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Cryogenic Noble Liquids: some properties

• Suitable materials for detection of ionizing tracks:

� dense, homogeneous target and also detectors (scintillation and ionization)

� do not attach electrons; inert not flammable, very good dielectrics

� commercially easy to obtain and purify

• Large detector masses are feasible; self-shielding + good position resolution in TPC mode

Element Z (A) BP (Tb) at 
1 atm [K]

liquid density 
at Tb [g/cc]

ionization  [e-/
keV]

scintillation
[photon/keV]

He

Ne

Ar

Kr

Xe

2 (4) 4.2 0.13 39 15

10 (20) 27.1 1.21 46 7

18 (40) 87.3 1.40 42 40

36 (84) 119.8 2.41 49 25

54 (131) 165.0 3.06 64 46
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Ionizing charged particles

excited molecular states

1�+u
3�+u

luminiscence

excitons

holes R+ electrons escape

localized 
ions R+2

thermalized
electrons

  

�LNe � 77.5 nm

�LAr � 128 nm

�LXe � 175 nm

Charge and Light in Noble Liquids

fast slow

Kubota et al., 
PRB 20, 19799
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VUV light

recombination
� �15 ns

time constants: 

few ns/15.4�s Ne
10ns/1.5�s Ar 
3/27 ns Xe
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Light and Charge Yield in Noble Liquids

• the light and charge yield needs to be measured at low nuclear recoil energies

• here an example: liquid xenon

Charge yield

     Aprile et al., Phys. Rev. Lett. 97 (2006)

Data down to 10 keVr; yield: 13% - 20% from 
10 keVr to 60 keVr. Good agreement with prediction 
by Hitachi  (Astrop. Phys. 24, 2005) at low recoil energies
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Light yield

     Aprile et al., Phys. Rev. D. 72 (2005)

Weak dependence on electric field
Yield increases at low recoil energies
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• Single phase: e--ion recombination occurs; singlet/triplet ratio is 10/1 for NR/ER

• Double phase: ionization and scintillation; electrons are drifted in ~ 1kV/cm E-field

Single Phase  (liquid only)
pulse shape discrimination 
(PSD)

Double Phase
(liquid and gas)
PSD and Charge/Light

Neon (A=20) miniCLEAN (100 kg)
CLEAN (10-100 t)

SIGN

Argon (A=40)
DEAP-I (7 kg)
miniCLEAN (100 kg)
CLEAN (10-100 t)

ArDM (1 ton)
WARP (3.2 kg)
WARP (140 kg)

Xenon (A=131)
ZEPLIN I
XMASS (100 kg)
XMASS (800 kg)
XMASS (23 t)

ZEPLIN II + III (31 kg, 8 kg)
XENON10, XENON100
LUX (300 kg), ELIXIR (1t)

Existing Experiments and Proposed Projects 
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Liquid Xenon Detectors: why Liquid Xenon?

    Large A (~131) good for SI interactions, requires low energy threshold Eth

129Xe (26.4%, spin 1/2) and 131Xe (21.2%, spin 3/2) for SD interactions

No radioactive isotopes (85Kr reduced to ppt levels, 136Xe: T1/2 > 1020 yr)

High stopping power (Z=54, �=3 g/cm3) for compact, self-shielding geometry

Efficient and fast scintillator (yield ~ 80% NaI), transparent to its own light

Good ionization yield (W=15.6 eV: energy required to produce an e--ion pair)

Modest quenching factor (QF) for nuclear recoils (QF ~ 0.2)

�Easy� cryogenics at ~ 165 K

Background rejection: > 99.5% by simultaneous light and charge detection 

3D event localization and LXe shelf-shielding => large, homogeneous detectors
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• Prompt (S1) light signal after interaction in active volume; charge is drifted, extracted into the gas 

phase and detected as proportional light (S2)

• Challenge: ultra-pure liquid + high drift field; efficient extraction + detection of e-

The Double-Phase Detector Concept
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Two-phase (liquid/gas) Xenon Detectors

