrtimp) = iN2nimp

The influence of inertia enters via the polarization.

£ • V)nlmp = ^V • (nimp(dt + YE • V)V^>) +/jV2nimp.

Restriction nimp

Lagrangian invariant: (dt +\E- V)(lnn/mp —£G>) « 0
Turbulent mixing will homogenize the Lagrangian invariant:

=; const.
The initially homogeneous impurity density field will granulate. 8



Clustering/aggregation of inertial impurities

The impurity equation may be written as:

m

Vorticity Impurity density
fluctuations

Dt(lnnimp - Co/) = o(( )

Positive impurities (<; > 0) (this
case) cluster in positive vortices

Negative impurities (<; > 0) will
cluster in negative vortices

Priego et al Phys. Plasmas 12,
062312(2005)



Impurity density and vorticity
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Scatter plot of impurity density and vorticity, ^ = 0.05,
= 0.01, and ^ = 0.002.

Linear regression: 0/6Q = 1 + Ku;; K = 0.82^ (0 =

Priego et al Phys. Plasmas 12, 062312 (2005) 10



Impurity pinch

Finite inertia also introduce a pinch effect: the
(positive) impurities are transported up the density
gradient - negative pinch velocity

arm:.
-001 0 0.O1 Q.Q2 0.03 0.0-1 005

Specific properties of the HWe ?



Turbulence and transport in the edge/SOL

In the edge/scrape-off-layer (SOL) region turbulence an
transport is strongly intermittent and characterized by:

> large-amplitude, radially propagating blob-like
structures of particles and heat, generated close to
the last closed flux surface (LCFS),
> resulting in asymmetric conditional wave forms,
and skewed and flattened PDFs with broad tails

results in localized power loads at PFCs.

Observed under a variety of conditions (linear to tororoidal devices):
see, e.g., Zweben Phys. Fluids 28 974 (1985); Antar etal. PoP 10, 419 (2003); Boedo etal
PoP 10, 1670 (2003); Zweben etal. Nucl. Fus. 44, 134 (2004); Gruike etal PoP 13, 012306
(2006); Garcia etal. PPCF 48, L1 (2006). S.J. Zweben etal. PPCF 49, S1 (2007)
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Blob propagation in Alcator, C-Mod
OBSER/ATIONS OF DENSITY BIOBS AT THE OUTBOAFD M I DP LANE
OFALCATOR C-MOD (D® - UGHT) 0 . GRULKE ETAL POP 1 3 , 0 1 2 3 0 6 ( 2 0 0 6 )

Review: S.J. Zweben etal. PPCF 49, S1 (2007)
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Simulations of Edge-SOL

| Riso ESEL code: interchange dynamics at the outboard midplane
of a toroidally magnetized plasma. B-field gradient and curvature.
Global evolution.

periodic

a oc 1 + | tanh

Scrape-off-layer, SOL, Parallel flows: damping
Last closed flux surface LCFS

Garcia et al, PRL 92, 165003 (2004); Phys. Plasmas 12, 062309 (2005);
Phys. Scripta T122, 89 (2006)
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Energetics and energy transfer
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Bursting : Kinetic energy contained by the mean, U, and fluctuating,
K, motions.
The collective energy transfer terms Fp and Fv.
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Spatial structure during a burst

o o o o o o o o

Formation and propagation of density blob.
Particle density (left) and vorticity (right) during a burst (At = 500),
radial blob velocity < 0.02cs.
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e

Particle density flux

-6 -4 -2 0 2 4 6 8 10 12 14 16
rr-D/r
^ x * / ' x rms

Re-scaled PDF of particle density flux, F = (n — n)vx,
measured at the probes, Pj.
Exponential tails: flux dominated by strong bursts.
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Dynamics of impurity ions

The passive tracer particles model impurity dynamics, in the limit of no
back-reaction on the plasma dynamics:

Impurity density is much lower than the plasma particle density.
(Naulin PRE '05; Priego et al PoP '05; Naulin et al Physica Scripta '06)

Particles are advected as:

Finite inertia effects are neglected; v is compressible due to the spatial depen-
dence of B(x)

