

1954-1

Summer School in Cosmology

21 July - 1 August, 2008

Dark Energy

R. Caldwell

Dartmouth College

U.S.A.

DARK ENERGY

PARTMONTH COLLEGE, USA

"A HYPOTHETICAL FORM OF ENERGY THAT

PRODUCES A PORCE THAT DPPOSES GRAVITY

AND IS THOUGHT TO BE THE CAUSE OF THE

ACCELERATING EXPANSION OF THE UNWERSE."

DICTIONARY

PROBLEM: THE SIMPLEST, MOST SUCCESSFUL THEORY OF THE
PHYSICS OF THE UNIVERSE IS THE HOT BIG BANG

EVIDENCE

B B NUCLEOSYNTHES U

COSMIC MICROWNE BACKGROUND

THEOPY (COSMOLOGICAL PRINCIPLE)

GENERAL RELATIVITY

QUANTUM PHYSICS

HOW SUCCESSFUL? ANATUBY WI AM

AMATUBY WI AM

AMATUBY WI AM

AMATUBY WI AM

SUMMATHE ENGINERATION

(** AFT MAY BE DISTURBING!)

YET IT MAKES ACCURATE PREDICTIONS!

LIKEWISE, OUR THY. OF UNIVERSE ALLOWS US TO

MATCH STUNNING PREDICTIONS - ACOUSTIC OSCILLATIONS IN

THE CMB!

YET, WE HAVE GREAT CHALLENGES

~ 95% OF THE WISMIC ENGREY BUDGET APPEARES "DATEK"

~ Yy APPEARS TO PLAY A DOMINANT PLOLE
IN GALAXIES & CLUSTERS

DATEL MATTER

~ 34 APPEARS TO BE V. NEARLY HOMOGENEOUS

* SUPPORTS NEGATIVE PRESSURE

DATEL ENERGY

GOALS FOR-COSMOLOGISTS:

TASK: MEASURE COSMOLOGICAL PARAMETERS

PURSUE THEORETICAL MODELS

OBTAIN & DEEPER UNDERSTANDING -> MAKE PREDICTIONS

PHYSICS OF THE UNIVERSE

EVIDENCE - THREE MAIN LINES

- 2) COSMIC MICROWAVE BACKEPOUND ISTK («)
- 3) SUPERNOVA HUBBLE DIAGRAM 9 < 0

CONCLUSION?

STATE OF THE ART:

any viable dark energy model must satisfy these constraints!

 $\Omega_{M}h^{2} = 0.1369 \pm 0.0037$ $\Omega_{\Lambda} = 0.721 \pm 0.015$ (MB + other DATA

-1.11 < W < -0.86 (25)

* SCP UNION (KOWMSKI et al, arxiv: 0804.4142)

* SDSS & 2dFGRS BAD (Percival et l, MNRAS 381 1053(2007))

EXPANSION - THE MOST REMARYLABLE PROPERTY OF THE UNIVERSE!

ACCELERATION!

evidence: distance is redshift

IH AN EXPANDING UNIVERSE

$$R = d_L = (1+2) \int_0^2 dz' / H(z')$$

DISCOVERY: RIESS et al , AJ 116 1809 (1998)
PERLAUTIER et al , ADJ 577 565 (1999)

WHO WAS FIRST?
SEE APPLICUE BY POBERT CREASE
IN JANUARY 2008 PHYSICS WORLD

HUBBLE DIRTERAM INDICATES GREATER DIMMING WITH RECELEPATED EXPANSION.

1917 A 1920's H 1930's DM

215 CENTURY CHALLENGES

- 1. SYSTEMATIZE TESTS OF GRANITATIONAL PHYSICS
- 2. TIGHTEN EVIDENCE FOR A (DR SOMETHING LIKE IT)
- 3. FIND THE PHYSICS OF VACUUM ENGREY
- 4. SOFT OUT THE LOSMIC LOINCIDENCES
- 5. TEST THE PHYSICS OF THE DATHE SECTOR
- 6. FIND THE PHYSICS OF MICH PEDSMIFT (EMPLY UNNERSE)

PEEBLES, ASTO-Ph/ 0311435

NOTATION: GR

$$L_{\phi} = -\frac{1}{2}(\nabla\phi)^2 - \sqrt{(\phi)}$$

$$T_{mv} = -\frac{2}{\sqrt{5}} \frac{s}{sg^{mv}} \left(\sqrt{-5} L \right)$$

ROBERTION - WAYLER LOSMOLDOY

WE P/g (HOMOGENEOUS) FOIN OF STATE

FRIEDMANN ERIN: 3H2 = 8TG & Pi i= r, m, DE

MURELIAMION: JULIN = 0

1 9: + 3H(p;+pi)=0

Lemmittre: $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} (9+3p)$

MILENERATION: $q = -\frac{\ddot{a}}{4}/H^2$ $q < 0 \rightarrow \frac{1}{2}(p_i + 3p_i) < 0$

DAPK ENGRGY PDE, PDE; WDE

SDE (a) = SDE (a0) exp (-3) addna' (1+ WDE (a')))

STD PERT'N ELL'NS

Max Bertschinger, ApJ 455 7 (1995)

METPIC:
$$ds^2 = a^2(\tau) \left[-(1+2\Psi) d\tau^2 + (1-2\varphi) d\tilde{x}^2 \right]$$
 LOHGIDDIAN (CONFORMAL HOWTONIAN)
$$= a^2(\tau) \left[-d\tau^2 + (\delta ij + hij) d\tilde{x}^2 d\tilde{x}^j \right]$$
 Synchronous
$$h_{ij}(\vec{k},t) = \hat{k}_i \hat{k}_j h + 6(\hat{k}_i \hat{k}_j - \frac{1}{3}\delta ij) n$$

VAPIABLES: (Ψ, ϕ) or (h, η)

"
$$t-t$$
": $K^2\eta - \frac{1}{2}M\dot{\eta} = -4\pi Ga^2 sg$ $M = \frac{\dot{a}}{a}$ $\frac{\dot{a}}{4\tau}$

"t-i":
$$k^2 \dot{\eta} = 4\pi G a^2 (g+p) \Theta$$
 $\Theta = i k^j V_j$

"i-j":
$$\ddot{h} + 6\ddot{\eta} + 2H(\dot{h} + 6\dot{\eta}) - 2k^2n = -24\pi Ga^2(g+p)\sigma$$

$$d = \frac{1}{2k^2}(\dot{n} + 6\dot{n})$$
 $Y = \dot{\alpha} + H\alpha$, $\dot{\alpha} = n - H\alpha$

$$\delta = \frac{s_P}{s} \longrightarrow \dot{s} = -(1+w)(\theta + \frac{1}{2}\dot{h}) - 3H(\frac{s_P}{s_P} - w)s$$

$$\dot{\theta} = -H(1-3w)\theta - \frac{\dot{w}}{1+w}\theta + \frac{s_P/s_P}{1+w}k^2s - k^2\sigma$$

COSMIC WINCIDENCES

$$PDE \sim (10^3 \text{ eV})^4$$

related to neutrino physics?

 $\Delta m \sim 10^2 - 10^3 \text{ eV}$

WHERE IS DAPUR ENERGY?

