

1954-8

Summer School in Cosmology

21 July - 1 August, 2008

Gravitational Waves - Lecture 2

S.A. Hughes *MIT, USA*

Note: These lecture notes include much
more detail than I intend to over
Note: These lecture notes include much more detail than I intend to over during my lecture!
I have included the extra detail to
fill in the gaps of material that I cannot
I have included the extra detail to fill in the gaps of material that I cannot cover in detail during the lecture hav.
Material from page 14 onward is higher
than the scope of my intended becture, but
is included for interested students.
Scott Hyghes

Flat spacetime + a granitational wave.

Suppose a body moves through spacetime, tracing out the worldline Ly "proper time": Time as measured by that hody Very special worldline: Geodesic. Represents an of spratine distance between two events: S = S V gap dx dxB Extremize: Ss = 0; result is $\frac{d^2x^4}{d\tau^2} + \int_{0}^{\infty} x \frac{dx^6}{d\tau} \frac{dx^8}{d\tau} = 0$ where [sx = 1 gam (dygms + drgsm - gudler) Topy is the spacetime's "connection". Importance of this vesult: FREELY FALLING BODIES FOLLOW GEODESICS IN GENERAL RELATIVITY

This is how motion due to gravity is determined in general relativity! Sources of gravity determine spacetine metric, geodesic egration tells how \$ bodies move in that spacetime. Note: trajectory independent of mass of hody! Notion of principle of equivalence: free-fall equivalent, locally, to uniform acceleration in flat spacetime. Consider two nearby geodesics: T: proper time along geodesics s: parameter that smoothly varies from 1 curve to other. ud = dx = tangent along geodesics. 3 = dx = tangent along curves of constant T that connect geodesics. = notion of displacement.

How does the displacement evolve? Governed by equation of geodesic deviation:

1 2 3 d = R 2 BYS UBU8 38

where Rys = 2x Tys - 25 Tys + Lyns Lubs - Lys Lubs

is the Riemann curvature tensor: Encodes the deviation of spacetime from a flat geometry.

Also encodes tidal gravitational effects: Rate at which neighboring geodesics diverge tells us how free-fall varies over regions of spacetime.

Variants of curvature tensor: Ras = RM amp "Ricci curvature" symmetric on indices a à p. R = R^n = gms Rpm "Ricci scalar" Gap = Rap - = gap R "Einstein curvature " So for, everything just concerns geometry ... also need to describe matter, fields, etc ... tool for this is the stress-energy tensor: Tur = Stress-energy = flux of momentum density ph in x' direction Physical meaning of components: T 00 = energy density energy flux -> Toi = Tio in vuits with c=1! Tio = momentum dusity Tij = momentum flux (Tii = Pressure)

Weak gravity: Consider limit in which spacetime is nearly flat: gap = lap + has Components | hap | << 1. Now, linearize in h: For example, half = gangler how = Jangler how + O(h2) Note that combining this with definition g 2 8 g 8 = 8 8 g x 3 = 2 x 3 - h x 13 + Q (h2) implies Important detail: Suppose we change coordinates.
How does our representation of the metric change? Simple: If we change from Xd to yd, then 3 m = 3xx 3xx 3m representation representation in new coordinates in old coordinates

Suppose coordinates are just slightly shifted: y = x + 32 where 23x/2xm cc 1. Then, 3xx = 5xx + 3x3x 3xx = 5x - 2n3x + 0(232) Now, examine how representation of weak gravity metric changes: din = (3xx) (3xy) 3xb -> g'mu = (8 m - 2 m 3 m) (8 m - 2 m 3 m) (7 cp + h cp) = 1 mv + hur - 2m 3v - 2~ 3m We can write this as hur = hur - 2,3, Gauge transformation! Just like An = An - OnA in Maxwell's theory.

Putting c=1 for convenience.

Note: This solution makes all compounts of haps look radiative. Consequence of the garge choice!
Theorem: Given a solution her to the linearized field egrations only the spatial, transverse, and traceless components his encode the radiation content in a gauge invariant manner.
(Proof: Sec 2.2 of "The basics of gravitational wave theory", New Journal of Physics, vol 7, p 204, 2005; gr-gc/0501041) Transverse means d; hij = 0 (Nole: di = d; since spatial metric is Euclidean.)
Traceless means $\delta_{ij}h_{ij}^{TT}=0$.

Solution for spatial components: hij = 46 (Tij (t-r, x') d3x' (Working in distant limit.) Recall that in electrodynamics, the continuity equation allowed us to write $\int \vec{A} d^3x' = -\frac{\partial}{\partial t} \int \vec{X}' g q d^3x'$ Similar egration in general relativity: 2MTmv = 0 < Conservation* of stress-energy From this, we can derive ST: 3x' = 1 2 2 Too x: x; d3x' Recall Too = mass/energy density = g. I: = S g x; x; d3 x' - "Ovadropole $\overline{h}_{ij} = \frac{2G}{r} \frac{d^2 T_{ij}}{dt^2}$ source. * Strictly true only in linearized limit!

Finally, need to project out the transverse a traceless components of this. Easily done:

If radiation is propagating along vector in, define

Pij = Sij - ninj

That projects out components

or thogonal to n: Any component

parallel to n is multiplied by

zero.

Then,

A STATE OF THE STA

The guadropole famila for GW emission.

2. Curved background: Putting gap = Tap + hap quite restrictive. More general case: gap = gap + hap Some slowly varying brokground spacetime: Metric of air expanding universe, or a black hole, our solar system... Same basic idea holds - linearize Einstein about amplitude has, but add one new concept: has varies on sharter lengthscales and timescales than gas: de gap ~ gap ~ gap ~ gap de hap ~ hap, drhap ~ hap ruT, Lung Allows us to organize problem on multiple scales.

3. Non-linearity: One might worry that our linearization procedure throws away non linearity: one of the defining characteristics of general relativity! Not too difficult to derive a totally gargeinvariant, non linear wave equation for curvature (Much harder for metric due to gauge freedom.) Ingredients: 1. Bianchi identity: VaRpynv + VpRyamv + VoRapynv = 0 2. Commutator rule for covariant devivatives $[\nabla_{\mu}, \nabla_{\nu}] p_{\alpha} = (\nabla_{\mu} \nabla_{\nu} - \nabla_{\nu} \nabla_{\mu}) p_{\alpha}$ = - PBRISAM [Jn, Jr] Pap = - Prp Ro apr - Par Ro ppr Recipe: Take one more derivative of Bianchi: Va RRYMU = DRRYMU = -Va Vr Rageno - Va Vy Rapur were operator for curved space time.

Now apply Commutator rule repeatedly. Result becomes

DRBynn = (terms that are graduatic in Riemann curvature.)

Note mathematical structure: A wave equation for a field that my has a source that is nonlinear in that field!

if the spacetime is vacuum (Tow = 0), the result is simple:

DRapper = 2 Rmyps R ~ 2 s -2 Rmyrs R ~ p + Rms & R ~ p

"Penrose wave equation"

4. Energy content of wares: Very subtle point. Thanks to principle of equivalence, we can always make metric look flat in vicinity of some point: gap -> Pap + O (Riemann x r2) "Freely falling wordinates" How can we ascribe energy to wave if we can always set its metric to zero with a clever coordinate choice?? Answer: Non-locality! The wave can only be hidden inside a region whose size is of order λ , the wavelength of the ow. Is a acson introduced rigorous techniques to define tensors made from quantities averaged over a region of size several x \(\lambda\): see K. Isnacson, Physical Review D, vol 166 P 1263 (1968) P 1272 (1968)

Key result: A gauge invariant stress-energy tensor describing energy and momentum cornied by GWS: -GW = 1 MV = 32 TG < Vn hap Vn hap > hap is in a transverse-truceless form.