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• Topics studied:

• electron plasma
• drift modes (electrostatic, electromagnetic, streaming/rotating plasma,

dusty plasma, experimental argon plasma)
• pair plasma (electron-positron, pair-ion)

• Coworkers:

• M. Y. Tanaka ( + team members)
« H. Saleem ( + team members)
• S. Poedts
• M. Kono
• P. K. Shukla
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-Kono and Tanaka PRL

ranjes et al. PRL (2002)

Nagaoka etal. PRL (2002)
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Vranjes et al., Phys. Rev. Lett. 89, 265002 (2002)

Bo<p) - Bo((p + ψ)]+

[d/dt +ezx V±/B0] vk = 0. J

r)/dr = 0/dr)/B0 -

P = cs/Ωef, = dψ(r)/dr = -n'o

LJ •!•
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i Vranjes et al., Phys. Rev. Lett. 89, 265002 (2002)
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• The structures observed in helium plasmas evolving in time and

rotating in the poloidal cross-section with a period of about 100μs.

• Monopolar vortices + dipolar vortices.

• Dipole: two components rotate around their centers in opposite

directions. The whole structure rotates in poloidal direction.

• Generated mainly in the region where the magnetic field curvature is

opposite to the density gradient, that is in most of the region outside

the centre of the cross-section.

i Large bursty flux events occur at the vortex separatrices whenever a double

vortex in the potential is formed.

i When they occur, they cover most of the plasma cross-section. J
LJ . = •*•j
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Vf(V)
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Figure 3. Two-dimensional contour plots of floating potential fluctuations derived by conditional

averaging. The temporal evolution starts at —112 μ s with respect to the reference signal event and

is plotted every 16 up to 128 μs. Radial positions and vertical positions are given in centimetres

from the centre of cross-section.

Fredriksen et al. Plasma Phys. Control. Fusion 45, 721 (2003)

a 6

Fluxes from V f and I s a t

-
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Figure 5. Two-dimensional contour plots of particle fluxes. The temporal evolution starts at

— 112μs with respect to the reference signal event and is plotted every 16 up to 128μs. Radial

positions and vertical positions are given in centimetres from the centre of cross-section.

.= -00,0
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to pump

probe system 2

interferometer

probe system 1

1m

Figure 1. Schematic of the VINETA device, including the azimuthal probe positing systems.

Grulkeet a l., PPCF 49 , B247(2007)
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J. Vranjes, P.K. Shukla, M. Kono, and
S. Poedts, PoP 8, 3165-3176 (2001)
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c 11 O IV MgX

Karovska and Habal, ApJ 3 7 1 , 402 (1991)
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Rosette nebula: twisted mode with poloidal number m = 3.
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P. Carlqvist et al. Astron. Astrophys. 403, 399 (2003)
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V
dt2

2
d

xV
dt

dt2 [dt2

1 a2 o2

c2

d dt2 dz2 0:

dt + ' •" t2

Vj_lnnd 0 = 0. (2)

? = 4πGmdnd0, Ωd = eZdB0/md, (3)

cd = κTefZd/md =

2 2

ωpd

2λd2, 1/λ2

d = 1/λi2 + + ωpi2/vT2

2 2
Tef = ni0 Te + n e 0 Ti
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Short wave-lengths (or for a laboratory plasma) => the self-gravity

effects can be ignored => coupled dust-acoustic (DA), dust-cyclotron

(DC), and dust-drift (DD) waves.

This is most clearly seen in the Cartesian geometry (for an unbounded

plasma) when for parallel propagation one obtains a DA mode

ω2 = cd2kz2; for the nearly perpendicular case without the density

gradient one finds a DC wave ω2 = Q^ + cd^ f i n a " y i n the presence

of the perpendicular density gradient and for low frequency limit

{uo <C d) w e h a v e a DD wave described by
2 ^ + k±Pd)]> where pd = cd/£ld.
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No gravity; Kummer confluent hypergeometric functions;
m = 1 , 2 , 3 .

Phys- Plasmas. Vol. 11. No 5, May 2004
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Self-gravitating plasma; Bessel functions
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• Eigen-mode equation (Vranjes and Poedts PoP 12, 064501 (2005):

& d m2

r co - kzvi0(r) dr r - kzvi0(r))

m kzv(0{r)

p2

s r co- kzvi0(r) n0(r) +ω - kzvi0(r)

n0(r) = N0exp
2m

ar
exp

a2exp(-ar2/2),

2a2bkz 2a2kz 2kzexp(ar2)

aρ2

s

ar
amr exp 2a2kzcexp ar
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Radial eigen-modes. J. Vranjes and S. Poedts, Phys. Plasmas 1 2 , 064501 (2005).
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The cross section of the potential for m = 10 and the first radial The case of the second radial eigen-mode.
eigen-mode. Dashed lines denote negative part of the wave
potential.