DATZK ENERGY COSMOWGY CONFORMAL DVAGRAM

MOPE DIRBRAMS: CHIBA et al CQG 22 3745 (2005)

INFLATION US. DATEK ENGLEY

INFLATION

DAPLY ENGRAY

11+ W/ <</

(1+w | ≤ 1

"STREWETH"

E > TeV

E ~ 103 eV

"ENERGY"

 $N = ln \frac{a_4}{a_1} > 60$

N~1?

" DUPATION"

Sp -> SCALE-FREE SPECTRUM
OF DENINTY PERTINS

?

SIMME FLOD? ->

QFT OPIGN OF A

COMPLEMENTARY VIEWPOINT: ONE-LOOP EFFECTIVE ARTION INCLUDES

TEIRMS THAT PENDRAMLISE 1, 6, ...

(SEE BIRRELL & DAVIES, CTI 6.)

ND SATISFACTORY METRIOD TO "TAME" Ness !

DON'T FORLEST CONTENSION FROM POTENTIAL MINIMA - WINDOWSATES OF INTERMETING FIELDS.

ADJUSTING A

ABBOTT, PLB 150 427 (485)

SCALAR PLED: B

 $V(B) = V_0 + \epsilon \frac{B}{\xi_B} - \Lambda_0^4 \text{ ws } \frac{B}{\xi_B}$

REDUCE VACUUM ENERBY
BY PLOULING, TUNNELING

FOR EK Not, MINIMA AT B= 2TNFB

ΔV≈ 2πE

NEED ES (0.003 eV)4 FOR SUCCESS

SIMILITY TO SCHWINGER MECHANISM)

STABILITY? LOWER VALUE ARE WHERE LIVED.

WHAT ABOUT V(B) < 0? COLD UNIVERSE?

MOTIVATION FOR HUNGROUS RELATED SCHEMES

See BOUSSO + PULCHINIKY, JHEP 0006:006 (2000)

MODE TO SAY ABOUT N?

EXCELLENT PEVIEWS: NOBBENHUIS, FOUND. Phys. 36 613 (2006)

CARROW, LIVING REV. REL. 4 1 (2001)

WEINBERG, PEN. MOD. PRYS. 61 (1989)

OUR LACK OF UNDERSTANDING SOREW NEEDS GUIDANCE FROM DISS/EXPT!

WSMOLDGICAL IMPACT IS ENTIRELY THROUGH THE LOSMIC EXPANSION

LARGE SCANE STRUCTURE I'M AVAILABLE, ON GROWTH LOSMIC MICROWAVE BACKGROUND ANGULAR SCANE, ISW

DISTANCES, VOLUMES, AGE

QUINTESSENCE - A DYNAMICAL SCALAR PLEUD AS DARYL ENERGY

TIME VARYING, NEARLY SMOOTH, NEGATIVE PRESSURE

$$L = -\frac{1}{2}(\nabla \phi)^{2} - V(\phi)$$

$$\int S = \frac{1}{2}\dot{\phi}^{2} + V \quad \int P = \frac{1}{2}\dot{\phi}^{2} - V$$

$$W = \frac{1}{2}\dot{\phi}^{2} - V \quad -1 = W \leq 1$$

ZELDOVICH: "MOST IMPORTANT FIELD FOR COSMOLOGY"

Q: WMY WHSIDER AMPRING OTHER THAN A?

A: THE PHYSICS OF N IS UNKNOWN - UNTIL WE GAIN A DEEPER UNDERSTANDING,
PEGAPED N OF DATELL GUERON, OR QUINTESSENCE AS PLACE HOUDERS!

IF BSETNATIONS WANGELE ON W=-1 THEN NO NEED FOR DYNAMICS!?
PERVIPE A MODEL IN GRADER TO TEST POR PRYSICS OF DATELY ENGREY.

SCHUR FIELD

$$L = -\frac{1}{2}(\nabla \varphi)^2 - V(\varphi) \qquad - \triangleright \qquad \Box \varphi = V'$$

$$T_{\mathcal{W}} = \nabla_{\mathcal{W}} \varphi \nabla_{\mathcal{V}} \varphi - g_{\mathcal{W}} \left(\frac{1}{2}(\nabla \varphi)^2 + V(\varphi)\right)$$

RECOVIPTEMENTS
$$W<0$$
 SO $V \gg \frac{1}{2}\dot{4}^2$

$$\frac{\text{DOMINANT}}{\text{SZDE}} = \frac{877G}{3} \frac{\sqrt{}}{\text{H}^2} \sim 1$$

FOR
$$V=\pm m^2 \phi^2$$
 THEN $m \simeq 10^{-42} \text{ GeV}$ $\phi \simeq MpL$

INITIAL CONDITIONS? SET \$, \$ TO GET W, SLDE

DIFFICULTIES

POTENTIAL MUST BE "FLAT"

IN OPDER TO KEEP & SMALL S.T. WCO

" v" " m≃H

IN VIEW OF \$ - MPL ?

OFT LOOP CORPECTIONS TO V WILL SPOIL SMOOTHINESS UNLESS A SYMMETPLY PROTECTS V!

KOLDA & LYTH, PLB 458 197 (1909)

FIGLD MUST STAY "DARK"

HOW TO PROVENT GOVPLINGS TO THE STANDARD MODEL?

eg # FMFM , #FMFM

CAPPOLL, PPL B1 3067 (1998)

THE PNGB MODEL APPEARS TO BE THE BEST-MOTIVATED SCALAR FICLD DATE ENERGY
MODEL, IN VIEW OF MESE CHALLENGES SEE KALOPER & SDRBD, JCAP 0604:007 (2006)

QUINTESSENCE: PSEUDO NAMBU GOLDSTONE BOSON

PNGB

FRIEMAN et al, PRV 75 2077 (1995)

5~ MPL

M ~ 10⁻³ eV

SHIFT SYMMETRY PROTUBITS

COUPLINGS THAT LEAD TO LONG-RANGE

FORCES; FORM OF POTENTIAL IS

STABLE ABOUNTST LORRECTIONS

OF OBS. CONSTRAINTS:

DUTTA & SORBO, PRD 75 063574 (2007)

HOW TO ADDRESS COINCIDENCES? FINE TUNING?

"SCALING FIELDS" FEPPEIRA & JOYCE, PRL 79 4740 (1997)

UBIQUITOUS POTENTIAL!

HAS AN ATTRACTOR SOL'N & a lot

LEADS TO

$$\Omega_{\phi} = \frac{3(1+w_B)}{\lambda^2} \qquad w_{\phi} = w_B$$

FOR >> 16

INTERESTING BEHAVIOR!

BUT NO LOSMIC ACCELERATION

> 124 NON-NEGLIGIBLE DUPING MATTER ERA? SLOWS &M GROWTH!

BBN LIMITS STOP SO. I IN PAD'N GRA.

QUINTESSENCE "TRACKER"

A CLASS OF SCALAR FIELD MODELS THAT SOLVES
A PROBLEM OF FINE-TUNING INITIAL LONDITIONS

eg
$$V(\phi) = \frac{M^{4+N}}{\phi^N}$$

ATTRACTOR SOL'N
$$W_{\phi} = \frac{N}{2} w_{B} - 1 \quad \text{for} \quad SL_{\phi} < 1$$

$$\frac{N}{2} + 1$$

Physils?