Garcia et al EPS 2005

18



Particle dynamics

500 5000 50000

Trajectory of a test particle
released inside LCFS

Variogram of the particle motion.
- - — T — - — Tm T

* 1 ' 3 '
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Step size PDF
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PDF of the radial displacement, Ax, over A t = 50; all particles. <Ax> = -0.08,
standard deviation, o = 1.02, skewness, S = 0.4, and kurtosis, K = 10.7.
Broad exponentially decaying tails.
Long steps are almost equally probable in both in- and outgoing directions.
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Particle dispersion

t= 10.000

2G0

t = 25.000

Particles released at 39 < x < 41
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Evolution of the impurity density
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Evolution of the impurity/tracer particle density No averaged over y.
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Arrival times

Plane at x = 80 Plane at x = 160

s.
o

0.03

0.02

0.01

0.004

5000 10000 15000
t

20000 25000 30000 5000 10000 15000 20000 25000 30000
t

The relative number of particles passing through a radial plane versus time;
first passage. Particles released inside LCFS, 39 < x < 41.

Velocity of the front of the particles > 0.02cs, typical blob speed.
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Evolution of the impurity density

Density profile NQ [X) OC B [X) independent of release position.
The transport is not "Fickian" diffusion. It can be described by an effective
pinch:

N/B is a Lagrangian invariant: Effective turbulent mixing: NjB uniformly
distributed in space.

Uniform distribution within few burst times

Impurities are effectively mixed by the turbulence in the SOL within a
few burst periods. Even if originating far out in the SOL they will
quickly penetrate across the LCFS into the edge plasma.
Corresponding to the so-called inward (curvature) pinch.

24



Summary

Dynamics of passive particles in turbulence:

Diffusion coefficient mimics bulk plasma transport for a
"fluctuation" model

Modelling impurity transport by passive particles:

Clustering/aggregation of inertial impurities and "inertial
pinch"

Edge/SOL turbulence and transport in a magnetically
confined plasmas is bursty/intermittent with broad tailed
PDFs and is not diffusive in the Fickian sense.

No parametrized diffusion type equation: Transport
characterisation calls for a universal PDF

Impurities are effectively mixed in SOL and penetrates the
LCFS.
Impurity pinch: curvature pinch 25



EXTRAS
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Classical Particle Dispersion

Single particle dispersion

G.I. Taylor 1915

Stationary, homogeneous

n:
= 2(v*) fi(t - r)CL(T)dT

turbulent flows:

Lagrangian integral time scale; T& = JQ

Two limits:
=2Dt

Diffusion coefficient: D = {V2}TL,

General: R2 (t) oc ta

Q > 1 Super diffusion ct < 1 Sub diffusion

Fick's law: , with normalizations

27



Particle dispersion in drift wave turbulence
Particle dispersion in 2D drift wave turbulence
Hasegawa-Wakatani equations (HWE): the resistive drift wave instability

(PRL50, 682(1983)):

dtn — dy<p— {<p,rc} = — C(n -<p) —

a f V 2 c p - {<$>, V2(p} =-C(n- 9 ) -

\/C=\/k\L\ L|| = (LnTe/mecsvei)
l/2

/ y - ~ dy > V - 5JC

Normalization: p5 = C j / ^ for lengths; Ln/cs for the times:

cs = y/fe/mu Lf} =
{ps/Ln) for potential nops/Ln for density: pn =^=/J.

Naulin et al. Phys. Plasmas 6,4575 (1999)

Basu et al Phys. Plasmas 10, 2696 (2003);
28

Comm.Nonlinear Sci. Numer. Simul. 8, 477 (2003)



Energy spectrum
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Spectrum is isotropic
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Running diffusion coefficient
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Running diffusion coefficient: Dx= <X2(t)>/2t, for varying
adiabaticity parameter C.
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Turbulent particle density flux

Particle density flux:
F = n v = n vTX ExB

ExB flux

700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

Time

Bursty flux!

Flux PDF

0.01 r

0.001 7

0.0001 7

le-05
6 8

CORRELATED GAUSSIANS P D F S FDRVY AND NX

PG = e x P

Naulin et al PLA 321 355 (2004)
7 is the correlation: 7 = - ^ ^ = cos
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Turbulent particle density flux

Particle density flux:
flux surface averaged
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The probability distribution function for the plasma flux across the magnetic
field is strongly non-Gaussian, i.e., strong bursts are dominating!
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Edge/SOL turbulence transport in JET
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Radial velocity PDF
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Re-scaled PDF of the radial particle
velocity coarse grained over time
intervals At = 50 -2m"1; particles
released inside LCFS

(vx~vx)/vx

Re-scaled PDF of the turbulent
radial ExB-velocity recorded at
the probes P1 - P7
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