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A Realization =   A Realization =   SignalSignal +  +  NoiseNoise

Uncertainty of seasonal prediction
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EnsembleEnsemble
Ensemble MeanEnsemble Mean
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Ensembles Forecasts with Small Initial PerturbationsEnsembles Forecasts with Small Initial Perturbations

U850 (130-140E, 3S-3N)



A Realization =   A Realization =   SignalSignal +  +  NoiseNoise

Uncertainty of seasonal prediction

True
+

Error

Imperfectness of Model Imperfectness of Model Systematic ErrorSystematic Error

Uncertainty from Initial Condition

Uncertainty from Model Physics and Dynamics

The Nature of the Seasonal Prediction



Perfect prediction

Theoretical limit

Actual predictability

Internal chaotic Process

Model quality

Post-processing

Quality of IC & BC

Potential predictability

In climate prediction, potential predictability is regarded as the predictability with full information of 
future boundary condition (e.g., SST). Thus, predictability is varied with similarity between the 
response of real atmosphere and prediction method to the same BC. 

Establish “potentially” possible prediction skill with state-of-art prediction system

Predictability of Seasonal Prediction 



Perfect model correlation & Signal to Total variance ratio

Z500 winter (C20C, 100 seasons, 4 members)

Although the 4 member is not enough to estimate Potential 
predictability precisely, the patterns of 2 metrics are quite similar



Climate state variable (X) consists of predictable and unpredictable part.

Predictable part = signal (Xs) : forced variability

Unpredictable part = noise (Xn) : internal variability 

X = Xs + Xn

The dynamical forecast (Y) also have its forced and unforced part. 

forecast signal (Ys) : forced variability of model

forecast noise (Yn) : internal variability of model

Y = Ys + Yn

The internal variability (noise) is stochastic

If the forecast model is not perfect, Xs≠Ys. (there is a systematic error)

Decomposition of climate variables



The correlation coefficient is maximized by removing V(ye) and V(yn)

The most accurate forecast will be the SIGNAL of perfect model. 
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Noise and Error are not correlated with others.

: regression coefficient of signal

Maximizing correlation in the presence of error in signal and noise
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Upper limit of prediction



Strategy of Prediction

1. Reduction of Noise

• Averaging large ensemble members 
(if number of ensemble members is infinite, Noise will be zero in the ensemble mean)

2. Correct signal

• Improving GCM

• Statistical post-process (MOS)

• Multi-model ensemble

The strategy of seasonal prediction is to 

obtain “perfect signal” as close as possible. 

(i.e. reducing variance of systematic error and variance of noise)
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Maximum prediction skill : potential predictability

Maximum prediction skill (=potential predictability of particular 
predictand) is a function of Signal to Noise Ratio
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Forced & Free variance

Intrinsic transients 

due to natural variability 

Climate signals 

caused  by external forcing (e.g. SST)
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Forced Variance Noise Variance Signal/Noise

Variance analysis of JJA Precipitation Anomalies



Prediction Skill of JJA Precipitation (21 yr)

(a) MME1(Model Composite)

(d) NASA

(b) SNU

(e) NCEP

(c) KMA

(f) JMA

Temporal Correlation



Increase of Moisture supply

Where radiative flux control the SST…
1. Radiative flux would lead the SST anomalies

2. Temporal correlation between PRCP & SST can be a negative sign

Air-sea interaction in the tropical Pacific

Radiation flux Ocean Dynamics

Radiative Cooling

SUNSUNSUN

Radiation flux Ocean Dynamics



Lead-lag correlation between pentad SST and rainfall data for JJA 82-99

Lead-lag pentad number

Rainfall lead SST lead
> -20        -15         -10        -5           0          +5       +10         +15     +20 <

Only more than 95% significance level is shaded

Atmosphere forces the ocean where the correlation coefficients 
between rainfall and SST show negative.

-30              -20            -10                0            +10             +20            +30   

days

Rainfall lead Rainfall lag

Western North Pacific (5-30N, 110-150E)



Prescribe SST as boundary condition

Atmosphere

OceanSST Prediction

Two-tier One-tier

Key SST prediction skill Coupling of 

atmosphere and ocean process

Atmosphere

Current activities of seasonal prediction

Climate Prediction System
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CliPAS/CGCM CliPAS/AGCMMME

Global domain pattern correlation(60S-60N, 0-360)

CGCMCGCM

AGCMAGCM

The state-of-the-art Climate Prediction



Strategy of Prediction

1. Reduction of Noise

• Averaging large ensemble members 
(if number of ensemble members is infinite, Noise will be zero in the ensemble mean)

2. Correct signal

• Improving GCM

• Statistical post-process (MOS)

• Multi-model ensemble

The strategy of seasonal prediction is to 

obtain “perfect signal” as close as possible. 

(i.e. reducing variance of systematic error and variance of noise)



Multi model ensemble prediction

Error correction

Noise dynamics



Regarding actual constraints, available large ensemble forecast 
with well-tuned post process will be an appropriate strategy of 
seasonal forecast. 