ZEPLIN II at Boulby/UK

31 kg (7.2 fiducial),
7 x 13 cm PMTs
for 1 t day raw data
29 events is WIMP 
signal region, all 
background

ZEPLIN III at Boulby/UK

8 kg LXe
31 x 2�� PMTs
WIMP search run
calibrations and 
data analysis in 
progress

XENON10 at Gran Sasso

15 kg (5.4 fiducial), 
89 2�� PMTs 
136 kg d (after all cuts) 
of WIMP search data, 10 
events, all compatible 
with background
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The XENON Program

XENON R&D

XENON10

XENON100

XENON1t

???

ongoing

2006-2007

in progress

2009-2011 ?
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XENON10 Results for SI and SD Interactions

WIMP mass [GeV/c2]
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SD: pure neutron couplings
129Xe, 26.4 %, spin 1/2, 131Xe, 21.2%, spin 3/2

XENON10

CDMS-II 73Ge

KIMS: CsI
ZEPLIN-II

Spin-Independent WIMP interactions

XENON10

CDMS-II

CMSSM

CMSSM

Phys. Rev. Lett. 100, 021303 (2008) arXiv:0805.2939 (accepted in PRL)

DAMA: NaI
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The XENON100 Experiment

• Goals: 
� target mass of ~ 100 kg

�decrease backgrounds by x 100 (rel. to Xenon10)

- through strong material selection + screening 

- active veto shield and detector design

• Status: under commissioning at LNGS

170 kg
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Laura Baudis, University of Zurich, MPIK colloquium, Heildelberg, July 2008

The XENON100 Time Projection Chamber

• TPC (total of 170 kg LXe) with active veto (100 kg LXe) installed underground since February 2008

• Xe purified to ppt 85Kr-levels (T1/2 = 10.7 y, �- 678 keV); expected to start WIMP search run in fall 08
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XENON100 PMTs
• 242 (Hamamatsu R8520) 1’’x1’’, low radioactivity PMTs; 80 with high QE of 33%

• 98 top:  for good fiducial volume cut efficiency

• 80 bottom: for optimal S1 collection efficiency (thus low threshold); 64 in active LXe shield

• PMT gain calibration with blue LEDs; the SPE response is measured

bottom PMT array
(gain equalized to 2x106)

top PMT array
(gain equalized to 2x106)
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XENON100 Neutron BG and WIMP Signal

�Wn=2�10-45cm2
predicted signal from a 100 GeV 
WIMP with ��n = 10-9 pb

predicted neutron background
from MC simulations (based on 
exact detector geometry and 
measured activities of materials)
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Next Phase: XENON1t

• Studies are in progress for 3 t (1t fiducial) LXe detector

• Possible location: inside a supernova neutrino detector (LVD) at the Gran Sasso Laboratory

� active, ~ 4� veto for μ-induced neutrons

1m 

1m 
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Ton Scale Detector: Predicted Sensitivity

SUSYUED

arXiv:0805.4210

LHC reach in 4l+ET channel

WMAP5 region
(WIMPs are 100% of the dark matter)
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The LUX Experiment

• 300 kg dual phase LXe TPC (100 kg fiducial), with 122 PMTs in large water shield with muon veto

• 50 kg LXe prototype with 4 R8778 PMTs being assembled and tested at CWRU

• full detector to be installed at Homestake Davis Cavern, 4850 ft  in 2008-2009 (in 8 m � water tank)

• WIMP sensitivity goal: 7 � 10-10 pb after 10 months 
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Single-phase Xenon: XMASS

• 100 kg (3 kg fiducial mass) prototype operated (52 2’’ Hamamatsu R8778 PMTs)

• the PMT coverage was limited, thus also the position reconstruction of edge events

• next step: 800 kg with 812 PMTs (67% photo coverage)

• basic performance confirmed with prototype

• vertex reconstruction, self-shielding, BG level studied with MCs

• detector is being designed, excavations started

100 kg (3 kg fiducial) 800 kg (100 kg fiducial) 23 t (10 t fiducial)

S. Moriyama, KEKPH07, March 07
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XMASS: BG and expected signal

            � ray BG from PMTs: 

                                60cm, 346kg 
                                40cm, 100kg

pp & 7Be solar �

Expected dark matter signal

(assuming 10-42 cm2, Q.F.=0.2, M�=50,100GeV)

~10m diameter, ~10m high
pure water tank.