J. Vranjes Global modes



LEUVEN

Laboratory plasma - some examples
Space plasma

Streaming bounded plasma
Plasma with radial and axial density gradient

Concluding remarks

Fil-ure I. Scheme ufihe-experimental setup. The ptcrure shows a scheme -of ih.e poloiiial section ut
IheCASTORtokumak where the array of probes has been inserted. The plasma, shifted downwards,
is also depicted.

«.W 8-*l 9«

Figure 2. MtKiiLii!.' I'r.-irni'.J iiji.MMii L LI l^ "iii- •_-111-iT11".!I î i priTliL*- pLiui^J .i-> .i Uin^^on i f time and
rdiiLal position. Blue indicates negative vyiues and red inditates pusitivc values. Th-f peak values

n 6. Boating potential measured by one column of pushes plotlal as a function of time
l position (as: in figure 2). blue iudicatehnegalivevalues;>n<i red indicates positive values,
valuer are ±3 \ A V, The presence uf the LCFS al y * 68 cm is seen as a while line scpari

function of time and
:. The

•!. of opposite ptvlaritj.

E. Martines et al. Plasma Phys. Control. Fusion 44 , 351 (2002)
=
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Plasma with radial and axial density gradient
• Cartesian geometry
• Global modes in cylindric plasma
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• Details in: Vranjes and Poedts, PoP 14, 112106 (2007).
• Plasma in the magnetic field B~0 = B0~ez; equilibrium density gradient

in the direction both perpendicular and parallel to the magnetic lines.

• Density perturbations, electrostatic wave, oblique propagation:

d2
n1 dvizl dvizl

dt dz dt dt dt /7Q dz
= 0, (4)

dt - £ 0
e z X

1 d:

dt Q.iB0dt2 (5)

dvizl

dt

J. Vranjes

e dcpi

mi dz

Global modes

(6)
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Perturbations of the form f (x , z)exp(—iωt + ikyy) and a plasma with
= exdno/dx + ezdno/dz.

dz2 \
1 dn0 <90

? dx2) n0 dz dz +Ωi n0 dx

coky 1 dno . co2 , , 9 9 x .y ° H T ( 1 + ky2ρ2s 0 = 0,

(7)

e$i{x,z) hi
s =

e n0 smis Ω i

Eq. (7): the normalized amplitude of the coupled ion acoustic wave

Ω2 = k2c2, and the drift wave

1 dno

a
da ,

J. Vranjes Global modes
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A.

• Introduce ha

l ~ Lα, α = x, z; d2/dx2 can be omitted provided

that Lx/Lz > ω/Ωi. For exponential density in the perpendicular

direction hx constant, and from (7), assuming the wave

x, z) ~ f(z)cos/czz,

f"(z) + hzf'(z) / 2 2 \ ω ky
ky2ρ2s +

2f'{z) + hzf(z) = 0.

k z

2 f(z) = 0,

(8)
(9)

• Eqs. (8), (9) valid for any function hz.

m From (9): f(z) = f 0 / [ n 0 ( z ) ] 1 / 2 , f0 - integration constant.
• ^

J. Vranjes Global modes
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• Eq. (8) yields the dispersion equation for the coupled drift and IA
waves,

cs

dz: = 0. (10)

m The wave potential:

° /O cosk z z , (11)

= const.

m The drift-IA wave grows/decreases for a decreasing/increasing density
along the magnetic lines. The exponential density in the perp.
direction determines the drift part.

J. Vranjes Global modes
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cs
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m The wave potential:
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is constant.m , ky, kz are constant if

i) Exponential equilibrium profiles in both directions;

n0(x,z) = N0exp(±x/ L x + bz), b > 0, or b < 0. The dispersion

equation for the modified drift-IA wave:

UJ' ky

2ρs2 - LO^ - Cj{k2

+ = 0. (14)

The cut-off frequency for the IA mode propagating along the

exponentially varying density,

i) In the case N0(X, z) = N0exp(±x/L x)cos2bz, or

n0(x, z) = N0exp(±x/L x)sin2bz (the local variation in the

z-direction is monotonous, i.e., non-oscillatory, implying that

|bz < T T / 2 ) :

Ω2 1 + ky2ρ

s2 - uj,euj - cs2(kz2 - b2) = 0. (15)

the cut-off wave number k
~ =
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PF 17, 1738 (1974)

s
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B.

; Small d2/dx2 part in Eq. (7) and N0(X, z) = N0exp(±x/ L x - κ Z2Z2)

.2_^/- 2K|Z4>'(Z) + a0Φ(z) = 0, a0 = k2yP2s)
yhx

(16)
• The general solution in terms of the Kummer confluent

hypergeometric functions

<D(z)=Ci-iFi
2 2

z + C2 - z - i F i

(17)
• Depending on the values of α, β, 1F1[α,β,χ] includes various

special functions, like the Hermite functions, the Error Integral, the
Parabolic Cylinder functions, etc. Symmetric density profile along
the magnetic lines => keep the even solutions in (17).

J. Vranjes Global modes
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C .

• According to well known features of the functions 1F1[α,β,χ], for
large negative α, bounded β and real χ, the solution is oscillatory and
growing in the χ-direction, and can be written as

1F1 « r(/3)^-1/2exp(X/2)(/3X/2 - aX)
1/2^/2cos [(2(3X - 4aX)

1/2

-f3n/2 + Π/4] .

• f - the Gamma function. Hence, the amplitude of the wave potential

(and the relative density perturbation hi/n0) grows in the direction of

the decreasing density

The complete Eq. (7) can be solved by the separation of variables

J. Vranjes Global modes
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This yields

a2 =

d2ψ(x)

dx2

(18)

co

= 0, (19)

a - arbitrary constant which appears due to the separation of variables.

The equations can be solved analytically for a number of functions

z

.= -00,0
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Gaussian equilibrium density in the z-direction n0 ~ exp(—κ2zz2), the

solution of Eq. (20) is the same as (17) where only we have a3 — α

instead of

i) If we also have n0 ~ exp(κx2x2) locally, then hx = 2κx2x and the

solution of Eq. (19) is

t/j{x) =
1/3

<h
P2-A 21/3

<h
• (21)

Here, d1 = 2^32/'a1, d2 = Α/ a1, and A i, Bi are the Airy functions.

ii) For a locally exponential density in the x-direction,

/7o ~ exp(κxx), where ΚX > 0 or κ x < 0, Eq. (19) becomes of the

form ± = 0, c0 = - The solutions (for

the sign + ) are ψ = D1 • sin(xc0 ) + D2 • cos(xc0 ), otherwise

= D1 - exp(-xc 0

/ ) + D2 • exp(xc01
/

£5 - =
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• Cylindric plasma which extends up to r = r0; density N0 = n0(r, z);

perturbations f ( r , z)exp(—iωt + imθ);

d d rrr
0 i m hr - Φ(r,z)=0.

(22)

All spatial variables in units of r0, and h r = (dno/dr)/n0.

• A good representative of various plasmas: Gaussian equilibrium density

in both directions n0(r,z) = A/oexp(—r2r2 — K^Z2), where κr

and typically κr/ κz ^> 1, hence hr = —2n2r, hz = —2K2Z.

~ =
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• Introducing as earlier Φ(r,z) = ψ(r)ξ(z), from (22):

d2

rrr
dr

+ b0
= 0, (23)

b0 =

= 0.

uo
A0 =

auo

(24)

(25)

a - arbitrary constant due to the separation of variables. The drift and

IA modes are decoupled for α = 0. In the homogeneous case (24)

yields the IA wave ω2 = k2c2, otherwise it gives the axially dependent

mode amplitude.

J. Vranjes Global modes
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• The general solutions of Eqs. (23), (24) are, respectively,

ψ(r) = C1 • r~m b0

m
2 ,

4Κ2

+ D2-z

m

+ AT

1F1

7, ft,

'1

2

> 2

4

a

AC2

22

0

(26)

(27)

• Well behaved solutions [non-singular in (r, z)-plain and even in ± z

directions] imply C1 = D2 = 0. In laboratory conditions the potential

vanishes at least at r = 0, and r = r0, resembling a radially standing

drift wave. Due to limited axial length in laboratory situations a

standing wave may appear in the axial direction too.

J. Vranjes Global modes
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• Electron-reach operations: the lowest eigenmode will satisfy kzL ~ Π,

or λ z ~ 2 L . Here L is the distance between the two sheaths formed at

both ends.

• Ion-reach operations: the standing wave may appear with the

maximum in the middle, but with a finite potential at the

ends/sheaths, corresponding to the axial wavelength larger than 2L.

Details in F. F Chen, Phys. Fluids 22, 2346 (1979); experimental

observation in Rowberg and Wong, Phys. Fluids 13, 661 (1970).

• In space plasmas, like in the highly elongated magnetic flux tubes in

the solar atmosphere, in the axial direction we may simply have a

propagating IA wave.

~ =
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From Eqs. (25) eliminate α:

O
u T^- = 0. (28)

• In physical units CJ 2(1 + bop^) — 2/77ft/ft2.p2.^ — aoc2 = 0.