VACUUMLESS 872

"PACETRACK" POTENTIAL

BINETRUY, PRD 60 063502 (1999)

MPS1670 & PRD 61 023504 (2000)

ZLATEV et al, PPL 82 896 (1999)

ያ

QUALITATIVE BEHAVIOR

"FREEZING" & "THAWING"

MANING

BARRY; FIELD IS FROTEN

BY HUBBLE FRICTION

W≈-1

LATE: BEGINS TO RELIAX W-> 0

EXAMPLE: V= 1n2p2, PNGB

FREEZING

EARLY: FIELD POUS AT A PLATE

SET BY HUBBLE FRICTION

AND CURNATURE OF V

LATE: FIELD SLOWS, BUT V W->-1

15 VACHUMLESS (VMIN 70)

OBSERVATIONARY, MUST HAVE W =- 1 TODAY

BUT IN US POOPLY CONSTRAINED.

FREEZING & THAWING

PC + LINDEP, PPL 95 141301 (2005)

A GUIDE TO THE SIZE OF

du FOR RUINTESSENCE

BASED ON AN EMPIPICAL ANALYSIS

OF MODELS, PHASE SPACE.

PESOLUTION OF A
HYPOTHETICAL EXP'T —
CAN IT DUTINGUISH
THOWN'S S. FREEZING?

dena

IF OBSERVATIONS CONVERGE ON W=-1+E, IEI << 1

THEN AT WHAT POINT DO WE DECLARE "\"?

GUIDANCE FROM THEOTHY?

MANY SCHURE FIGHD MADOUS AT 161 (61 ...

EXP'T?

WHAT'S THE SMOUST (E) THAT CAN BE DISTINGUISHED?

DBSERVATIONAL CONSTRAINTS

EVOLUTION OF H(2)

DATA: WMAP 3 DISTANCES

SDSS BAO

SHLS SHE

WANG & TEGMATUR
PRD 71 103573 (2005)

PPD 76 103533 (2007)

VIEW OF SDE IS SOMEWHAT

DIFFERENT

UNCOPPELATED ESTIMATES OF W

HUTERER & 100PMY
PRD 71 023506 (2006)

1.0 1.5

BANDPOWER BITMATES OF W W INDEPENDENT Z-BINS

JCAP, 0709:004 (2007)

-1.0 -1.0 -1.5

IMPPOVEMENT IN QUALITY, QUANTITY OF DATA

DATHE ENERGY PHENDMENDLUGY

SIMPLIFY DESCRIPTION; REPLACE SCRIPT FIGO BY W(a)

EQUIVACNUE
$$V(\phi)$$
 VS. $W(A)$

$$g(a) = g(ao) \exp \left(3 \int_{a}^{ab} (1+w) dena \right)$$

$$\phi' = a \sqrt{g(1+w)}$$

$$V = \frac{1}{2} e(1-w)$$

FLUCTUATIONS?

$$\frac{d^{2}}{dt^{2}} + 2M \frac{d \delta d}{dt} + (K^{2} + a^{2} V_{, \varphi \varphi}) \delta \varphi = -\frac{1}{2} \frac{dh}{dt} \frac{d \varphi}{dt}$$

[JEANS SCOLE FOR SUMMY-]
$$K^2 >> a^2 V_{, \varphi \varphi}$$
 FLUCTUATIONS DECRY VARYING φ lar w) is $K^2 << a^2 V_{, \varphi \varphi}$ " GROW

566:

SCALAR FIELDS FLUCTUATE

$$\begin{split} \phi(\vec{x},t) & \to \phi(t) + \delta\phi(\vec{x},t) \\ & = t + \delta\phi(\vec{k},t) \\ & = \frac{d}{dt} + \delta\phi'' + 2h \delta\phi' + (k^2 + a^2 V_{,bb}) \delta\phi = -\frac{1}{2}h'\phi' \\ & \text{CHANGE NATURBLES:} \quad \delta\Psi = \delta\phi/\sqrt{1+w} \quad , \quad \Psi' = \phi'/\sqrt{1+w} \\ & \delta\Psi'' + (2M + \frac{w'}{1+w}) \delta\Psi' + (k^2 - \frac{3}{2}(1-w)(4h' - 4h^2(\frac{5}{2} + \frac{3}{2}w)) + 3w'H) \delta\Psi \\ & = -\frac{1}{2}h'\Psi' \quad \text{SYNCHIDONOUS GANGE} \\ & \delta g = \frac{1}{a^2} \Psi' \Big((1+w) \delta\Psi' - \frac{3}{2}h(1-w^3) \delta\Psi \Big) \\ & \delta p = \frac{1}{a^2} \Psi' \Big((1+w) \delta\Psi' + w' \delta\Psi + \frac{3}{2}h(1-w^3) \delta\Psi \Big) \\ & \rho = (\Psi')^2 \quad \text{SD} \quad \delta = \frac{5p}{p} = \frac{1}{\Psi'} \Big((1+w) \delta\Psi' - \frac{3}{2}h(1-w^3) \delta\Psi \Big) \\ & \Theta = k^2 \frac{\delta\Psi}{W'} \end{split}$$

CONSTANT W

$$\frac{d^2}{d\ln a^2}$$
 SY + $\sqrt{\frac{d}{d}}$ SY = $-\frac{1}{2}$ $\frac{dh}{d\ln a}$ $\frac{dY}{d\ln a}$

SOURCE TERMS
$$\frac{14}{\text{den}} = \sqrt{\Omega_{DE} \frac{3}{8\pi G} + \frac{1}{a'}} \frac{a^2}{a'} \left(\frac{1}{a}\right)^{\frac{3}{2}(1+w)}$$

$$\frac{d^2h}{dm^2} + \frac{1-3w_B}{2} \frac{dh}{dkm} = -3 \frac{\delta_{P}+\delta_{P}}{P} \approx -3 \delta_{B}(1+w_B)$$

$$S_{B} = D_{B} \left(\frac{\alpha}{\alpha_{H}}\right)^{p/2} \qquad P = \begin{cases} 4 & \text{RAD'N EPA} \\ 2 & \text{MATTER GRAD'N EPA} \end{cases}$$

$$\begin{array}{c} 1 & \text{HOPLYON RE-GATPLY} \\ 1 & \text{HOPLYON RE-GATPLY} \end{array}$$

USE THESE TOOLS TO STOW

$$K \propto K_{S}$$
 (stans since) $\delta \varphi = -C_{T}D_{B}\alpha_{H}^{-2}\alpha_{M2}^{M2}$

$$M = p + 3(M_{B} - M) > 0$$

$$\delta o \delta \varphi Grows!$$

BUT AT EARLY TIMES , S& IS NEGLICIBLE!

AS FOR THE HOMOGENEOUS SOL'N

$$S\phi = C_{H} a^{-\frac{1}{2}v} \Theta(a, k, m, v)$$

HAPPMONIC DSCUMPOR

 $v>0$ SO GNUCLOPE DEEMLS

IF c_{H} IS SET $S_{C}^{0} \leq S_{C}^{0}$, m

THEN $S\phi$ DEEMLS BY PRESENT

AND INITIAL CONDITIONS ATTE NEGLIGIBLE!

ANOTHER LOOK AT CLUSTERING IN SCALAR FIELD DARK ENGREY

PRD 75 063507 (2007)

Homosentous / cosmic scrits

- UNINEPISE EXPANDS
- STOT DECPENSES
- PDE SURPASSES PM

INHOMOGENEOUS / CLUSTER SCATES

- SPHERICAL ONER DANSTRY OF MATTER LOWARSES
- I'm WCREASES
- 9 DE DECREASES

EXPECT A (SUBIUT) JOID IN DATELY ENERGY NEAR CLUSTER

$$Sp VS. Sp ?$$

$$Sp - Sp = \frac{1}{a^2} \Psi'S\Psi (w' + 3H(1-w^2))$$

$$= \frac{OS}{k^2} (w' + 3H(1-w^2))$$

Phase vaccing:
$$8\phi'' + 2H8\phi' + (k^2 + a^2 V_{,} p_{\phi}) 8\phi = -\frac{1}{2}h'\phi'$$

Phase speed = 1

(IN UNITE OF C)

AND
$$\dot{s}$$
, \dot{o} YILD $\dot{s} = -(1+w)(0+\frac{1}{2}\dot{h}) - 3H(\frac{sP}{sp}-w)s$
 $\dot{o} = -H(1-3w)0 - \frac{\dot{w}}{1+w}0 + \frac{sP/sp}{1+w}k^2s$

JUST AS FOR A FLUID, BUT SP/SP GWEN AS ABOVE.

PROLEED TO STUDY SCALAR FIELD DARK ENERGY LOSNOWORY

- 1. EXPANSION, DISTANCES, AGES DEPEND ON V ON W(A)
- Z. DM, BARYONS, PHOTONS AFFECTED

$$\frac{\text{den Sm}}{\text{dena}} \approx \left[\Omega_{m}(a)\right]^{8}$$

$$\gamma \approx \frac{3}{5 - \frac{w}{w}}$$
 + corrections

EVALUATE EXACTLY! BE SEE WANG & STEINMAREDT

APT 508 483 (1998)

PATE OF GROWTH OF SM SLOWS AS W->-1, 52m->0

3. SDE

CMB!

$$\frac{\delta \tau}{\tau}(\hat{n}) = \left[\left(\frac{1}{4} \frac{\delta p}{p} + \bar{\Psi} \right) - \hat{n} \cdot \bar{v}_{e} \right]_{\vec{r} = r_{us} \hat{n}}^{r_{us}} + \int_{0}^{r_{us}} d\lambda \left(\bar{\Psi} + \bar{\Psi} \right) [\lambda \hat{n}, \tau_{o} - \lambda]$$

DARK ENERGY & CMB

BOND + EFSTATION MNPAS 304 75 (1999)

GEOMETRIC DEGENERACY

HUBY et me PRD 59 063005 (1999)

COSMOLOGICAL MODELS WITH SAME

In + IDE = 1 GEOMETRY

12mh2 MATTER

IB M2 BUTWANS

MS SPECTRAL WOOK

I CMB ANGULAR DISTANCE

HAVE IDENTICAL CMB ANGOTROPY PATTERN,

WITHIN LOSMIC VAPILANCE

ALSO - EXTENT APPEARANCE OF DATEL ENERGY?

QUINTESSENTIAL INFLATION? PEEBLES & VILLAVEIN, PROSO 063505 (1999)

INTERMITTENT PERMODS OF DATE ENERGY DUMINANCE?

OR KINMION ?

ey SMATI, PUBST 121 (2003)

AT LAST SCATTERING?

eg DOPAN et al, PRD 64 123520 (2001)

K-ESSENCE

NON-CANONICAL KINETIC ENGRAY

$$X = -\frac{1}{2}(\nabla \Phi)^{2}$$

$$L = P(\Phi, X)$$

$$S = 2 \times P_{1} \times P_{2}$$

example:
$$p = f(b)(x - x^2)$$
, $f(b) \propto b^{-n}$

$$\Rightarrow g = f(b)(x - 3x^2)$$

$$W = -1 + \frac{n}{2}(1 + w_B)$$
IF $n < 2$ Then $x - essence$ is A "Tracker?"

CHIBA etal, PRD 62 023511 (2000)

PPU BS 4438 (2000); PPU BS 4438 (2000);

ADVANTAGE? THERE EXIST ATTRACTORS

nadiation - like

do Sither (w=-1) - like

SO THE BACKGROUND MATTOR & RADIATION PUSHES K-ESSENCE From ONE ATTRACTOR TO THE OTHERS. HELP SOUVE COINCIDENCES?

K-ESSENCE PERTURBATIONS

$$S + \dots + G^{2} | L^{2} S | = SOUPLE TOTLMS$$

$$G^{2} = \frac{P_{1} \times P_{2}}{S_{1} \times P_{3}}$$

IN TERMS OF FLUID VAR-LABLES 8, 0 FOR K-ESSENCE

$$\dot{S} = -(1+w)(\theta + \frac{1}{2}\dot{h}) - 3H(\frac{SP}{SP} - w)S$$

$$\delta p = \zeta^{2} \delta p + g \frac{\theta}{k^{2}} [3 H(1 \tau w)(\zeta^{2} - w) + \tilde{w}]$$
=

FOR CANONICAL SCALARZ, 32=1.

K-ESSENCE

SOUND SPEED
$$G^2 = \frac{P_{1X}}{S_{17}} > 1$$
 is FEASIBLE!

THIS IS BAD NEWS,

AND IT OCCUPS FOR THE MODELS OF INTEREST

SEE BONVIN et al, PPL 97 081303 (2006)

$$W = -\frac{g}{yg'}, \quad c_s^2 = \frac{g - yg'}{g^2g''}$$

AS PIP DECAY IN TIME, Y INCREASES

NEXT
$$W' = -\frac{(1+W)(C_3^2 - W)}{C_3^2 y}$$
 SO IF $W > 1 + W' < 0$
THEN $C_3^2 > 1$

DOES THIS DECUR?

THESE IL ESSENCE MODELS HAVE FIXED POINTS

$$r = \frac{3}{2\sqrt{2}} (1+w) \sqrt{-g'} y = \omega_{NSTANT}$$

=
$$\Omega_{K}$$
 ONE FIXED POINT IS PADIATION-LIKE

PHASE.

SO r(RMO) < r(ACC), y(RMO) < y(ACC), g(RMO) > 0, g(ACC) < 0SO r must increase, but $\frac{dr}{dy} = \frac{3}{2\sqrt{8}} \frac{g''y}{\sqrt{-g'}} (W-1)$

g''>0 IN BROKE THAT $G^2>0$ (FISE INSTABILITY!)

SO THEN W-1>0 AND W'<0 $G^2>1$ NECESSARILY OCCUPS!

" CHAPLYCIN GAS"

CONSIDER A COSMIC FLUND FOR WHICH

KAMENSHLHIK ETAL,
PLB 571 265 (2001)

A SIMILAR E.O.S. OCCURS IN SPECIAL
HYDRODYNAMIC SITUATIONS

BENTO ET AL, PRO 66 043507 (2002)

A>0, 8>0

HEGLIGIBLE PRESSURE AT CARLY TIMES STRONG NEGATIVE PRESSURE TUDAY?

BACKGROUND EVOLUTION OF DATH ENGLOY

MAY BE ACCEPTABLE - BUT FUCTUATIONS?

EQUIVARANT SCALAR FIELD: $V(\phi) = \frac{1}{2}\sqrt{A}\left(dh^3\phi + sedh^3\phi\right)$ (T=1)

PEPLACE (SOME) DATELL MATTER?

PROBLEMS WITH SOUND SPEED, AS SCALAR FIELD OR $4^2 = \frac{dP}{dP} = -\alpha W$?

SEE SANDVIK et Ne, PRD 69 123524 (2004)

SPINTESSENCE!

COMPLEX SCATURE FIELD DATELL ENGROY

BOYLL et al, PLB 545 17 (2002)

FIGLO SPINS IN POTENTIAL ENGROY?

 $\phi = Re^{i\Theta}$ If $\dot{\Theta} \gg H$ then $W \approx \frac{RV'-2V}{PV'+2V}$

EXAMPLE: $V = V_0 \left(\frac{R}{R_0}\right)^N$ bives $W = \frac{(N-2)}{(N+2)}$

DAPPIC ENERGY RECEVIRES WK-73 80 N<2

(IN) STABILITY: JEANS WAVETUMBER $K_J^2 \sim GV' < 0$ UNSTABLE!

SO FLUCTUATIONS PAPEDLY GROW
FORM "Q-BALLS"

SEE LOUEMAN, NPB 262 263 (1985)

PARK ENERGY & VARIATION OF CONSTANTS?

WEBB et N, PPL 87 091301 (2001)

review: UZAN, Per. MOD. Parys. 75 403 (2003)

$$L = -\frac{1}{2}(\nabla \phi)^{2} - V(\phi) - \frac{1}{4}(1 + \epsilon \frac{4}{M}) F^{2}$$

CLASSICAL PROBLEM: MUST STABILIZE &: SLOWLY VARYING DARK ENGROY?

AND KEEP | & | << |

WATCH OUT FOR GARLY UNIVERSE CONSTRAINTS
FROM BBN, CMB IF & VARIES.

QUANTUM PROBLEM: DARK BHEROY NOT SO DARK?

BUT $\delta \Lambda = \left(\frac{\delta \alpha}{\alpha}\right)^n \Lambda$ VARLUM?

WOULD SPOIL ANY CANCELLATION SCHEME

$$\Lambda_{\text{EFF}} = \Lambda_{B} + \Lambda = D$$

$$\rightarrow \Lambda_{B} + \Lambda \left(1 + \left(\frac{\delta \alpha}{\alpha} \right)^{n} \right) \neq 0$$

BANKS et al, PPLBD, 131301 (2002)

W<-1? PHANTOM DAPLY ENERGY, "BIG RIP"

OBSERVATIONS SEEM TO INDICATE WY-1 IS ALLOWED WHAT DOES IT MEAN?

CALDWELL, PLB 545 23 (2002)

MISINTERPRETATION OF OBSERVATIONS
OF VIOLATION OF SACRED LAWS OF PHYSICS
eg GR NOT VALID?

WHAT WULD PRODUCE W<-1?

SCALAR FIELD WY WRUNG-SIGN KINETIC ENGREY

NEGATIVE GNERGIES ?

THIS IS (CLASSICALLY) STABLE!

ENERGY DENSUM GROWS

W= COUSTANT -> g d a

IF EXPANSION IS MATTER DOMINATED FOR tetm,

"PRIANTOM" " t>tm

 $a(t) := \begin{cases} a(t_m) \left(\frac{t}{t_m}\right)^{\frac{2}{3}} & \text{t < t_m} \\ a(t_m) \left[-w + (1+w)\frac{t}{t_m}\right]^{\frac{2}{3(1+w)}} & \text{t > t_m} \end{cases}$

1

SCALL FACTOR DIVERGES IN FINITE COSMIC TIME!

CURVATURE DIVERGES

THIS IS A FUTURE SINGULARITY.

"BIG RIP"

CARRON et al, PRD 68 023509 (2003)

CLASSICATUM, NEGATIVE-KINETIC SCALAR FIELD WITHOUT COUPLINGS
TO OTHER FIELDS, MATTER IS STABLE.

QFT, SUCH A FIELD IS UNSTABLE
AT LEAST TO THE SPONTANEOUS DECAY INTO GRAVITONS

UNLESS & OF h is VALID
UP TO SOME SCALE, \ ?

[>> H. PEGNIPES > \$ 10° eV IF \$, h couple (UNCONFORTABLY LOW)

λ ≤ 100 MeV IF SYMMETRIES OF Φ RESTRICT COUPLINGS

SAFE FOR NOW?

NOVEL PHOTON INTERACTIONS IMPERSONATE W<-1?

SN LUMINOSITY - DUTANCE DIMINISHED

BY PHOTON-AXION WNVERSION T-> a

 $L = \frac{a}{M} \vec{E} \cdot \vec{B}$ in a magnetic field $B \sim 10^9 \text{ GAUSS}$ M ~ 10" GeV, maxing ~ 10 eV

(axion is not dark energy)

CSAKE et al, PTL 80 161302 (2002)

CAN THIS MECHANISM MAKE W=-1?

NO! SONG + HV, PRO 73 023003 (2006)

DIMMING PROTON CONVERSION MUST EXPLAIN

BAO DISTANCES, AS WEW AS X-PAM, CAB RESULTS.

BUT IF TRUE W ~- 1, DIMMING CAN MAKE IT APPEAR W S-1.

W<-1? OTHER CONSIDERATIONS

IF DM DECAYS FASTER THAN PM & a⁻³

THEN D.E. WITH W=-1 CAN APPEAR TO HAVE W<-1.

eg DAS et al, PRD 73 083509 (2006)

HVEY et al, PRD 74 023579 (2006)

IF W EVOLUTS PAPIDLY

BUT WE INTERPRET DATA AS W= CONSTANT

CAN OBTAIN W<-1!

PRIORS ON W CAN GREATLY BIME PESULTS

eg MADR et al, PPL 86 6 (2001) PPUD 65 123003 (2002)

Example: W(z) = -0.7 + 0.8z for 0 < z < z, sim = 0.3LOGICS LIKE (SIMULATED DATA) W = -1.75LF CONSTANT W IS ASSUMED /

MODE BLAS!

WISIDER SN MAGNITUDES OR DISTANCES

AND CONSTANT - W DATEK ENERGY

$$d_{L} = (1+2) \int_{0}^{2} dz' / H(z') , H(z') = H_{0} \left[\Omega_{m} (1+z')^{3} + \Omega_{DE} (1+z')^{3} (1+u) \right]^{2}$$

$$\Omega_{DE} = (1-\Omega_{m})$$

"NOT AW W IS THE SAME"

STATETING PRUM A FIDUCIAL WO

CHANGING W TOWARDS NEGATIVE PRODUCES

LESS CHANGE IN DISTANCES THAN

CHANGING W TOWARDS POSITIVE ...

$$P(w, \Omega_M) = N \exp \left(-\frac{1}{2} \sum_{i} \left[m_{obs} - m_{thy}(w, \Omega_M)\right]^2/\sigma^2\right)$$

CROSSING W=-1

INDICATES INTERNAL DEGREES OF FREEDOM;
A SIMPLE SCALAR FIELD CANNOT GROSS

L = ± = (74)2 - V(4)

L= P(X, 4) generalized sealer has
pathologies if it crosses

percon Approxin?