20-inch PMTs for veto counter.

Active and passive water shield in new experimental hall at KAMIOKA - almost ready
Construction of 10 m x 10 m water tank will start this summer

Expected WIMP sensitivity: 1
10-45 cm2 for 0.5 ton 
 year exposure

M. Nakahata, DARK2007, Sept 07
M. Yamashita, July 2008

20



Two-phase Argon Detectors

 

3.2 kg LAr operated
at LNGS; results from 
zero events > 55 keVr

WARP at LNGS ArDM at CERN

140 kg LAr, 41 3�� PMTs 
under construction
active LAr shield: ~ 8t, 
viewed by 300 PMTs

2/24/2006

1 t LAr prototype under 
construction
direct electron readout via 
LEMs (thick macroscopic GEM)
S1 with 14 x 8�� PMTs
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Directional Detector: DRIFT

• Negative ion (CS2) TPC: 1 m3 40 Torr CS2 gas (0.17 kg); 2 mm pitch anode + crossed MWPC grid->2D

• NR discrimination via track morphology in gas (gamma misidentification probability < 5 x 10-6)

• 3D track reconstruction for recoil direction: find head-tail of recoil based on dE/dx

• DRIFT IIa operated at Boulby in 2005: background from Rn emanation of detector components (recoiling 
nuclei from alpha-decays on cathode wires); 6 kd-d of data being analyzed

• DRIFT IIb: installed in 2006/07, new run with strongly reduced Rn backgrounds

• WIMP Telescope!  
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Summary and Conclusions

• Strong evidence for Cold Dark Matter (galaxies, clusters, LSS, CMB, etc)

• Cold Dark Matter: likely new, long-lived particles produced in the early Universe

• Neutral, massive and weakly interacting particles are independently predicted by physics 

beyond the standard model, needed to stabilize the weak scale

• Dark matter particles of galactic origin can elastically scatter from nuclei in ultra-low 

background, low energy threshold terrestrial detectors

• The energy of the recoiling nucleus is transformed into a charge, light or phonon signal and 

could be detected with ultra-sensitive devices operated in underground laboratories

• A possible signal has to be consistent with a series of predicted ‘signatures’ in order to 

qualify as WIMP dark matter

• So far there is one claim for a signal, not confirmed by other, independent experiments

• Existing experiments can probe WIMP-nucleon cross sections down to ~ 10-7 pb

• Experiments under construction and future, ton-scale detectors should probe most of the 

theoretically interesting parameter space
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End
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Cryogenic Noble Liquids: some challenges

• Cryogenics: efficient, reliable and cost effective cooling systems

• Detector materials: compatible with low-radioactivity and purity requirements

• Intrinsic radioactivity: 39Ar and 42Ar in LAr, 85Kr in LXe

• Light detection:

� efficient VUV PMTs, directly coupled to liquid (low T and high P capability, high purity), effective 

VUV reflectors

� light can be absorbed by H2O and O: continuous purification

• Charge detection:

� requires << 1ppb (O2 equivalent) for e--lifetime > 1 ms (commercial purifiers and continuous 

circulation)

� electric fields � 1 kV/cm required for maximum yield for MIPs; for alphas and NRs the field 

dependence is much weaker, challenge to detect a small charge in presence of HV
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The XENON100 Shield and Status

• Shielding modifications: cryogenics, feed-throughs, cables etc outside shield (+ 5 cm Cu)

• Detector is filled with LXe; calibration runs in progress.

• Plan to start WIMP search: ~ fall 2008

XENON10 XENON100
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