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Abstract

These lectures concentrate on evolution and generation of dark matter perturba-
tions. The purpose of the lectures is to present, in a systematic way, a comprehensive
review of the cosmological parameters that can lead to observable effects in the dark
matter clustering properties. We begin by reviewing the relativistic linear perturba-
tion theory formalism. We discuss the gauge issue and derive Einstein’s and continuity
equations for several popular gauge choices. We continue by developing fluid equa-
tions for cold dark matter and baryons and Boltzmann equations for photons, massive
and massless neutrinos. We then discuss the generation of initial perturbations by the
process of inflation and the parameters of that process that can be extracted from the
observations. Finally we discuss evolution of perturbations in various regimes and the
imprint of the evolution on the dark matter power spectrum both in the linear and in
the nonlinear regime.
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1 Introduction

The study of the correlations in the dark matter and in the Cosmic Microwave Background
(CMB) is revolutionizing cosmology. Fluctuations across a range of scales have been detected
and the precision in the determination of the power spectra are improving steadily. Over the
past few years, a coherent cosmological model appears to have emerged: CMB observations|1,
2, 3] suggest that the universe is flat; a host of astronomical observations[4] suggest that most
of the matter in the universe is non-baryonic and that the energy density in this dark matter
is not sufficient to explain the observed flatness; and supernova observations[5, 6] imply that
the expansion of the universe is, surprisingly, accelerating. These observations suggest that
most of the energy density of the universe is in some new form. This dark energy may be
quintessence|7] associated with a light scalar field, or due to the energy of the vacuum. While
this emerging standard model is an important intellectual triumph, the unknown nature of
the dark matter and the dark energy suggests that there may be important missing physics
in the model.

Among the questions that we still need to address are: What is the dark matter? What
is the mass of the neutrino? What is the nature of the dark energy? Did structure form by
gravitational instability? How did the universe begin? These questions were among those
identified in the recent National Academy of Sciences’ Committee on the Physics of the
Universe study|8].

Determining the linear power spectrum of dark matter can provide answers to many
of these questions. From the theoretical perspective the dark matter clustering can give
information on the exact nature of dark matter. For example, the clustering of cold dark
matter differs from that of hot or warm dark matter and this information can be extracted
from the mass power spectrum. The latter is also sensitive to neutrino mass, since massive
neutrinos strongly suppress the level of mass fluctuations on small scales because of the
high neutrino momentum before they become nonrelativistic. In principle the sensitivity of
upcoming surveys is such that it will be possible to test neutrino masses below 0.1-1eV [9],
close to those suggested by recent Super-Kamiokande neutrino results [10].

Another family of models that recently received a lot of attention is that where a sig-
nificant fraction of the dark matter is really dark energy that only weakly clusters on small
scales. The family can be described by its equation of state, which in principle can evolve in
time and by the contribution to the overall energy density. These models can also be studied
through the effects on the dark matter power spectrum and its time evolution.

From the observational perspective there are several surveys, such as 2dF!' and SDSS
, which will measure redshifts of more than a million galaxies. 3-dimensional mass power
spectrum is sensitive to a number of cosmological parameters, such as matter density, Hubble
constant, primordial power spectrum slope and amplitude, massive neutrinos, baryon density
etc. In addition, this sensitivity is further improved if information from higher redshifts is
provided, such as from the CMB, Ly-« forest or weak lensing.

The purpose of these lectures is to present a comprehensive review of the theory behind
the dark matter perturbations. These are determined both by the initial conditions and by
their subsequent evolution. Because the perturbation wavelengths can be larger or smaller

2

Thttp://www.mso.anu.edu.au/2dFGRS/
2http:/ /www.astro.princeton.edu/BBOOK



2 Lectures on Dark Matter

than the size of observable universe one must describe both the generation and the evolution
of perturbations in the context of general relativity. We first review the relativistic linear
perturbation theory formalism. We discuss the gauge issue and describe several popular
gauge choices. We then derive Einstein’s and continuity equations for these gauge choices.
We continue by developing fluid equations for cold dark matter and baryons and Boltzmann
equations for photons, massive and massless neutrinos. These equations describe a complete
set which is sufficient to solve the perturbations starting from their initial conditions, as long
as the evolution is linear (ie, the perturbations are small).

Next we discuss the generation of initial perturbations by the process of inflation and
the parameters of that process that can be observationally accessible. Finally we discuss
evolution of perturbations in various regimes and the imprint of the evolution on the dark
matter power spectrum both in the linear and in the nonlinear regime.

2 Relativistic Perturbation Theory

The goal of studying cosmological perturbations is to understand the evolution of the struc-
ture in the universe. Relativistic perturbation theory describes this evolution in a general
relativistic context. In cosmology such an approach is required, because we want to describe
perturbations not just on small scales where Newtonian laws suffice, but also on scales com-
parable or larger to the Hubble length, which can be used as a typical scale of observable
universe. Before we introduce the perturbations we must however describe the unperturbed
(homogeneous) evolution of the universe, to which we turn next.

2.1 Homogeneous universe

The fundamental assumption of cosmology is that the universe is homogeneous and isotropic
on average. To be more precise, our paradigm is that we live in a perturbed Robertson-
Walker universe, in which the metric perturbations are small, so the averaging procedure is
well defined and the backreaction of the metric fluctuations on the homogeneous equations
is negligible. One can write the line element in a homogeneous and isotropic universe using
conformal time 7 and comoving coordinates z* as

ds® = ydrtdr’ = a*(7) {—d72 + ’Yijda:idacj} . (1)

This is the Robertson-Walker metric. We will often use greek indices to denote 4-tensors and
latin to denote spatial 3-tensors. Here a(7) is the scale factor expressed in terms of conformal
time 7, which is related to the proper time ¢ via dt = ad7r. Similarly, proper coordinates r;
are related to the comoving coordinates z; via r; = ax;. We adopt units such that ¢ = 1.
The space part of the background metric can be written as

Yijdz'dz? = dx® + r*(d6* + sin” 0dep?),
K '2sin K2y, K >0

r=singx=< x, K=0 (2)
(—K) 2sinh(—K)/?y, K <0



where K is the curvature term which can be expressed using the present density parameter
in all components y and the present Hubble parameter Hy as K = (Qy—1)HZ. The density
paramater ¢}y can have contributions from mass density 2,, which can consist of baryons,
cold dark matter (CDM), massive neutrinos (mixed dark matter MDM, warm dark matter
WDM etc.), cosmological constant €2, or some more general dark energy (or quintessence)
Qg, Qo = Oy, + Q) + Q4. The advantage of using the conformal time 7 is that the metric
becomes conformally Euclidean (K = 0), 3-sphere (K > 0) or 3-hyperboloid (K < 0) and
leads to a simple geometrical description of light propagation and other processes.
Einstein’s equation is
G, =8rGT}, (3)

where G is the Einstein tensor and T%, is the stress-energy tensor. Einstein’s tensor is
related to the spacetime Ricci tensor R, by

R
Gw=Ryw—- =90, R=R',, RL=R°,, . (4)

9 Il pkv
The spacetime Riemann tensor is defined according to the convention

R* = 6I$Fuu)\ - a)\ruun + Fucmrau)\ - Fuoz)\Falm ’ (5)

VKX —

where the affine connection coefficients are

1
I = 59" (Ougrr + Ogrw = Ougur) - (6)
The Einstein field equations 3 show that the stress-energy tensor provides the source for
the metric variables. The stress-energy tensor takes the well-known form

T = (p + p)u*u” + pg"” + pII* (7)

where p and p are the energy density and pressure, u# = dz*/d\ (where d\?> = —ds?) is
the fluid 4-velocity and pII#” is the shear stress absent for a perfect fluid. In locally flat
coordinates in the fluid frame, 7% = p, T% = 0, and 7% = pé¥ for a perfect fluid.
Einstein’s equations applied to the background metric gives the evolution of the expansion
factor a(7),
L\ 2
(9) = ZGpa — K, 0= —ZGa?(p+ 3p). (8)
a 3 3
Overdots denote derivatives with respect to the conformal time 7. For convenience we
introduced comoving Hubble parameter n = a/a, which will appear often in the equations
below. Its value today is Hy. These are the Friedmann equations applied to the Robertson-
Walker metric. The density p is related to the density parameter Qg via 87Gpy/3 = HZ Q.
The mean density of the universe p (and similarly the mean pressure p) can be written
as a sum of matter, radiation, cosmological constant or any other dark energy contributions,

P = pma " + pra”t + Py + pea 200, (9)

where w is the equation of state of the dark energy.
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The energy-momentum tensor is required to obey local conservation law T+ = 0, which
gives
p+3n(p+p) =0. (10)

One can also derive the evolution equation for a homogeneous scalar field ¢ evolving in
a potential V'(¢). Its Lagrangian is

1 14
L=v=g|59" 00,6+ V(9)|. (1)
where ¢g"” is the metric. Stress energy tensor in this case is

¢? ¢
Py = 292 +V(o) pg= 202 V(g). (12)

Equation of state w = p/p is in general a function of time. Continuity equation (10) gives

b+ 2m¢ +a®V' = 0. (13)

The scalar field source has to be added to the Friedmann equations above and modifies
the expansion of the universe. It obeys the same energy-momentum conservation as the
other fluids and can be easily integrated to find energy density as a function of time (or
expansion factor as in equation 9). In the limit where kinetic term is negligible compared
to the potential scalar field reduces to the cosmological constant with w = —1. This case is
relevant both for inflation and for the possible late time contribution from the dark energy.