Statistically optimized multi model ensemble prediction

Forecast history

Observation history

Transfer function

O’=L(F)

Independent forecast

Corrected forecast

There are many approaches in post-process, All of them share similar assumption. : 
Statistics between forecast and observation is stationary

If statistics is not stationary, post-process will not work in independent forecast

Thus, statistical stability is a rule of thumb in the statistical post-process (avoiding 
overfitting)

Correcting signal : Statistical Post process



EOF of Summer Mean Precipitation



Correlation and Forecast Skill Score

After Bias CorrectionBefore Bias Correction



Multi-Model
Ensemble

Cancellation of errors

Reduction of 
Random Noise

Reduction of 
Systematic Error

More samples

: Multi-model

: Ensembles

Multi-model Ensemble Prediction
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Reduction of 
Systematic Error
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Random Noise
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Benefits of Multi Model Ensemble



Characteristics of each MME method

MME1MME1

∑=
i

iF
M

P 1 - simple composite 

- equal weighting

MME2MME2

∑=
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ii FaP - superensemble

- Weighted Ensemble

MME3MME3

∑=
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iF
M

P ˆ1 - simple composite 
after correction 



Correlation Skill of MME



Combined and calibrated predictions of intraseasonal
variation with dynamical and statistical methods

Targeted Training Activity, Aug 2008



Studies Statistical Models Predictand

Waliser et al. (1999) SVD Filtered OLR,U200

Lo and Hendon (2000) EOF and regression OLR, stream function

Mo (2001) SSA and regression Filtered OLR

Goswami and Xavier (2003) EOF and regression Rainfall

Jones et al. (2004) EOF and regression Filtered OLR, U200, U850

Webster and Hoyos (2004) Wavelet and regression Rainfall, River Discharge

Jiang et al. (2008) Regression RMM index, OLR, U200, U850

Statistical ISV prediction

What should we predict?

Studies Dynamical Models Predictand

Chen and Alpert (1990)
NMC/NCEP DERF
(DERF- Dynamical Extended 
Range Forecast)

30-90d filtered OLR,U200

Lau and Chang (1992) OLR, stream function

Jones et al. (2000) Filtered OLR, U200

Seo et al. (2005) OLR, U200, U850

Vitart et al. 07 ECMWF-MFS RMM index

Dynamical ISV prediction

Different predictands
Previous studies



Different predictands

Statistical ISV prediction
EOF, regression, wavelet, SSA, …

Forecast skill : 15 - 25 days

Dynamical ISV prediction
DERF-based model

Forecast skill :  7-10 days

Previous studies

What should we predict?

Fair and rigorous reassessment is needed in realFair and rigorous reassessment is needed in real--
time prediction frameworktime prediction framework



Combined EOF

1. Annual cycle removed;

2. Interannual variability (ENSO) removed:

- Regression pattern of each variable against the NINO3.4 index

- Mean of previous 120 days

What should we predict?

Lag correlation: RMM1

RealReal--time Multivariate MJO index (RMM):  time Multivariate MJO index (RMM):  
The PCs of combined The PCs of combined EOFsEOFs (Equatorially averaged OLR, U850, U200)(Equatorially averaged OLR, U850, U200)

(Wheeler and Hendon 04)(Wheeler and Hendon 04)



1. Avoid the typical Filtering problem in real-time use
2. Convenient for application (monitoring and prediction): 

Reduction of parameters
3. Represent the MJO in individual phase

Advantages of RMM index
Composite: OLR & U850

What should we predict?

P-1

P-2

P-3

P-4

P-5

P-6

P-7

P-8

Phase diagram (RMM1, RMM2): 1979 Jan-Dec



Multi regression model

Wavelet based model

SSA based model

Statistical predictionStatistical prediction



Statistical model

Prediction of RMMs
(regression)

∑∑
= =

+−=+
m

p j
ppj jtPCBtPC

1 1
00 )1()()(

λ

ττ

coeffregressionlagB
PCsm
lag

timelead

tfromearlierdayjj

pj

th

−=
=
=

=

=

λ

τ
0

Wavelet analysis

Prediction of bands 
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Multi-regression SSAWavelet 



Correlation 0.5 at (day)

RMM1 RMM2

MREG 16-17 15-16

Wavelet 7-8 9-10

SSA 8-9 9-10

Statistical model

RMM1 RMM2

FORECAST DAY

C
O

R
R

EL
A

TI
O

N

FORECAST DAY

-------- MREG
-------- SSA
-------- Wavelet

Multi-regression SSAWavelet 



Statistical model

Predictability of downscaling results:
unfiltered-OLRa

Downscaling to grids

Regression coefficients can be obtained from 
historical data

)()()( 2211 tRMMtRMMtX ββ +=

Kenya (30E, EQ)
Sri-Lanka (80E, 5N) 
Singapore(105E, EQ)
Indonesia(120E, EQ) 

Multi-regression: Downscaling



Statistical model

Multi-regression: Downscaling

Unfiltered OLR anomalyUnfiltered U200 anomaly



Simulation Performance

Optimal Experimental Design 

Dynamical Predictability

Dynamical predictionDynamical prediction



MJO simulation: Variability

Standard deviation of 20-70 filtered PRCP (1-30 day FCST)

Dynamical model



The observed two leading EOFs
• Eastward propagation mode
• Highly correlated between PC1 and PC2 
• