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Outline

A. Observations of large-amplitude whistler spheromaks in
laboratory

B. Electron magnetohydrodynamic (EMHD) model

C. Numerical results and comparison with experiments

D. Discussion
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Experimental setup

ωce = 108 s−1, ωpe = 1011 s−1, λe = c/ωpe = 5 mm

R. Stenzel et al., Phys. Rev. Lett. 96, 095004 (2006).
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Experimental results: Magnetic fields

R. Stenzel et al., Phys. Rev. Lett. 96, 095004 (2006).
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Experimental results: Magnetic field energy along z axis

Speed of spheromaks ≈ 107 cm/s.
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Mathematical model

Nonlinear EMHD equation (magnetized electrons, unmagnetized
ions): Faraday’s and Ampère’s laws (immobile ions)

1
c

∂B
∂t

= −∇×E, (1)

and
∇×B = −4πeneve

c2
. (2)

Electron momentum equation

me

(
∂

∂t
+ ve · ∇

)
ve = −e(E + ve ×B)− ∇pe

ne
, (3)

Eliasson & Shukla, PRL 99, 205005 (2007)
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Mathematical model

Eliminating E and ve from Eqs. (1)–(3), and noting that
(ve · ∇)ve = −ve × (∇× ve) +∇v2

e/2, we have the nonlinear
EMHD equation

∂

∂t
(B− λ2

e∇2B) =
c2

4πen0
∇× [(B− λ2

e∇2B)× (∇×B)], (4)

where we have used quasineutrality ne = ni = n0.

Eliasson & Shukla, PRL 99, 205005 (2007)
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Initial condition

B = B0ẑ +∇×A + Btorϕ̂ (5)

A = [Aforward(r, z) + Areverse(r, z)]ϕ̂, (6)

Aforward(r, z) = A0
r

D
exp

[
−(r − r0)2 + z2

D2

]
, (7)

Areverse(r, z) = −A0
r

D
exp

[
−(r − r0)2 + (z − 5)2

D2

]
, (8)

Btor(r, z) = −B0,tor
r

D
exp

[
−(r − r0)2 + (z − 5)2

D2

]
. (9)
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Initial fields for the simulation
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Whistler spheromak at t = 2.3 μs
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Dynamics of whistler spheromak
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Spheromak without initial toroidal B field at t = 2.3 μs
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Whistler spheromak with no initial toroidal field
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Whistler spheromak with reversed toroidal field
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Magnetic field and currrent structures

� Toroidal current → poloidal magnetic field

� Poloidal current → toroidal magnetic field

� Poloidal current → electron fluid vortex
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Dynamics of quantum electron fluid vortex pairs

Vortex pairs tend to propagate with constant speed

Shukla & Eliasson, Phys. Rev. Lett. 96, 245001/1-4 (2006).
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Summary

A. Have discussed recent experiments with localized whistler
spheromaks composed of both poloidal and toroidal magnetic
field.

B. Parameters: Bz = 5 G, reversed field ∼ 7 G, toroidal & poloidal
field ∼ 5 G, λe = 5 mm, diameter of spheromak ∼ 20 cm,
speed of spheromak ∼ 8.5× 106 cm/s.

B. Mathematical model: EMHD

C. Numerial results: Spheromaks are relatively stable structures.
Propagation direction critically dependent on the polarity of the
toroidal magnetic field. Typical speed ∼ 6.5–7.5× 106 cm/s.

D. Have neglected thermal and kinetic effects such as electron
heating leading to optical emissions in the experiments.



ICTP, TRIESTE, ITALY, 14–25 JULY 2008 17

Thank you!