MODEL GENERAL BEHANDER USING 2+ FIELDS

b, w/ w>-1, &2 w/ w<-1

TO RECOMMODATE W(a)

SEE VIKMAN, PRO 71 023575 (2005) HU, PRO 71 047301 (2005) CALDWELL + DOTLAN, PRO 72 043527 (2005)

CHAMELEON QUINTESSENCE

SCALAR FIELD GAINS DENSIM-DEPENDENT MASS

$$L = \frac{P}{16\pi G} - \frac{1}{2}(\nabla \phi)^2 - V(\phi) - e^{\beta \phi/MPL} pm$$

BUT LEAD TO LONG RANGE FORCES!

SEE KHOUPY & WELTMAN PPL 93 171104 (2004) PRO 69 044026 (2004)

UNUSS & IS V. HEAVY,
COUPLING TO PM KEEPS & HEAVY
HERE IN THE GALAXY!

NEUTPINOS

$$(\Delta M_{23})^2 = 8.0 + 0.4 \times 10^5 \text{ eV}^2$$

 $(\Delta M_{23})^2 = 1.9 - 3.0 \times 10^3 \text{ eV}^2$

PDG 8130107

DARYL ENERGY

$$g = \frac{3}{8\pi G} + \frac{10^{2}}{100} \Omega_{DE} = (0.0023 \text{ eV})^{4} = (5.5 \times 10^{6} \text{ eV}^{2})^{2}$$

$$h = 0.7, \Omega_{DE} = 0.75$$

DO NEUTRINOS, OSCILLATIONS HAVE ANYTHING TO DO WITH DAPUL ENGLOY?

IDEA: MASS VATIVING NEUTRINDS (MavaNs)
COUPLED TO QUINTESSENCE

JCAP 0410:005 (2004)

COUPLED QUINTESSENCE

$$L = -\frac{1}{2}(J\phi)^{2} - V(\phi) - m(\phi)\Psi\Psi + L\Psi, sm$$

$$e\phi: m(\phi) = m_{0}e^{f(\phi)}$$

PLENTY OF INVESTIGATIONS: WETTERLEH, ARA 301 321 (1995)

AMENDOLA, PRO 62 043521 (2000)

Î

DUTINGUISH W(&) FROM

GRAVITATIONAL COUPLING

IF f(b) DECMYS

THEN com decrys FISTER THAN Ya3

WATER OUT FOR CMB, LSS,

LONG RANGE FORCES

INSTABILITY

NEUTRINOS: AFSTIONEDI et al, PRD 72 065024 (2005)

CHAMELEON: KOWSTD, PRD 72 043576 (2005)

BEAN etal, 0709:1128

DE & DM UNCOUPLED LEADS TO SUPPRESSED DM GROWTH

COUPLED " STRONGLY ENTIANCED "

WHAT HATPENS: DATEK FLUID

$$\frac{5}{5} + A(w, c_5) + (B(w, c_5) + K^2 \frac{SP}{SP}) = SOURCES$$

$$\frac{SP}{SP} \propto V' \text{ on somm scales}$$

$$V' < O \text{ PUNTWAY!}$$

GENERALLY, ENGREY FLOWS FROM DE INTO DM
DE'S NEGATIVE EXIN OF STATE MEANS IT CAN
PEDUCE ENGREY FASTEST BY TRANSFER
TO DM

IMPERFECT FULLD Tow = (g+pt) unux + Pt gm

TOTAL PRESSURE PT = P+ TT

NON- EQUILIBRIUM PRESSURG: TT < 0 ?

CONSIDER NUMBER DENSITY OF PAPETICLES

 $\dot{n} + 3Hn = nT$ n = N/V, $\Gamma = \dot{N}/N$

p+ 34(p+p+)=0

TdS = -34 TT - (9+p) T

S=0 → T=-(g+p) T 3H

T>0 (PARTICLE CREATION)

LENDS TO NEGATIVE PRESSURE

IS THE DARK ENERGY A SOUID?

PRD 60 043505 (1999)

TANGLED WEB OF

NON-ABELIAN

LOSMIC STRANGS

W=-1/3

ADOPT A CONTINUM DESCRIPTION
-1< W<->3

MATERIAL IS ELASTIC, SUPPORTS SCALAR, VECTOR, TENSOR PERSONS

IMPAUT ON CMB, LSS - SEE BATTYE+ MOSS, JCAP 0506: BOI (2005)

4 ANISOTROPIC O DAMPS PERMEBATION OFFINTH
CONSESSION BETWEEN & & Y

A CLOSER LOOK AT ANISOTRUPIC DARK ENGREY

$$\dot{S} = -(1+\omega)(0+\frac{1}{2}\dot{h}) - 3\lambda(\frac{SP}{SP} - \omega)S$$

$$\dot{\Theta} = -\lambda(1-3\omega)\Theta - \frac{\dot{\omega}}{1+\omega}\Theta + \frac{SP}{SP}\frac{k^2S}{1+\omega} - k^2\sigma$$

REQUIRE INPUT: Sp, or IN TERMS OF Sp, O, h, n.

PHENOMERULOGYCAL MODEL

$$\frac{\delta P}{\delta P} = C_s^2$$
, $\dot{\sigma} + 3H\sigma = \frac{8}{3} \frac{C_v^2}{1+w} \left(\Theta + \frac{1}{2}\dot{h} + 3\dot{\eta}\right)$

SET CV=0 FOR PERFECT FLUID

CV= 13 FOR APPROXIMATE DESCRIPTION
OF RELATIVISTIC SPECIES

SEE HU, APJ 506 485 (1998) \ MOTR et NO, 0708.0830

BATTYERMOSS
$$\left[-S+3(1+w)(n-n_{\pm})\right]$$

WHAT HATPPENS IN THE WO - 1 LIMIT ?

DEPINE V= (1+w) O AS PHYSUAL VARIABLE

$$\dot{S} = -V - 381 \left(\frac{8P}{59} + 1 \right) S$$

$$\dot{V} = -4(1-3w)V + \frac{8P}{59}k^2S - (c^2(1+w))\sigma^2$$

(A) SOURD DAPER ENGREY

$$(1+w) = (6^2 - w)(-8 + 3(1+w)(n-n_{\rm I}))$$

METTAL PETT'NS DROP OUT!

HOMOGENEOUS EQ'N FOR 8 HAS ONLY DECAYING SOUNS
SO STRANGE "WRINKLES" IN "N" STRANGETED OUT!

(B) Hu's MODER
$$\dot{\sigma} + 3H\sigma = \frac{cv^2}{mv} \left(\Theta + \frac{1}{2}\tilde{h} + 3\tilde{\eta} \right)$$

$$\rightarrow (1+v)\sigma \approx \frac{1}{a^3} \left(\frac{1}{2} + a^3 cv^2 \left(\Theta + \frac{1}{2}(\tilde{h} + 6\tilde{\eta}) \right) \right)$$
METTILE PERFINS PERSIST $\frac{1}{a^3} = \frac{cv^2}{a^3} + \frac{1}{2} + \frac$

GENERAL UNE OF INQUIRY - CONSTRAIN DARK ENERGY SOUND SPEED

IMPRINT: LARGE ANGLE CMB

V. LARGE SCALE POWER

LD LENSING?