2.2 Perturbations in the metric and in the energy-momentum ten-
sor

Our universe is not homogeneous: we see inhomogeneities caused by gravity present on
all scales, from planets to clusters, superclusters and beyond. We want to describe the
deviations from the isotropy and homogeneity of the universe using general relativity. Small
perturbations h,, around the Robertson-Walker metric are

Juv = 02(’YW + h/u/)- (14)

In the most general form one can write the perturbed line element using conformal time
7 and comoving coordinates z* as

ds® = a’(7) {~(1 + 24)dr? — 2B;drdz’ + [(1 + 2Hy)yi; + 2hij) da'da’ } . (15)

The perturbations have been decomposed into time-time component —2A, time-space com-
ponent —2B;, trace of the space-space component 2H;, and traceless space-space component
2h;;. Vector field B; can be further decomposed into a scalar component, which arises from
a gradient of a scalar field, and a pure vector component, which is the remainder of what is
left. Similarly we can decompose tensor h;; into a scalar, vector and tensor components. As
we show below these perturbations can be decomposed into scalar (m = 0, compressional),
vector (m = +1, vortical) and tensor (m = +2, gravitational wave) eigenmode components,



which differ in their transformation properties under spatial rotations. The advantage of
this decomposition is that the linearized equations decouple into separate scalar, vector and
tensor components, with no cross-coupling between them.

In linear theory, each eigenmode of the Laplacian for the perturbation evolves indepen-
dently, and so it is useful to decompose the perturbations via the eigentensor Q(m), where

vQM =4Qf) = Q™ (16)

with “|” representing covariant differentiation with respect to the three metric ;. Note
that the eigentensor Q™ has |m/ indices (suppressed in the above). To obtain a pure vector
component we must subtract out a component of a vector field that can be obtained from a
scalar field. In real space this is a gradient of a scalar field. This mean that vector modes
satisfy the auxiliary condition

Q=0 (17)

which represents the divergenceless condition for vorticity waves.
Similarly, to obtain a pure tensor mode we must subtract out components that can be
formed from a scalar and vector field. The auxiliary conditions are

77Q5Y = Q7 =0, (18)

which represent the divergenceless and transverse-traceless conditions respectively, as appro-
priate for gravity waves.

We will often focus on perturbations in flat space, both because they lead to simplified
expressions and because they seem to be observationally favored. In this case the eigenmodes
are particularly simple. If we assume the direction of the wavevector k in é3 then

QE™ o (& £ iby)y, . .. (61 +i6); exp(ik - T), (K =0,m>0), (19)

i1...im

where the presence of é;, which forms a local orthonormal basis with é;3 = k, ensures the
divergenceless and transverse-traceless conditions. One can see now the transformation prop-
erties of eigenmodes under rotation in the plane perpendicular to €3 is such that

Q(im) — Q(im)eqtimw’ (20)

where 9 is the rotation angle.
It is also useful to construct (auxiliary) vector and tensor objects out of the fundamental
scalar and vector modes through covariant differentiation

) ) 1
QV=-k"QY, Qf=kQf) - g%’jQ(o) ) (21)

Q5 = -2k QY + Q5Y). (22)
For K = 0 this becomes

o a 1
QZ(O) = —ik 1sz(0) , Q(O) —k 2k1k7Q(0) — g'Yz]Q(O) ; (23)

Q5 = —i(2k) 7 (K Q + k). (24)
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The eigenmodes form a complete set, so that any perturbation can be expanded in terms of
these.

The metric perturbations can be broken up into the normal modes of scalar (m = 0),
vector (m = £1) and tensor (m = £2) type,

A = A0QO H, = H QO

1
m=—1
() ()
hij = Z Hp Q5" - (25)
m=—2

The stress energy tensor can likewise be broken up into scalar, vector, and tensor contri-
butions. The fluctuations can be decomposed into the normal modes as

0T, = —0p QY
0T% = Sh_l(p+p)™ — B™) QI
0Ty = Tpeallp+p)o™ QU

oT% = 6p0¢.Q© + 2 __, plImQm)i..

J

(26)

Note that the two mixed time-space components are not equal. We introduced above the
density perturbation §p(®), pressure perturbation 6p(?), velocity perturbation v(™, where
m = 0,41 and anistropic stress perturbation pII™), which can be scalar (m = 0), vector
(m = £1) or tensor (m = £2) type. These are in general a sum from all of the species

present,
5p® =3 op", (27)
i
where the index ¢ stands for baryons, CDM, photons, neutrinos (massive and massless), dark
energy etc.

A minimally coupled scalar field ¢ also has perturbations, ¢ = ¢ + d¢, which are related
to the fluid quantities as [11, 12]

o) = a2 (369" — AVG) + V1560,

op) = a2(5¢" — AOF) — V154,
(ps + o) vy — BY) = a ki,
pl1Y) =0, (28)
where V' denotes derivative with respect to ¢. This shows that there are no vector or

tensor modes associated with the scalar field, as expected in the linear order. Applying
energy-momentum conservation one finds

; (0)

66 + 2060 + (K2 + a?V")6¢p = (A© —3H," — kB©)¢ — 24>V’ A, (29)



2.3 Perturbed Einstein’s equations

The general covariant form of linearized perturbed Einstein’s equations follows from the def-
initions above. The algebra is straight-forward (although lengthy) and leads to the following
set of equations

2.3.1 Scalar perturbations

(k? = 3K) [Hy, + $ Hr + nk (kB — Hr)] = 4nGa? [6p + 3n(p + p) (v — B) /K]
nA— H, — 1Hy — (kB — Hy) = 4rGa®(p+p)(v— B)/k
(2% -2 +nl — %kQ) A- (% + 77) (Hp+%B) = 4nGa*(0p + 16p)
kK*(A+ Hy + 3Hr) + (£ +2n) (kB — Hr) = 8rGa?pll.
(30)

These are density (Poisson), momentum, pressure and anisotropic stress equations, respec-
tively. The superscripts (0) have been dropped.

Corresponding energy-momentum tensor conservation equations are continuity and Eu-
ler’s equations, which in the general covariant form are

(% + 377) 8p +3ndp = —(p+ p) (kv + 3H,)

(31)
(2 +4n) [p+p)(v— B)/k] = op — 2(1 — 35)pIl + (p + p)A.
Energy-momentum tensor conservation equations are not independent of Einstein’s equa-
tions, since they follow from Bianchi identities. They are nevertheless useful, since they
involve only first derivatives instead of second as in the case of Einstein’s equations. In
total we have 4 equations for 4 metric perturbations, which are sourced by 4 components
of energy-momentum tensor. As we will see below the number of equations can be further
reduced by the gauge freedom.

2.3.2 Vector perturbations

Since density and pressure are scalar quantities there are only two Einstein’s equations for
vectors, momentum and anisotropic stress,

( — 28) (kB — Hy) = 16nGa?(p+ p)(v — B)/k

. (32)
(& +21) (kB — Hy) = —8rGa?pll.
Energy-momentum conservation consists of Euler’s equation only,
0 L 2K
2 (5 +4n) 1+ pto = B/ = (35 - 1) (33

and we suppressed +1 superscript on all the variables. Here again we have 2 Einstein’s equa-
tions for 2 metric variables, but fixing the gauge freedom reduces this to a single equation.
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2.3.3 Tensor perturbations

There is only one equation in this case, corresponding to the tensor part of the anisotropic
spatial component in Einstein’s equations,

Hp + 2nHyp + (k* + 2K)Hyp = 47 Ga?pll, (34)

where again superscript +2 was suppressed. There is no gauge freedom in the tensor case, as
we discuss next. Equation above is a wave equation and describes gravity wave propagation
and sourcing in an expanding universe.

2.4 Gauge transformations

So far we have described the perturbations in a given ccordinate system, but we did not say
much about the coordinate system itself. In the absence of perturbations there is a preferred
coordinate system, which corresponds to comoving frame, in which the observers see the
momentum density to be zero at that point and the comoving observers are free falling.
The spatial slices (defined as slices of constant time) are orthogonal to the time threading
(defined as a constant coordinate &) and for K = 0 they are spatially flat. For K < 0 they
correspond to a 3-hyperboloid and for K > 0 to a 3-sphere. This defines the background
space-time.

The choice of coordinates becomes nontrivial once we discuss the perturbations and there
is no unique choice. One can, for example, choose the coordinates in which the observers are
free-falling (corresponding to the synchronous gauge), but this is no longer the same choice as
if the observers are comoving so that the momentum density vanishes (corresponding to the
comoving gauge). One can instead choose a spatially flat gauge so that spatial components
of the metric vanish, or a gauge with zero metric shear with threading and slicing being
orthogonal (corresponding to conformal Newtonian or longitudinal gauge).

To represent the perturbations we must thus make a gauge choice. A gauge trans-
formation is a change from one coordinate choice to another. The most general form is
Ty =z, + 0z, Or
T = 74T,
T corresponds to a choice in time slicing and L; a choice of spatial coordinates. This can be
decomposed into Fourier modes

7 o= 14+T0OQO),
i o= zi+ XL LmQM™.

Since gauge freedom only uses scalar (m = 0) and vector quantities (m = +1), it is clear
that tensor modes (m = £2) will not change under gauge transformation. Even though
the coordinates can change the metric distance ds* must remain invariant, g, dz#dz” =
Gudz*dz”. Since g,, is a tensor and transforms in the same way as other tensors we can
derive the transformation property of a general tensor

~ 0x* 0xP

T (Zy) = 0z, 6—@Taﬂ (Zy — dz,)

=T, — T.0,02° — Tny0,62° — 62°0aT,. (37)

(36)




This transformation law applied to the metric in equation 15 gives [11, 12]

A0 = A _ O _ )
Bm = B 4 jm) 4 pm)

A0 = g % LO) _ 7

2™ = B 4 gL (38)

where m = 0, £1.
The stress-energy perturbations in different gauges are similarly related by the gauge
transformations

500 = 550 — j7O)
50 = p® _ 57O
Fm = m) | fom)

nm = mm, (39)

where m = 0, +1 in the velocity equation and m = 0,41, +2 in anisotropic stress equation.
The anisotropic stress is gauge-invariant.
A scalar field transforms as

qu(o) — 5¢(0) _ (Z;T(O) ) (40)

2.5 Popular gauge choices

The choice of gauge can be governed by the simplicity of equations, numerical stability of
solutions, Newtonian intuition or other considerations. As we discussed above there is no
gauge ambiguity for tensor modes. For vector modes the choice can either be B&Y) = 0 or
H}il) = 0. The latter specifies the gauge completely, since it fixes L") while the former

only fixes L&Y and thus leads to unspecified integration constant in Héil). This however
does not lead to any dynamical effects. Since vector modes are unlikely to be generated in
the early universe we will not discuss them further. Instead we will look at four popular
gauge choices for scalar modes that we will have the chance to use in the rest of the lectures.
We will drop the superscripts (0) from now on.

2.5.1 Synchronous gauge

This gauge was very popular in the early development of perturbation theory. Its main
advantage from today’s perspective is its numerical stability, which is why it is still the
gauge of choice in CMBFAST [13] numerical package. It corresponds to setting A = B = 0,
so that only the spatial metric is perturbed. This implies that slicing is orthogonal to the
threading and that a set of freely falling observers remains at a fixed coordinate position. To
show this one must show that the spatial part of 4-velocity u* = dz*/d)\, where )\ is affine
parameter parametrizing the geodesic, vanishes. Geodesic equation is
Du# pdr” dut

. = — +T* u*uf = 0. 41
Dx =Ygy = an Tlesuten =0 (41)
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Since A = B™) = () implies I}, = 0 it follows that u’ = 0 is a geodesic.

The property that the fundamental observers follow geodesics means that the coordinates
are Lagrangian and this gauge can only be used while dp/p < 1. In the nonlinear regime
where this condition is not satisfied one can have orbit crossings where two observers with
different Lagrangian coordinates find themselves at the same real (Eulerian space) position.
This can only happen if the metric perturbations diverge and the linear perturbation theory
is no longer valid. While this limits the use of this gauge at late times it can still be used
successfully in the early universe, as long as the density perturbations are small.

Another shortcoming of this gauge is that the gauge choice does not fully specify it. One
can see this by using a gauge transformation from a general gauge. Imposing A = B = 0 to
the equations 38 we find

T = a’l/aAdT—i-cla’l
L = - /(B + KT)dr + ¢, (42)

where ¢; and ¢, are integration constants. These remain unspecified in this gauge. They
lead to unphysical gauge mode solutions for the density perturbations outside horizon. While
historically this caused some confusion in their interpretation they are not really a problem
since these modes do not show up in any observable quantity and are at any rate decaying
faster than the physical modes.

The remaining two scalar variables in this gauge are H;, and Hp. Instead of these one
often introduces n = —Hy, — Hr/3 and h = 6 Hy,, but we will not make this replacement here
to avoid confusion with comoving Hubble parameter n = a/a. Einstein’s equations are

1 .
—(k2 - 3K)(HL + gHT) +37]HL = 47TGCL25p,

) 1 )
Hy, + 3(1 —3K/k*)Hr = —4nGd*(p+ p)v/k,
. ) 1
H,+nH, = —47rGa2[§6p + 6p],
N ) 1
Hy +nHyp — kZ(HL + gHT) = —81Ga’pll. (43)

Two of these are of course redundant. The conservation equations are

(% + 377) Sp +3n0p = —(p+ p)(kv + 3H,)

; o Ve ox (44)
(2 +4n) (p+ p)v/K = 6p— 2(1 — 3K)pIL

2.5.2 Newtonian gauge

In Newtonian gauge one sets B = Hp = 0. The remaining two scalar perturbations are

renamed into A = V¥ and H;, = —®. A general gauge transformation into Newtonian gauge
gives
Hy = 0— L=—Hy/k
B = 0— T=-BJ/k+ Hp/k?. (45)
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One can see that there is no remaining gauge freedom, so the gauge is entirely fixed. The
main advantage of this gauge is that there is a simple Newtonian correspondence and the
equations reduce to Newtonian laws in the limit of small scales. The Einstein’s equations
are,

(—k?+3K)® - 3n (CD + 77‘11) = 47Ga’6p
) o O+l = 4nGa’ (5 +p)v/k]
& — K&+ (¥ +28) + 27+ 72T - LE2(@ - T) = 4nGa®p, (46)

EX(® — ) = 8rGa?pll.

On small scales the second term on the left hand side of first equation above becomes
negligible compared to the first one. Similarly we can also neglect K relative to k?, since
curvature scale, if present, is of the order of the Hubble length. The result is a Poisson
equation in an expanding universe. This means that we can identify metric perturbation ®
with the perturbed Newtonian potential on small scales. From the last of equations above
we find & = U in the absence of anisotropic stress, which is a good approximation in the
matter era where ideal fluids dominate the energy density. We know that for astrophysical
sources gravitational potential is roughly ® ~ v? (in units where ¢ = 1), where v is a typical
velocity (rotation, dispersion etc.) of the object. This implies ® ~ ¥ < 1 almost everywhere
in the universe, except near a black hole. So in this gauge the linear perturbation theory is
almost always valid and one can use these equations also to describe the late time nonlinear
evolution in the density field, as long as the gravitational potential remains small.
The conservation equations are

(Z +3n) dp+ 3ndp = —(p + p) (kv — 3®)

47
(7 +4n) (7 + Po/K] = 6p = 3(1 = 3{)pTl + (5 + D) V. !

2.5.3 Comoving gauge

This gauge is convenient because it introduces the curvature perturbation, which is useful
when one wants to describe the evolution of perturbations, generated by say inflation, outside
the horizon. It turns out that this quantity is conserved for adiabatic perturbations (see more
on this below) and so evolution is particularly simple in this case. On the other hand, this
gauge is not particularly intuitive inside the horizon, so one is better off to transform into
the Newtonian gauge in this limit.

The gauge is defined so that the momentum density 7 vanishes. From equation (26)
this implies B = v. The second constraint can be set to Hr = 0. The remaining two scalar
perturbations are renamed as A = ¢ and H;, = (. Gauge transformation from a general
gauge into comoving gauge gives

t—B = 0—-T=(v—B)/k
Hy = 0— L=—Hy/k (48)

The gauge is entirely fixed, since these are just algebraic relations between the quantities.
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FEinstein’s equations are

(k* — 3K) (¢ + nv/k) = 4rGa*p

nE—{—%v=0

(49)
(22 — 29 + 2 — 3k2) € = (& +n) ({ + 5v) = 47Ga?(5p + }6p)
k2 (E+¢) + ([% + 277) kv = 8nGa’pll.
Corresponding energy-momentum tensor conservation equations are
(Z +3n) dp+3ndp = —(p + p) (kv + 3¢) (50)

(p+Dp)E = —dp+ 5(1 - 3;5)pIL.

2.5.4 Spatially flat gauge

While comoving gauge is a useful gauge to describe evolution of perturbations after they
cross the horizon, it has the shortcoming that the scalar field perturbations vanish in this
gauge. It thus cannot be used to calculate scalar fluctuations from inflation, for example.
One way to solve this is to calculate them in another gauge and use the gauge transformation
to calculate curvature perturbation in comoving gauge. The simplest gauge to choose is the
spatially flat gauge, where H, = Hr =0,

(1 - 3K/k*)nkB = 4nGa?[6p + 3n(p + p)(v — B) /K]
nA—%B =4rGa®(p+p)(v — B)/k (51)
(22 —2m> + nZ — k) A= (£ +1n) £B = 4nGa®(0p + }0p)

kKA + ([ +2n) kB = 87Ga?pll.

Corresponding energy-momentum tensor conservation equations are

(% + 377) dp+3nép = —(p+p)kv

(52)
(2 +4n) ([p+p)(v — B)/k] = dp — 2(1 = 38)pI1 + (p + p) A.

Scalar field equation is

8¢ + 2n0¢ + (k> + a®V")6¢ = (A — kB)d — 24°V'A. (53)

3 Evolution of perturbations

In previous section we have described several gauge choices encountered in the literature and
presented Einstein’s equations, which relate metric perturbations to the energy-momentum
tensor, which receives contributions from radiation and matter. In this section we derive
evolution equations for all the ingredients that contribute to the energy-momentum tensor.
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Together with the Einstein’s equations they form a closed set of equations that can be
evolved forward in time from some given initial conditions. We will restrict ourselves to the
Newtonian gauge, since the equations are easiest to interpret and the solutions do not suffer
from gauge modes or breakdown in the nonlinear regime.

3.1 Fluid Equations for scalar Perturbations

Matter content of the universe can be divided into two classes. In the first class are matter
components, which can be described within the fluid approximation. This class includes
cold dark matter, baryons and scalar fields. To specify their evolution one only needs the
equations for overdensity § = dp/p and velocity v, both of which can be obtained from the
energy-momentum conservation equations (47). In this section we present the system of
evolution equations for the matter. We restrict the application to the scalar fluctuations,
given that only these can lead to growth of perturbations by self-gravity and thus to structure
formation in the universe.
From equations (47) one obtains the following set of equations,

Cold dark matter — ) .
5(: = _kvc+3¢1 /I‘)C = _nv(’+kq} (54)

By assumption cold dark matter (CDM) is cold and its pressure and anisotropic stress are
Zero.

For baryons one must also include pressure and Thomson scattering between photons
and electrons. Thomson scattering has a well specified angular dependence in the rest frame
of the electron and rapid scattering leads to isotropic photon distribution in this frame.
The change in photon velocity is proportional to the difference between photon and baryon
velocities times the scattering probability and so leads to the exchange of momentum between
the photons and baryons (see below). Momentum conservation requires an opposite term in
the baryon momentum conservation equation,

Baryons—

Sb = —kvb+3¢>,

by = —nup+ kS + %aneerT(W — ) + £V, (55)
b
where n, is the electron density, z. the ionization fraction and o Thomson cross section.
We also included the pressure term, relating it to density gradients via adiabatic sound speed
¢ = (0p/dp)s and neglecting entropy gradients.
The evolution equation for scalar field perturbations in Newtonian gauge follows from
equation (29)

Scalar field— ) _ _ o
5+ 2o + (k2 + a*V"|6¢ = (¥ + 3®)p — 2a*V' V. (56)

We will show below that for w = —1 both ¢ and V' vanish. In this limit we have no gravita-
tional source for d¢ and there are no perturbations in the scalar field assuming none existed
initially. Cosmological constant and scalar field with w = —1 are thus indistinguishable.
To solve for perturbations we must specify ¢, V' and V”. It is often more convenient to
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express these in terms of mean scalar field density at present (2; and equation of state w as
a function of time.

3.2 Boltzmann equation

In the second class are components for which the full phase space distribution function
f(Z,p, ) is required. This class includes neutrinos (both massless and massive) and photons.
The distribution function describes phase space density,

where dNV is number of particles inside this volume.
The evolution of distribution function is governed by the Boltzmann equation

df(@57) _0f  Of ' Ofdp  Of dn' _ (df(f,ﬁ, 7))
C

dr COr  Ocidr  Opdr  onidr dr

(58)

where p = pii is the momentum of the particles and the term on the right hand side is the
collision term (absent in the case of collisionless neutrinos). The distribution function f can
be expanded to the first order,

f(@,9,7) = folp) + 6./ (2,7, 7). (59)

The zero-order phase space distribution is the solution to the Boltzmann equation in the
absence of perturbations. There is no spatial or momentum direction dependence in this
case and it is given by Planck distribution for photons (bosons) or Fermi-Dirac distribution
for neutrinos (fermions)

folq) oc [dm®("/FTo £ 1)), (60)

where + is for fermions and - for bosons and 7} is the temperature today. We have introduced
comoving momentum g = ap, which accounts for the redshifting of temperature. Similarly
we can also introduce comoving energy ¢ = aF = (¢> + m2a?)'/2. In principle chemical
potential term p should be subtracted from hg, but in standard cosmological model it is not
generated and can be set to zero.

Let us now look at the perturbed Boltzmann equation, keeping only the first order terms.
Since zero order solution does not depend on momentum direction the term ggi in equation
(58) is of first order. Similarly, ‘fj—f is also of first order, since it involves a change in direction.
So the product of the two is second order and one may drop this term from perturbed
Boltzmann equation. The remaining terms are

MBI 0000 didy _(df
or ¢ ori dgdr  \dr ).’

(61)

where we used

dr — didr ~ p°
in the lowest order and we used the fact that 4-momentum p* is proportional to 4-velocity
u" (with mass being the proportionality constant in the case of massive particles).

de* dz*d\ p :%ni (62)
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We are left to evaluate dg/dr. For this we will use geodesic equation already introduced in
equation 41. It is a straightforward algebraic exercise to show that applied to the perturbed
metric in Newtonian gauge the zero component of the geodesic gives

d . .
d—i = ¢® — enid, v, (63)

where only scalar perturbations have been included. The resulting Boltzmann equation in
Fourier space for K = 0 case is

a5f gk dfo (. €k df
— +i— + S—i—pv ) =—
or ¢ € nof dlng ( ! q a ) (dT)C’ (64)

where p = k - 7 is cosine of the angle between the wavevector and the particle direction.
To compute components of energy-momentum tensor we must integrate the distribution

function over the momentum d®p times the components of appropriate 4-momenta. This is

however not Lorentz invariant or GR covariant and the appropriate generalization is

3p
T = [ (0w (65)

where g is the determinant of the metric and we inserted this term to make it valid in general
relativity, although in the lowest order that we work in it does not affect the results. For
individual components of energy-momentum tensor this gives

6T% = —a™* /ququ ef,

§T% = ot / ¢*dgdQqniéf(q), (66)

20 .m .
ST = a / q2dqu%5f(q).

3.2.1 Massive neutrinos

For massive neutrinos the collision term on the right hand side of equation (58) is zero. It
is useful to expand the perturbed distribution function in a generalized Legendre series,

o

SF(,7) =Y (20 + 1)8 fy(—ik) ™ Q. P, (67)

1=0
where 7 is the direction of the photon and P/ is defined recursively as

. L 2041 l iy
Py=1, Pl =n', Pii" = H—ln(zpzj ) H—ﬂ(”PH . (68)
The brackets denote symmetrization with respect to all the indices. In the flat space this
reduces to the usual Legendre expansion §f = > ,(21 + 1)(—i)'6 fiP(), where P, are the
Legendre polynomials of order [.
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After integration over y one obtains the following hierarchy of coupled evolution equa-
tions,
Massive neutrinos—

; k . d
5f0 = _q_éfl + @ fO ’
€ dlng
= 9 s aspy) - iy o
ofi = 3¢ (0fo — 20 f2) 3qlpdlnq ’ (69)
. qk
o = Gryne Wl = U], 122

Because of ¢ dependence one must discretize these equations and solve the hierarchy for
each value of ¢. In the end one must integrate over all values of ¢ to obtain the perturbed
energy-momentum tensor,

op = 47ra_4/612dq €fo(q)d.fo,
B 4T _, 9 q2
(p+pv = 47ra_4/q2dqqfo(q)5f1,

2
n = a_4/q2dqq?5f2. (70)

3.2.2 Massless neutrinos

When the particles are massless it is useful to introduce temperature perturbation A, such
that 7' = Tp(1 + A). One can easily show that
dfo
0f = —q—=—A, 71
f=-ag, (71)
which together with € = ¢ allows one to eliminate q dependence. We can again expand A in
a generalized Legendre series,

o

A7, 7) = D2+ 1A (—ik) Q. P (72)

=0

As before in the flat space this reduces to the usual Legendre expansion A = Y7,(2] +
1) (=)' APi(p).

After angular integration the Boltzmann equation for massless neutrinos becomes,
A, + kpA, = ® —ikp. (73)

From this one obtains the following hierarchy of coupled evolution equations,
Massless neutrinos—

4 .
bo=4Bu0 = —ghu, +4d,
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513 5 k)T
. k 1+ 1)K
A, = 51 [m,,,ll —(+1) (1 — T) Au,m] : (74)

3.2.3 Photons

Photons interact with electrons and one needs to add the collision term in equation (58).
The collision term depends on the angular distribution of incoming photons and on their
polarization. Since photons are not the main topic of these lectures we will not present
the details of Thomson scattering calculation. Instead we refer the reader to [14] for more
details.

The hierarchy is

Photons—

6, =400 = kv, +49,

. 3K

Uy = 3A%1 = k |:A%0 — ZA%Q (1 — ﬁ) + | + CL’I’LeO'T(’Ub — Ufy) s
. kT2 8K
A’yZ = g |:3’U7 - 3 (1 - k2) A7,3:| - CLneO'T[A%Q —_ H/lO] y (75)
. k (l+ 1)K
A%l = m |:lA’y’ll — (l + 1) (1 — %) A%l+1:| — O,’I’LeO'TA%l.

Here Il = A, 5 — 12E,, where E, is the [ = 2 multipole moment of polarization expansion
[15]. It can be neglected if a few percent accuracy suffices.