• The parameter b0 is to be determined from the requirement of

vanishing solutions at R0. Because Eq. (26) may contain oscillatory

solutions (in r), this implies a sequence of discrete values for b0.

o a0: a free parameter for an infinite plasma column, otherwise to be

determined from the requirement ξ(L/2) = 0 for (oscillatory) solutions

in the limited axial direction, ±L/2 determines the two ends of the

plasma column. In the later case, we have only a drift wave

propagating in the poloidal direction, determined by the poloidal

number m, and having a standing wave structure in both radial and

axial directions.
~ =
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Eigenvalues [for the poloidal
drift wave number m = 1] for
different radial density profiles,
yielding a standing wave
solution in the radial direction.
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2 2 3

Similar, but for m = 5.

S ~ =
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The eigenfunctions Eqs. (26) (in
arbitrary units) for m = 1, and

for κr2 = 1, b0 = 13 (line a -
the first eigenfunction), and
b0 = 47.6 (line b - the second
eigenf unction). These
parameters are denoted by * in
previous figures
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• a-first eigenfunction
- b-sec. eigenfunction
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The eigen-functions (in arbitrary
units) for m = 5 and
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The first four axial eigenfunctions. Here κ2z = 0.014 => n0(z = L)/ N0 = 0.24. Axial

eigenvalues are a0 = 0.013, 0.214, 0.609, 1.202.
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The standing wave potential in
the r, z-plain for the drift mode
m = 1 and lowest
eigenfunctions in both r- and
z-directions; κr = 1,
b0 = 13.3, K\ = 0.014,
a0 = 0.013.
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o 0.8

The combination of the lowest
eigenfunction in the r-direction
with the 4th eigenfunction in
the z-direction; κr = 1,
b0 = 13.3, K\ = 0.014,
a0 = 1.2015, and m = 1.
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m = 5, and the combination of the second eigenfunction in r-direction with the 4th eigenfunction in z-direction; κr = 1,

b0 = 150, Κ2

Z = 0.014, a0 = 1.2015.
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• Global modes o global plasma properties.

• The behavior of coupled drift and ion acoustic modes is discussed in
plasmas with density gradients perpendicular as well as parallel to the
magnetic field lines.

• The density gradient in the direction of propagation of an IA wave is
known to cause the growth of the IA wave potential amplitude and the
relative density perturbation.

• The presence of both of these gradients in a nonlocal analysis implies
solving a double eigenvalue problem.

m In the past, problems of that kind have been treated numerically, and
separately for the axial and perpendicular directions.

~ =
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• The wave analysis performed both in Cartesian and cylindric geometry;
eigenvalue equations solved analytically for a number of radial and
axial density profiles.

• General solutions found; radially and axially varying wave amplitudes.

Improvement of the model possible:
i. (electron) collisions =̂> instability,
ii. hot ion effects,
iii. electromagnetic effects (coupli

: All these effects studied in different context in: Vranjes and Poedts,
Growing drift-Alfven modes in collisional solar plasma, Astron. Astrophys.
458, 635 (2006).
iv. nonlinear electromagnetic equations: Vranjes and Poedts, Drift-Alfven
eigenmodes in inhomogeneous plasma, Phys. Plasmas 13, 032107 (2006).
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" The momentum equations for ions and electrons

A77//7/ = en-, [ -V(j) -
dA

+ vi x B

mene

~ve dA

— V • PI/ —

= -en-, [ -Vcj) -

— V • Π e — mene(νe~ve — νei~vi).

(29)

v x B

(30)
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• The procedure straightforward except for the term with the convective

derivative in the polarization drift vp, i.e., (i?/_|_ • V ^ ) e z x VJ±, and the

stress tensor contribution vn.

m For a small equilibrium density gradient, the last v;± in vp comprises

only the leading order perturbed E x B and diamagnetic drifts (~VE1

and v*/i), while the first v, is the equilibrium ion diamagnetic drift

vi0 = κTi~ez x \7±nio/(eBonio) = -ve0Tj/Te.

• The stress tensor part yields

(31)

• The first term in this expression, within the second order approximation

limit, cancels out with (\7/o • V ^ ) e z x v;± from the convective

derivative in the polarization drift which appears in V ^ • (ni ~vp).
• 4 ^ •

=
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The parallel electron momentum

( d _ ^ \ _ dd>i

U+~ve0 v zl+~eF
m The electron continuity

dri e1

at

c The ion continuity

d
x

ne0e dz

V7

V±ne0

= 0. (32)

= 0. (33)

±lT7^ + ^
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For global modes |^/Vj_| < 1:

ψ(r) = 0, or

(35)

= c1 cosh[mlog(r)] + c2 sinh[mlog(r)]. (36)

•q2 = \LO(W + it/,) {w + map2

sQ.j) {LO —

ojk2

zc
2

a

p2{oj c =
map2Q.j)

m Dispersion equation:

2 £l
η2 = (37)
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— maρ2iΩi)

r ωB0

(39)
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Thank you!
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