SOME PERS. EPULSON OF AR, PRUBB (21301 (2002)

DEDGO GT AR, PRO 67 (03509 (2003)

BEAN & DORE, PRO 69 083503 (2004)

HANNESTAD, PRO 71 (03519 (2005)

HAPPD TO CONSTRAIN!

CURVED SPACE QFT MODELS OF DATELL ENEIGHY

PATERER & PANAL, PRD 60 063572 (1999)

NOW-PERTURBATIVE EFFECTS DUE TO REMORANTIZED STRESS-ENGREMY
TENSOR OF A MOSSIVE SCALAR FIELD

$$W = \int d^{4}x \sqrt{5} \left[K_{0}R - 2K_{0}\Lambda + \left(\alpha_{1}R^{2} + \alpha_{2}R_{m}R^{m} + \alpha_{3}R_{xp85}R^{4p85}\right) - \frac{1}{64\pi^{2}}R_{2}\ln\left(\frac{M^{4} + \epsilon^{2}}{m^{4}}\right) \right]$$

m = SCALAR FIELD MASS

RZ aumpranc Function of curumure R, Rmu, Rmup, OR, etc

PARKER & RAVAL :

ERINS OF MOTION HAVE A POLE AT R=m² —

CUPVATURE IS POPLED TO A CONSTANT (à la dS)

HOWEVER, WITHIT = -1 SU WELF -> -1 FROM BEION!

A [dw] IS BILL (TOO BILL TO MATCH ORS.)

SEE CINDULU et ~2, PRD 73 023573 (2006)

OTHER US OFT MODELS?

ONEMUI & WOODMRD, PRD 70 107301 (2004)

ANTONIADIS, MARUR, MOTTOLA., NEW JOURNAL PROYS.,
9, 11 (2007)

GRAVITY ?

B DUE TO A DEPARTURE FROM GR?

APPLE

FRIEDMANN BRIN: 3H2 = 8TG L PM,R + PDE)

Due to Actification

- THE OWSET OF A NOW
 FLUID UMPONENT.
- BUT IS CAUSED BY AN INCREASE
 IN NEUTON'S CONSTANT, AS IT APPEARS
 IN THE ENERGY DENKING ERVANION.

1 WHAT ABOUT N?

SPECULATE: G=G(\$)

DYNAMICS OF \$ (OP OTHER FICIDS)

CAUSE THE NOW GRANITATIONAL

PHENOMENA

AND CAN'T I ALWAYS

FORCE OBSEPVATIONS TO

PIT THE FRIEDMANN EQ'N

WITH SOME DARK ENTROY?

PERHAPS GR IS JUST AN INTERNEDINTE THEORY!

SLAWAR-TENSOR GRANITY

$$S = \int d^{3}x \sqrt{-g} \left[\frac{R}{4000} f(\phi) - \frac{1}{2}(\nabla \phi)^{2} - V(\phi) + L_{M}(g_{mv}, \Psi) \right]$$

BEWARE OF CONFORMAN TRANSPORMATIONS

$$S = \int d^{2}x \sqrt{-3} \left[\frac{\tilde{E}}{16\pi G} - \frac{1}{2}(\nabla \tilde{q})^{2} - V(\tilde{q}) + L_{M}(\tilde{g}_{M}, \Psi, \tilde{q}) \right]$$

VARYATION WITH RESPECT TO go + Tray Set Li et al, arxiv: 0805.3428

Or FLANAGAN, PPL 92 07-1101 (2004)

TWO WIDELY-STUDIED CLASSES OF MODELS

A) "EXTENDED QUINTESSENCE"

INVESTIGATE; SOLAR SYSTEM CONSTRAINTS

PERROTTA et al, PRD61 023507 (2000)
and many more!

SNR VS. (5(4)

LMB, USS, -..

MUST LOOK A LOT LIKE GRAN!?

KICKOFF: CARPOU et al, PRD 70 043528 (2004)

- 1) THIS IS EQUIVALENT TO BRANS-DICKE THY. WITH WBD = D $S = \int \frac{d^{2}x}{\sqrt{-3}} \left[\frac{R}{16\pi G} F(\phi) + \omega_{BD} (\nabla \phi)^{2} - V(\phi) + L_{M} \right]$ $\begin{cases} 3evo \end{cases}$ & IS JUST A CONSTRAINT, &= &(R).
- 2) WBD=0 MEANS TPPN= 1/2 WHICH IS PURED OUT ! SEE GIBA, PLB 575 1 (2003)

WNSTRAINTS, EVASION! CHIBA et LL, PRD 75 124014 (2007) EPICKEEK et al, PRD 74 121501 (2006)

SCHWARZSCHILD

(JUST LIKE ERM!)

R=0? EXTERZIOR GEOMETRY MUST

MATCH ONTO INTERZIOR SOUN,

S.T. R & O OUTSIDE SUN!

NEW f(R)-GRAVITY FIELD ERINS WOUDE GRIN FOR R.
R(SOLAR SYSTEM) & PLUS MOLDOY)

SUN SOLATE & SYSTEM GALAXY CLUSTER COSMOS

the & SAWICKI, PRD 75 064004 (2007)

3) EXCITEMENT? $f(R) = \frac{1}{16\pi4}(R-M/R^n)$

HOW TO ATEPANGE R -

SMALL 12 -> NOVER BEHAVIOR

N>O ATTRACTOR BEHAVIOR: ACCELERATION

UNFORTUNATELY, DUPING MATTER-DOMINATED ERA

PRIBIL TO ACCELERATION

a(t) a t 2 NOT t 2/3 PUINS CMB, LSS!

AMENDOLA et al, PPL 98 131302 (2007)

DEPARTURE FROM GR: PHENOMENOLOGY

- 1. REMOVE DATH ENGREY (DISPEGATED CCP)
- 2. MODIFY G, POTENTIALS &, Y

 SATISFY SOLAR SYSTEM CONSTRAINTS, 14/4-11«1

 DOCS COSMOLOGY PUT?

REMATUR - MANY SCHART-TENSOR PREDUCT

$$\frac{d}{dt} + \frac{d}{dt} = \frac{d$$

UMPLATION IN THE AMOUNT OF CUPVATURE PGR UNIT MASS HOW TO BUILD A THEORY OF GRAVITY (WITHOUT A LATERANGIAN)

1. ASSUME BRGD IS ACOM

eg EFFECTS OF NON-GTZ GRANITY MIMIC A.

2. IMPOSE \$ \$4 + W += (1+ W)\$

لے

NOT TOO DIFFERENT THAN QUINTESSENCE W,
THIS NOW VATZIABLE PARAMETERISES OUR IGNORANCE!