4 Initial conditions: inflation

Inflation is our primary mechanism to produce fluctuations. Historically, inflation was pro-
posed to explain flatness of the universe and horizon problem. Flatness problem can be
explained by revisiting Friedmann’s equation (8), which can be rewritten as Q — 1 = K/n?,
where () is now time dependent. We know it is not far from unity today. However, since
n o< 77! in both matter and radiation epochs we see that ) was extremely close to unity in
the past. The flatness problem states that such initial conditions are unlikely, unless there
is a mechanism that drives the universe to {2 = 1, in which case it stays there.

Horizon problem involves CMB in directions in the sky separated by more than a few
degrees. These should not be in causal contact in the past if one uses standard cosmological
expansion, either matter or radiation domination. However, the uniformity of CMB suggests
either something drove the CMB to the same temperature or it was part of initial conditions.
In the former case these regions must have been in causal contact in the past.

Inflation suggests a solution by postulating a period of rapid expansion during which the
universe is accelerating. The goal is to make comoving Hubble length 1! to decrease in
time, dn~'/dt < 0. In this case the size of observable universe decreases with time and after
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the end of this period the observable size is in fact much smaller than the size of the causally
connected region. Since .
dn~ a

PR <0 (76)
this indeed implies accelerating universe with @ > 0. From Friedmann’s equations (8) we
find that this condition gives p+ 3p < 0 or p < —p/3. So only exotic matter with negative
large pressure can lead to inflation. Fortunately there is no shortage of such matter in the
early universe. The simplest example is a scalar field, which was introduced in §2. One can
see from equations (28) that both energy and pressure have contributions from kinetic and
potential energy, with opposite sign for the latter. So to achieve p < —p/3 one must have a
scalar field with a small kinetic term compared to the potential term. In other words, the
field must be slowly moving in an external potential, which cannot be close to its zero value.

4.1 Slow-roll parameters

To further descibe inflation it is useful to introduce two slow-roll parameters, € and ¢ (note
that here € no longer descibes comoving energy as when we discussed Boltzmann equation).
First parameter simply describes deviations from the w = —1 case,

€= g(1+w), (77)

where w = p/p. Second parameter quantifies the requirement that the field is slowly rolling,
d*¢/dt? ~ 0. Note that this requirement is in terms of proper time. When expressed in
terms of conformal time it becomes ¢ ~ n¢ and second slow-roll parameter is defined as
=2 1 (78)
ng

The condition for successful inflation is that both parameters are small compared to unity.
When this condition breaks down inflation stops.

We may relate both parameters to the local shape of potential. Small ¢ means we can
Taylor expand w = p/p to obtain w = —1 + ¢?/(a?V') this leads to

3¢22 3a4vl2
T 20V T 18n2a2V’ (79)
where we used .
3nd = —aV’ (80)

obtained in the lowest order combining second slow-roll condition (equation 78) and evolution
equation 13. In addition, since the energy is dominated by potential term we can write
Friedmann’s equation in the lowest order as

n* = 8rGa*V/3 (81)

(we are ignoring curvature here since inflation will make it negligible). This gives

1 (v\?
‘T 167G (V) ' (82)
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To relate ¢ to the potential we take time derivative of equation (80) to obtain

; 1 _
¢ = g[—ZaQV’ +a®V'(1—¢) — a’n V"9
_a2V’(1 +¢)  a'V'V"

= 83
3t ogp (83)

where in the first line we used d(n~')/dr = n*(1 — ¢) following from second Friedmann’s
equation (8) and w = 2¢/3 — 1. In second line we again used equation (80). From the
definition of ¢ follows
VII

&GV’
The two parameters are thus related to the first and second derivative of V. Since the
definition of Planck mass is M 1312 = 87 one can see that the scale in ¢ over which potential
changes must be large in Planck mass units for inflation to work. Note that this says nothing
about the overall energy scale of inflaton potential, which can be well below the Planck scale
(in fact observationally it is required to be small in the simplest inflationary models).

d=c¢

(84)

4.2 Perturbations

Perhaps even more important than solution to the flatness and horizon problem is the ability
of inflation to generate perturbations, which could act as seeds for the structure formation in
our universe. The perturbations have a quantum mechanical origin, but because of the rapid
expansion they become classical as they cross the horizon. Once they are outside horizon
their amplitude does not change if appropriate gauge is used.

To demostrate the statements above one must proceed in several steps. First one must
demonstrate that the curvature perturbation in comoving gauge indeed remains unchanged
outside the horizon regardless of the underlying equation of state. Second, one must compute
perturbations generated by quantum fluctuations and evaluate their time evolution. The
approach here is to write the perturbation equation in a harmonic oscillator form, which
we know how to quantize, and then use the solution to the classical evolution equation to
evolve the quantum fluctuations forward in time. These perturbations actually vanish in
comoving gauge, making it inappropriate for this purpose, so instead we will calculate them
in a spatially flat gauge and use gauge transformation to obtain curvature perturbation in
comoving gauge. Finally, long after inflation we can make another gauge transformation and
evaluate potential fluctuations in either synchronous or Newtonian gauge for computational
purposes.

4.3 Curvature perturbation

Curvature perturbation ¢ defined in comoving gauge (section 2.5.3) is a useful quantity
because, as shown below, it is constant outside the horizon. It also relates simply to the
Newtonian perturbation ®, which allows one to use ( to evaluate ® outside the horizon
even if the underlying equation of state changes. To relate the two we first use the gauge
transformation between the Newtonian and comoving density,

6pc0m = 5/0N - b_IUN/k = 6:0N + 3,’7(5—’_ ﬁ)vN/ka (85)
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where the quantities on the left are in comoving gauge and those on the right in Newtonian
gauge. Poisson’s equation in Newtonian gauge gives

(k* = 3K)® = 47Ga*S peom.- (86)
Inserting this into Poisson’s equation in comoving gauge leads to
¢+ Nveom/k = P. (87)

But since Hr = 0 in Newtonian gauge v¢om = vn, which follows from the gauge transforma-
tion in equations (39) and (48). The curvature perturbation is thus related to ® as

20 lad + U
k=-————+ 88
Ctmon/k=g—""—+2, (88)
where the latter relation follows from velocity equation (46). As we will show later outside
the horizon ® does not change in adiabatic case in matter and radiation epochs. In the

absence of anisotropic stress we have ® = W. Then

(1)_3-1-310

R (89)

This shows that assuming ( is constant we can evaluate ® for any w. For example, changing
from w = 1/3 to w = 0 from radiation to matter domination produces a 10% decrease in @
as can easily be verified using the above equation.
Curvature perturbation ¢ obeys the evolution equation (49), which in the absence of

curvature and anisotropic stress becomes

: nop

¢=nk G+7p) (90)
where the latter relation follows from Euler’s equation (50) in comoving gauge. To show
that this quantity is constant outside horizon one must show C < n¢. In the absence of
entropy perturbations we can relate pressure perturbations to density perturbations through
the speed of sound, which is less than unity. Then

(p+p)  (p+p)
Ekn® 2 (ek\' 0@ (ek\® 2i¢
n) 1+w n ) 5+3w’

C‘- _ _ndpcorn o _andpcom

AnGa?(p+p) 3

(91)

which is indeed much smaller than n¢ outside the horizon, ie in the limit £/n — 0.

As noted above and evident from equation 28 in comoving gauge v — B = 0 and so
0¢ = 0. We must thus use a different gauge to evaluate d¢ and then use a gauge transform
into the comoving gauge to evaluate (. Gauge transformation of scalar field in equation (40)
gives T = 0¢/¢, where ¢ is evaluated in a general (different from comoving) gauge. Gauge
transformation of metric component H;, (equation 38) gives

Hy 49

CZHL-F?—??E- (92)
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One can see that the simplest gauge choice to evaluate d¢ is spatially flat gauge with H; =
Hp =0, in which case
00

= —T1)—, 93
¢ L (93)

where 0¢ is evaluated in spatially flat gauge.

4.4 Quantum fluctuations of scalar field

Equation (53) describes evolution of d¢ in a spatially flat gauge. This equation can be
further simplified in the slow-roll approximation by noting that all the terms on the right
hand side as well as the last term on the left hand side are of order en?d¢ or dn%d¢ and so
small compared to the other terms on the left hand side. This is because from Einstein’s
equations and the energy-momentum tensor for a scalar field metric perturbations scale as
$d¢p, which combined with another ¢ or V' gives rise to en?d¢. Similarly a?V" term gives
rise to en? and 6n? terms, which again justify neglecting it in comparison to the other terms
on the left hand side. The resulting equation is

86 + 2nép + k*6¢ = 0. (94)
This equation can be further simplified by introducing a new variable u = ad¢, so that
i+ (k* — 2n°)u = 0. (95)

It is convenient at this point to introduce conformal time relative to the end of inflation,

#= [ dr= "o (96)
Te ae 1A
Since in the lowest order of slow-roll approximation n?> = 87Ga?V/3 with V being approxi-
mately constant it follows that n/a is approximately constant and can be taken out of the
integral above, so that

TR _77711 (97)

where we ignored the comoving Hubble length at the end of inflation assuming it is small.
This leads to

u’+(k2—7i)u=0, (98)
where the derivative can now be taken with respect to 7, since it differs from 7 only by a
constant.

On small scales (k7 > 1) we can drop the last term in equation (98) giving an equation
for a simple harmonic oscillator. We know how to solve this equation: we first solve the
equation classically,

u = wi(7)ax + wi(7)ay, (99)

where on small scales wy = (2k)~"/?exp(ik#). The full solution is

v L ks

wy = (1 — k%) \/—27ke : (100)
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Quantization changes aj, and ay into &,TC and ay, creation and annihilation operators, which
obey the following commutation relations

[&k,di'] = Opr, [k, Qp] = [&La&};'] =0. (101)

Creation and annihilation operators create or destroy a particle in a given state. The
state can be described with the number of particles for each wavevector k. Annihilation
operator acting on the ground state is zero,

|0 >=< 0a} = 0. (102)

As is well known the ground state of the harmonic oscillator system also has fluctuations.
The expectation value for these is

< 0apif|0> = < 0|jwe(?)ar + wi(F)ak|?0 >
= Jwg|? < 0lagal]|0 >= [wg? < O|[ag, af] + afarl0 >= |wi|?, (103)

while if & # k' the expectation value vanishes,
< 0]t |0 >= 0. (104)
In the limit —k7 ~ k/n — 0 the solution is

1 m

Wy = —(%3)1/2% - (2k3)1/2 (105)
and so from equation (93)
)
= 106
= G (106)

Despite the apparent time dependence we have shown in equation (91) that ¢ does not change
in time for £/n — 0. The spectrum of fluctuations is

< o\a{cauo >

3112 _
kI = 242
4 2mG 2
- T _ s (107)
2a%¢? ea’

where we used 47G¢* = en?.

Variance in curvature is defined as A7 = k*((|*/2n*. Since H = n/a is approximately
constant during inflation the variance of curvature perturbations is nearly scale invariant. To
quantify the departures from the scale invariance we need to evaluate logarithmic derivative
of the amplitude of perturbations outside the horizon. To do this we use the fact that
curvature perturbation is frozen to a constant value outside horizon. We may thus evaluate
all the quantities at the time of horizon crossing k/n = —k7 = 1. Logarithmic derivative
with respect to wavevector is

d  (di d 1d ¢d
dlnk_k(d_k)kf_l%_kdf_kd (108)
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Using relations (80) and (81) this leads to

d Viod
=— —. 109
dlnk 81GV do (109)
Applying equation (109) to equation (107) and using
2 3
2 n 4
AL 5 X ym (110)
gives
dln A7 V' (3v 2V
=p,—1=— - = —de — 26. 111
dink 8rGV ( v v ) ‘ (1)

So the deviations from the scale invariance can be expressed in the lowest order of slow-roll
parameters as n, = 1 — 4e — 29.

4.5 Gravity wave fluctuations

The calculation for gravity waves (tensor modes) follows the same procedure as for the scalar
modes. Since tensor modes are gauge invariant there are no gauge ambiguities and one must
simply quantize equation (34) in the absence of a source and curvature. This equation is in
fact the same as equation (94), for which we already know the solution given in equation
(100). The resulting spectrum of fluctuations is

4Gn?

ma?’

A} = (112)

where we inserted normalization factor (167G)~'/2 in the amplitude of tensor modes to make
it consistent with the Einstein-Hilbert action formulation.
Since A2 oc V the slope of tensor fluctuation spectrum is

dndy V' V'
dink TGV V

=np = —2e. (113)
Here again the spectrum is nearly scale invariant if slow-roll conditions are satisfied.
Finally, the ratio of tensor to scalar amplitude is

— =4e = —2nr. (114)

This is called the consistency relation of inflation and is in principle testable with CMB if
tensor modes are of comparable amplitude to the scalar modes.

We may pursue departures from scale invariance one step further and investigate devi-
ations from a power law. This will be even smaller, being of second order in the slow-roll
approximation. We need to introduce another slow-roll parameter &

VIVIII

62 = Wa (115)
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which is of the same order as the other two parameters. In terms of these we find

dn, 9 9
Tk —8¢* — 16€d — 2¢
Tk —4e” — 4éd, (116)

where we used € oc (V'/V)? and € — § o< V”/V. While the first relation can at least in
principle be tested the second relation is unlikely to be accessible to observational test given
the existing constraints on the amplitude of tensor modes.

The resulting predictions from the simplest models of inflation are very simple: inflation
predicts nearly scale-free spectrum of initial fluctuations for both scalar and tensor modes.
Because the Fourier modes are independent the distribution is gaussian by central limit the-
orem regardless of the distribution for each Fourier mode (which is in fact also gaussian).
Finally, since only inflaton carries the energy density only curvature perturbations are gen-
erated (there will be no entropy perturbations). After the end of inflation other particles will
be generated through the process of reheating and their perturbations will remain adiabatic.
This provides a very specific set of initial conditions, such that all the modes of a given
wavelength amplitude start with the same value. This is a remarkable prediction and leads
to the coherent evolution of structure: all modes with the same amplitude of the wavevector
evolve in the same way while in the linear regime.

5 Solutions for density perturbations

In previous section we derived initial conditions for matter perturbations, which determine
the initial power spectrum. This is however not what is observed, because subsequent evo-
lution modifies the mode amplitude as a function of scale.

To obtain solutions for dark matter evolution we can combine the continuity and Euler’s
equations (47) to obtain

S, +nb, = K>V — 3nd — 3. (117)

If we further assume anisotropic stress is negligible, which is almost always a valid approx-
imation except on very large scales where neutrinos make a non-negligible contribution, we
have ¥ = ®, which takes the role of Newtonian potential. This equation can be solved ana-
lytically for two cases of interest, matter domination and radiation domination. In the first
case the souce of potential are CDM fluctuations themselves, while in the second case the
souce of potential is coming from photons and can be treated as external if matter evolution
is studied. We discuss both cases next.

5.1 Solutions inside horizon: matter domination

On scales smaller than the Hubble length we can ignore time derivatives of potential relative
to the spatial derivatives. This only works if the solution is not oscillating and must be
justified aposteriori from the obtained solution. Under this assumption we drop @ and
® terms in equation (117). To relate potential to density perturbation we use Poisson’s
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equation (46), ignoring n¥ and K terms in addition to ®. We thus obtain a second order
differential equation, ) ‘
6m + N0y = 4T G prn@*Spm. (118)

While equation (118) wasderived for CDM it can also be used to describe baryons on large
scales and after the recombination, where the pressure term from baryons and the coupling
between baryons and photons can be neglected. We will denote with ¢,, matter perturbation
when it applies both to CDM and baryons.

The general solution to equation (117) consists of a growing and decaying solutions. It
is instructive to look at the solutions in some limits. In matter domination for £, = 1 we
have a o 72 from equations (8) and so 471G p,,a? = 6/72. Setting the solution as a power law
0 = 7* one finds a = 2, —3. This means that the growing mode solution grows as a scale
factor,

bm X T2 xa Q=1 (119)

From Poisson’s equation (46) one finds that gravitational potential remains constant on small
scales, ® = const.

In a universe filled with a cosmological constant, curvature or dark energy the growth
will be slowed down relative to €2,, = 1. The effect is only important at late times when
the additional component can be dynamically important. No analytic solutions exist in this
case, but a very good approximation to the growth suppression relative to €2,, = 1 case is
[16]

5(€2) 5Qm

~
~

6(Q=1) " 2[0mn" — O +1+5Qn]

(120)

This and other solutions such as the one for dark energy with varying equation of state can
be obtained numerically from CMBFAST code.

5.2 Solutions inside horizon: radiation domination

In radiation era the photons (and neutrinos, which we ignore here) are the dominant com-
ponent to the energy density. We show first that because of pressure effects photon pertur-
bations do not grow. To show this one takes pressure equation of Einstein’s equations (46)
and subtracts it from one third of the density equation. Since dp = dpp/p = dp/3 this gives
the following equation,
2
é+%¢+@ﬁ+mﬂ¢:—2¢. (121)

We have again ignored the curvature terms. In radiation epoch one has a « 7, from which
follows n = 1/7 and so the last term on the left hand side vanishes. Then the equation is

. 4. k2
P+ - P=——97 122
+ T 3 (122)

and has the growing solution

& = 30, (smz B cosz)j

3 > (123)
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where z = k7/4/3 and the solution was normalized to the initial potential value ®;. As
expected the photon pressure causes the potential to oscillate and decay away as (kc,7)™?
inside the horizon, with ¢, = 3~'/2. While the inclusion of baryons prior to recombination
complicates the equations and changes the sound speed somewhat this conclusion does not
change significantly.

To solve for CDM we take equation (117) and evaluate it in radiation epoch,

. 1. . .
6 + =0, = k*U — 3n® — 30. (124)
T

The full solution consists of a homogeneous solution (ie solution to the above equation
without the source) and a particular solution, which can be written as an integral of Green’s
function over the source term. The latter decays away on small scales and so we can ignore
the particular solution. One is left with the homogeneous solution, which has the growing
mode

dc = C + In(7), (125)

where C' is a constant. So the CDM density grows only logarithmically inside the horizon
in radiation era. This has a simple physical interpretation. Prior to horizon crossing both
radiation and CDM evolve similarly and aquire a velocity term as they cross the horizon.
After that CDM decouples from radiation and its velocity decays as 7~ due to the Hubble
drag (damping term). This gives rise to the logarithmic growth of density perturbation.

5.3 Solutions outside horizon

Prior to horizon crossing the solutions depend on the adopted gauge. As above we will use
equations in Newtonian gauge, but we emphasize that the solutions can differ drastically if
a different gauge is adopted. For example, while in Newtonian gauge adopted here density
perturbations do not grow outside horizon, they in fact do grow in synchronous and conformal
gauge. If we ignore anisotropic stress (making ® = W), spatial derivatives and curvature K
then we again combine first and third of Einstein’s equations (46) to obtain

o+ d [37](1 +c

. 3
S)] @ (2040214 3¢,,)| = D0 (o0 — dp] . (126)
where effective matter-radiation sound speed is

9 1

Comr = 3T+ 3y/4] (127)

Here

P a Q. \ /2
y=""=— =22421, xz( m) Hyr, (128)
Pr Qeq 4aeq
and a4 is expansion factor when matter and radiation densities are equal.
The right-hand side of equation (126) is proportional to specific entropy fluctuation o =
%6r - 5ma
D = g8 = 60 (129
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If we restrict ourselves to the adiabatic initial conditions where entropy fluctuations vanish
initially they cannot be generated on scales outside the horizon. In that case we can solve
equation (126) analytically obtaining the growing and decaying solution [12]

2 8 16x 1+z

b, =14+ — > 12T =
P Ty T o2 T y3

. (130)

In the radiation era (y < 1) the solution is &, = 10/9(1 — y/16) = ®;, where ®; is the
initial perturbation, while in the matter era ®, = 1. In general thus

P = %q>+q>i. (131)
One can see that on scales outside horizon the gravitational potential ® does not change
both in radiation and in matter epochs, but between the two it changes the amplitude by
10% (this gives rise to so called early integrated Sachs-Wolfe effect in CMB). This is the
same result we obtained from the constancy of curvature (, but here we also solved for how
® is changing in time from radiation to matter domination.
Density perturbations are related to potential & through equation Poisson’s equation
(46). On large scales one can ignore spatial derivatives and curvature terms to obtain

§=—2(®+d/n). (132)
In the matter and radiation domination limits this gives § = —2®. Since
0 + Yo
§= 1 -7 133
1+y (133)
one finds 0, = —3®/2 in radiation era and 6. = —2® in the matter era. Density perturbations

are therefore also constant on large scales. We stress again that this is a gauge dependent
statement. For example, in synchronous and conformal gauge density perturbations grow
even outside horizon. Of course, for any quantity that is directly observable such as CMB
anisotropies the predictions are independent of the gauge choice.

5.4 Transfer functions

Any initial power spectrum of density perturbations gets modified because of the different
growth of perturbations in different regimes. This can be conveniently expressed in terms
of the transfer function, which is defined as how much ¢ of a given mode grows (or decays)
relative to initial value. For convenience this is divided by k2 and normalized relative to
k = k; mode, where k;7yp < 1,

. kZQ(S(k,TQ)é(k = kiaTi)
B k26(1€, Tz)é(lﬂ = ki,T(])’

T (k) (134)

so that the transfer function on large scales is unity, T'(k = k;) = 1. Today ¢ is dominated by
CDM, § ~ d., but it also has contributions from baryons and massive neutrinos, so one should
view is as an average over all the species weighted by their mean density as in equation 133.
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To obtain the processed power spectrum one multiplies the square of the transfer function
with the primordial power spectrum P(k) = P;(k)T?(k).

Outside the horizon the modes do not grow in both matter and radiation era and &, is
constant. When the modes enter horizon in radiation era the density only grows logarith-
mically until the matter era as discussed above. If they enter in the matter era they begin
to grow immediately as 72. By definition the modes enter the horizon when k ~ 771, so
the growth is just proportional to k? as long as the mode entered in the matter era. Since
in our definion of transfer function we divide by k2 the transfer function remains unity for
all the modes entering horizon after the matter-radiation equality. The transfer function for
modes entering prior to that will suffer suppression in the transfer function which scales as
(kTeq)?[In(kTeq) + 1] on small scales, where 7, is the conformal time at matter-radiation
equality.

The most important parameter that determines the transfer function shape is 7,, which
depends on Q,,h when the power spectrum is expressed against k/h. For CDM models the
asymptotic slope of the transfer function is the same regardless of the value of cosmological
parameters. Below we discuss some of the other parameters which can affect the transfer
function.

5.5 Massive neutrinos: mixed dark matter

So far we have ignored neutrinos in our discussion. The corresponding equations for massless
neutrinos have been presented above. They contribute to the relativistic energy density and
create anisotropic stress on large scales, but do not qualitatively change the results. Massive
neutrinos however can have a more important effect on the transfer function. Their mass is
related to the density parameter via

my, 10.7597)(

QO h? = ,
94eV g, 1.5

(135)

where g, is effective number of relativistic species at decoupling and gx the number of
spin degrees of freedom, which is 1.5 for 2-component fermions. At the time of decoupling
such neutrinos are still relativistic and become nonrelativistic around the epoch of matter-
radiation equality for €2, ~ 1, assuming standard value of g,. Free streaming neutrinos can
erase perturbations on scales below the free-streaming distance, defined as the distance at
which a neutrino of a given rms velocity v, can still escape against gravity. The veloc-
ity is ¢ when neutrinos are relativistic and drops as 1/a afterwards because of momentum

conservation,
kgT .
Vgh ~ =50(1+ z)(m,/eV) "km/s. (136)
m,

v

Since the Hubble time is proportional to tg ~ [(1+2)Q,,] '/2Hy* the product of the two gives
an estimate of the free-streaming length. The resulting comoving free-streaming wavevector
is
my _
ks = 0.4(Qh%)"2(1 + z)*l/zﬁMpc ' (137)
For a given k neutrino perturbations 4, are suppressed while k& > kss(a). After that they
can grow again and catch up with cold dark matter perturbations d,.. This happens on large
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scales and as a consequence the transfer function is the same as in CDM models. When
neutrinos are dynamically important the damping also affects d., decreasing its amplitude
on small scales compared to pure CDM models.

Recent Super-Kamionkande results find g — 7 neutrino mass squared difference of 3 x
1073eV? [10]. In the most conservative scenario this gives one neutrino family with m, ~
0.06eV or Q, ~ 0.15%. Since only the mass difference is measured it is in principle possible
that the total density of neutrinos is larger than that.

While small, this neutrino mass nevertheless leaves potentially observable effects on the
dark matter power spectrum. It changes the transfer function by suppressing the power
below the free-streaming length. Because of small masses this suppression is on relatively
large scales, where complicating issues of bias are potentially less problematic. There is hope
one can measure this directly from the galaxy clustering data in surveys such as SDSS with
an accuracy of 0.1eV [9]. The signature imprinted by neutrinos is quite unique and it is
unlikely to be mimicked by other cosmological parameters.

Second possibility to detect massive neutrinos is through their suppression of the growth
rate below the free-streaming length. If one normalizes the fluctuations from CMB (at
z ~ 1000) one finds that the small scale normalization of the dark matter power spectrum is
affected by neutrinos. This is often parametrized with og, denoting rms mass fluctuations in
spheres of 8 'Mpc radius. In principle og can be a well measured number: the abundance
of clusters is very sensitive to this number and can change exponentially with it. Current
estimates give 032 %¢ ~ 0.5 4 0.1, where the errors are dominated by systematics, but a
significant improvement could be possible in the future. Second possibility to measure og
is by measuring mass fluctuations directly using weak gravitational lensing and there are
significant observational efforts underway to measure this. The effect on oy is rather small
and addition of 0.06eV neutrino changes its value by 1.5% if normalized to COBE. Moreover,
this effect is degenerate with many other effects that also change the growth rate, such as
a change in equation of state. They can only be distinguished if additional information is
used, such as one from supernovae or CMB. It remains to be seen how accurately can one
ultimately extract neutrino mass from such observations, but it is clear that dark matter
clustering provides one of the most stringent observational tests of neutrino mass.

5.6 Warm dark matter

The scenario above applies to the neutrinos with standard decoupling temperature 7' ~
MeV, where g, = 10.75. Recently there has been a lot of attention devoted to warm dark
matter, in which the decoupling occurs at a higher energy when g, > 100. It is in fact not
clear how many degrees of freedom exist at higher temperatures. Standard model predicts
g« ~ 100, while the supersymmetric extension doubles that to g, ~ 200. This is however still
not sufficient for currently popular models, which require mass of WDM candidate around
1keV, implying g, ~ 800 for Q,h? ~ 0.3. Additional degrees of freedom must therefore be
postulated. Alternative possibility is that entropy is released after the decoupling of warm
dark matter and before the nuclesynthesis epoch. Another interesting option is that ordinary
neutrinos could have a lower density because of low reheating temperature after inflation.
Whatever the mechanism, one would like to have a suppression of power on scales below
1Mpc. If one assumes the particle mass of order 1keV one has the free-streaming wavevector
of k20 ~ hMpc™'. On large scales the transfer functions are the same as CDM, while on
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small scales they lead to complete suppression of power below the free-streaming length, just
like in the case of ordinary massive neutrinos, except that in this case the free-streaming
length is significantly shorter.