DESIRE WILL IN SOLAR SYSTEM

BUT [W/ ~ O(1) ON HUBBLE SCALE

WHAT TO EXPECT

1 4 6 ≈ -4 1 4 5 p

$$\frac{4-4}{4} \approx \frac{35p}{5p} = \overline{w}$$

EXPET W~ ±3 DDE

3. PERTURBATION EQUATIONS

DISCARD LINEARIZED BINSTEIN BOINS

BUT CAN ASSUME NOW GRANIM DOGS NOT

MINIC NOW MOMENTUM FLOW - MATTER (D,B)

SOIS THE ONLY PREFERRED FRAMES!

SO KEP "t-1" FRIN

K2(1+ H4) = 4114a2(g+p) D

LO DUE TO MATTER, RADIN.

SUP BETWEEN & RY (AN ALSO APLISE FROM SHEATZ, OT SO ALLOW

12 (4-4) = 12TTGG2(9+P)0 - K2 WA

AND IMPLEMENT K, T- DEPENDENCE FOR W

SEE BERTSCHINGER, APT 648 797 (2006) CAUDUGU etal, PRD 76 023507 (2007) DANIEL etal, PRD 77 103573 (2007)

VERSATILITY

SCALAR-TENSOR TAY.

$$S = \int d^{4} \times F_{5} \left[\frac{f(9,12)}{16\pi 4} - \frac{1}{2}\omega(9)(79)^{2} - V(9) + Lm \right]$$

$$\pi \omega \quad \Psi - \phi = -\left(\frac{2f}{2R}\right)^{7} \left[\frac{2^{2}f}{2922} S_{5}^{9} + \frac{2^{2}f}{2R^{2}} SR \right]$$

$$= \varpi \phi$$

SEE ACOUNTIVA et NP, PRD 70 023575 (2004) SCHIMO et NP, PRD 71 083572 (2005)

WALL et LR, PLB 485 208 (2000)

$$S = \left(\frac{15}{45} \times \sqrt{\frac{15}{5}} \left[\frac{(5)}{16\pi 6\pi} + S(x) \left(\frac{(4)}{16\pi 6\pi} + Lm \right) \right]$$

rc = 1 G5 CHARACTERISTIC SCALE: COSMIC!

H = CONSTANT IS A SOWTION!

(NOT ZEPO!)

SEE LUE, PHYSICS PEPOPTS 423, 1 (2006) SONG et al, PRD 75 064003 (2007) MASSIVE GRAVITY

SEG DUBOUSKY, JHEP 0410:076 (2004)

LOPENTS-VIOLATING

S=
$$\left[\frac{1}{2}x\sqrt{q}\right]\left[\frac{1}{10\pi G}+\frac{1}{2}(x,q)+\frac{1}{2}\right]$$

MASSIVE GRAVITY

"F" LEADS TO DM, DE-LIKE CONTRIBUTIONS TO FRIEDMANN BOIN

PREDICTS $d-4=\Theta(x)a^n$ PARAMETER OF TMY

SET BY SPATIAL PUNCTION SET BY INITIAL LONDITIONS

SEE BREBONNE + TINYMEN, PRO 76 084011 (2007)

PHENOMENOLOGICAL MODEL

$$\overline{W}(k,t) = \overline{W}_0 \frac{\Omega_D(k)}{\Omega_M(k)}$$

Expect Wo ~ 11

ALT. MODEL?

BHOTSGINGER+ ZUKIN, AVXIV: 0801.2431

HV & SAWICKI, PRD 75 104043 (2007)

CONSERVENCES:

CMB (

CHANGE KW (++ 4)

LSS

AMPLITUDE

RATE OF GROWIN

PENRING (4+4)

WRIGHT OBSERVATIONS:

-0.5 5 Wo 5 0.25 (~20)

CAN SUPERHOPIZON COSMOLOGICAL PERTIONS
EXPLAIN THE ACCOLEPATION?

BUT 8~10 AT K~H IN STD. INFLATIONARY

MODEL HIPATA & SELJAK, PRO 72 083501 (2005)

ISHIBASHI & WALD, CUC 23 235 (2006)

LARGE SITUATIVE DOES DISTORT LIGHT RAYS -LENSING DEFLECTION, MAGNIFICATION

> PRIEMAN, ASTro-Ph/9608068 BONVIN et Ne, PRO 73 023523 (2006)

DISTANCES & REDSHIFTS

INTEGRATE GEODESIC BOIN: (SEE GAPFINKLE, COG-23 4811 (2006)

GARCIA-BELLIDO et al,

JCAP0804:003 (2008)

SAMPLE MODEL

INSIDE, MY CENTER SQ = 0.2, H= 70 km/s/mpc

DUTSIDE, FAR AWAY SZM=1, Ho=35 km/s/Mpc

PECAU BAPATUTT et Ne, SCIENCE 267 980 (1995)

NO ACCENTION, BUT INTERPRET LUMINOSITY DISTANCE
VS. PEDSHIFT AS IF IN RW W/ DARK ENERGY

ALTERNATIVE SCENARIO

WE PESIDE AT THE CENTER

OF A DEEP VOID - LOSMIC

ACCELERATION IS A MIPAGE

NO DAPL ENERGY

NO ROBERBON - WALKER METTIC

LEMANTRE-TOLMAN-BONDI

$$ds^{2} = -dt^{2} + \frac{(\partial_{r}R)^{2}}{1 + K(r)r^{2}} dr^{2} + R^{2}(t,r) d\Omega^{2}$$

$$K(r) = K_0/(1 + (r/r_0)^2)$$
 curvature PCN

PATE OF EXPANSION ALONG PADIAL, TRANSVERSE DIRECTIONS IS DIFFERENT! HR, HT

"LTB" MODEL CAN CATISFY LUMINOSITY DISTANCE - REDSTRIFT

CONSTRAINTS FROM SNE, BAD, CMB

CMB ANSOTROPY CANNOT "SEE" VOID

BUT CMB SPECTFUM WOULD BE DISTORTED FROM BLACKBODY

CROWEN FSTEBBINS, PPU 100 191302 (2008)

> SUPPICIENT TO PULE OUT THESE MODELS!

COBE FIRAS: Y < 15x10 6 (95% CL)

MANY EXPERIMENTS OF BISCHWATIONAL PROGRAMS
ATMING AT DATEK ENERGY

source: "DARRY ENERGY TASK FORCE"

Nttp://www.nsf.gov/mps/ast/detf.asp

OBSCRUATIONAL METHODS: SNe, BAD, WEAR LONSING, CLUSTORS
WHICH IS BEST? ATTEMPT TO DISCRIMINATE WITH "FIGURE OF MERIT"

"STAGE III" SMALL, FAST, INTEXPENSIVE, CURRENTLY PROPOSED

"STATUE IV" FUTURE, EXPENSIVE, ANTHORITATIVE

* LSST (MAP THE SKY EVERY NIGHT) YEAR; 2013? ~ Bu teltscope w/ HUGE CAMERA

* JDEM dark energy satellite, eg SNAP PROPOSALS IN 2000/9?

INTERESTING TOPICS NOT DISCUSSED

HOW TO BEST MEASURE COSMIC PARAMETERS

EXTRA DIMENSIONS, BRANE WOPELDS

QUINTESSENTIAL INFLATION

RUPHTUM COSMOLUBY, OPMITY

HOLOGPAPHY & A

PRE-BIG BANG, CYCLIC, EKPYRDTIC SCENAPLOS