5.7 Baryons

Prior to decoupling baryons are tightly coupled with photons and oscillate for modes inside
the horizon. After decoupling their sound speed drops significantly and the Thomson scat-
tering term in equation 55 can be dropped. If one combines continuity and Euler’s equations
into a single second order equation and subtracts it from the same equation for CDM one
finds,

Abc + 2’r]Abc =0, (138)

where Ay, = 0, — d.. This equation is valid on large scales, where baryons pressure can
be neglected. The growing mode solution for this equation is a constant, so the difference
between baryon and CDM density perturbation does not change in time. However, the CDM
density perturbation grows as d, o< 72 in the matter domination, so the relative difference
between baryon and CDM density contrast decreases as 7-2. So d, catches up with §, after
decoupling and then continues to grow at an equal rate.

We have assumed that CDM grows following the solution to equation 118. This is valid
if CDM is the dominant component in the matter epoch. If baryon density is not negligible
compared to CDM density then baryons will also contribute to the gravitational potential
from Poisson’s equation (46). But baryons after decoupling still reflects acoustic oscillations
from the epoch before decoupling, when they follow photon oscillations (equation 123). As
a result the total potential will reflect these oscillations and CDM evolution will be modified
because of this. An increase in baryon density leads to acoustic oscillations in the transfer
function. Second effect of baryons is that they suppress the transfer function on small scales.
This is again expected, since baryons are damped prior to decoupling on small scales and
if they are dynamically important they lead to a suppression of the gravitational potential.
The latter is the source for CDM density fluctuations, which are thus suppressed as well.

6 Nonlinear evolution and bias

Determining the linear power spectrum of dark matter is one of the main goals of modern
cosmology. There are several complications that may prevent us at present from reaching
this goal. First, on small scales the linear power spectrum is modified by nonlinear evolution
which enhances its amplitude over the linear spectrum. It is important to understand this
process, so that one can predict the relation between the two. This is necessary both to
reconstruct the linear spectrum from a measured nonlinear one and to verify whether there
are other mechanisms besides gravity that modify the clustering of dark matter on small
scales. Second, it is difficult to observe correlations in dark matter directly. Direct tracers
such as peculiar velocity flows or weak lensing still suffer from low statistics and poorly
understood systematics. Instead it is much easier to observe correlations between galaxies or
correlations between galaxies and dark matter. While these are related to the dark matter
correlations, the relation may not be simple.
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A simple picture which incorporates both of these effects has been developed recently
[17]. It sheds some light on what is or is not possible to extract from galaxy and dark matter
clustering in the nonlinear regime. The picture is based on the Press & Schechter model
[18], which assumes that at any given time all the matter in the universe is divided into
virialized halos. These halos are correlated and have some internal density profile, which can
be a function of halo mass. By specifying the halo mass function, their clustering strength
and the halo profile one can determine the dark matter correlation function. By additionally
modelling the number of galaxies inside the dark matter halo as a function of halo mass one
can extend this picture to the galaxy clustering. It provides a natural explanation for why
is galaxy correlation function a power law over a wide range of scales and how this ties with
the other observations of large scale structure.

The correlation function consists of two terms. On large scales the halos are correlated
with each other. One can assume the halo-halo correlation function follows the linear corre-
lation function. Its amplitude depends on the bias for each halo. Halos more massive than
the nonlinear mass scale M, are more strongly clustered than the matter, while those with
masses below M, are less strongly clustered than the matter. Since halos are not pointlike
one needs to convolve the halo-halo correlation function with the halo profiles of both halos
to obtain the correlation function.

In addition to the halo-halo correlation term there are also correlations between dark
matter particles within the same halo. These are also determined by mass function and dark
matter profile and are expected to dominate on small scales. The main difference between
these two terms is that there is an additional mass weighting for the latter. This makes the
dominant contribution to this term to come from the higher mass halos relative to the halo-
halo term. The total power spectrum is the sum of the two contributions. Figure 1 shows
the individual contributions and the sum in comparison to the linear power spectrum and
the nonlinear predictions, which are in agreement with N-body simulations. The model is in
excellent agreement with simulation results, indicating that despite its simplicity it includes
most of the physics relevant for nonlinear clustering of dark matter.

One can extend this model to include galaxy clustering. Here again one assumes all
the galaxies form in halos, which is a reasonable assumption given that only very dense
enviroments, which have undergone nonlinear collapse, allow the gas to cool and to form
stars. The key new parameters that need to be introduced are the mean number of galaxies
per halo as a function of halo mass and the mean pair weighted number of galaxies per halo.
One must further assume that each halo has one galaxy at its center, which was a result
of the gas cooling in this halo, while the rest of the galaxies in the halos are distributed
in the same way as the dark matter. This is only the simplest assumption and one can
easily generalize it to profiles that differ from the dark matter. If only galaxies brighter than
a certain luminosity are counted then galaxies in small halos will not be included in the
sample. This is in fact one of the reasons why galaxy clustering differs from that of the dark
matter on small scales. Second comes from the fact that there is one galaxy which is at the
center of the halo and the pair-weighting is enhanced because of that, leading to stronger
correlations. Third reason is that number of galaxies inside the halo does not scale linearly
with halo mass. Larger halos have higher temperatures and gas takes longer to cool. Thus
on average there will be fewer galaxies of a given luminosity formed in such a halo. This also
enhances the correlations on small scales, since there will be more galaxies in small halos
relative to dark matter. The resulting predictions are shown in figure 2, showing that the
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Figure 1: Comparison between the power spectrum predicted from the halo model (Pf + P,
solid) and the nonlinear power spectrum for ACDM model (P™, dash-dotted). Also shown
are the linear power spectrum (P"", thin solid) and the two individual contributions, single
halo PF and halo-halo P*. Top plot is for dark matter profile with inner slope o = —1,
while bottom is for « = —1.5. Both profiles give an excellent fit to the nonlinear power

spectrum.
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Figure 2: Comparison between galaxy and dark matter power spectrum predictions for
galaxies selected by absolute magnitude Mp < —19.5. Also shown is the measured power
spectrum of galaxies. On large scales dark matter and galaxy spectra agree, while on small
scales galaxy power spectrum exceeds that of dark matter, in agreement with the observa-
tions.

predicted model is in good agreement with the data and shows significant differences from
the dark matter power spectrum on small scales.

7 Conclusions

In these lectures we have reviewed the physics of dark matter, with the emphasis on their
clustering properties. We have limited the discussion to the simplest class of models produced
by inflation, for which the initial fluctuations are gaussian. In this case the linear power
spectrum contains all the information on the underlying cosmology and its determination
becomes the main goal of observational studies.

In general there are two ways to extract the cosmological information from the dark
matter clustering properties. One is to obtain the time dependence of the amplitude of the
power spectrum. This can be related to the growth factor, which as discussed above is a
function of €,,, 2, curvature, dark energy, massive neutrinos etc. There are several probes
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of the dark matter clustering at high redshift, which combined with the local clustering
amplitude provide constraints on the clustering evolution. Among these are CMB, providing
constraints at z ~ 1100, Ly-a forest providing constraints at z ~ 3, weak lensing, which
probes structure around z ~ 0.5 — 1.5, galaxy clustering, which can be observed for z < 4
and quasar clustering spanning a similar range in z. Other probes such as X-ray, Sunyaev-
Zeldovich or far infra-red background are also sensitive to the high redshift clustering.

Second method is through the shape of the power spectrum, which is also affected by
a number of cosmological parameters, such as matter-radiation equality, massive neutrinos,
baryon to CDM ratio, primordial spectrum of fluctuations etc. The shape can be obtained
from the same probes as mentioned above. Even more important in this case are galaxy
surveys, both existing such as PSCz and upcoming such as 2dF and SDSS. They probe
mostly local universe and so are not very sensitive to the evolution of the growth factor. On
the other hand, because of the large number of galaxies measured, they achieve a much more
accurate determination of the galaxy power spectrum than probes at a higher redshift. An
important issue we briefly discussed in §6 is bias, which relates galaxy clustering to that of
dark matter. Although biasing can be complicated on small scales it is likely to be constant
on large scales, where many of the most important cosmological parameter constraints are
coming from. Alternative approach, which does not require knowledge of bias, is weak
lensing. While this approach will not achieve sensitivities of galaxy surveys it can provide
an independent measurement of the dark matter power spectrum and should serve as an
important check of the different systematics for the two approaches.

Although we only discussed dark matter clustering here the constraints that can be
obtained from it can be significantly enhanced if additional observations are included. Most
important among these is CMB, which probes much of the same physics at discussed here, but
measures it at z ~ 1100. Other important constraints will come from supernovae, measuring
redshift-luminosity distance relation and from direct Hubble constant determination using
a variety of tecniques. This should enable one to extract neutrino mass with an accuracy
of 0.1eV, equation of state with an accuracy of a few percent, determine primordial slope
and amplitude of the spectrum to a few percent, test deviations from the primordial power
law, place very accurate limits on dark matter density, test nucleosynthesis predictions for
baryon density etc. Dark matter clustering measurements are entering high precision era
and theoretical understanding of the physics behind it is needed if we are to extract all
the information from it. These lectures should hopefully provide, with sufficient detail, the
current theoretical understanding of the physics behind the dark matter clustering, which
should help one achieve this goal.
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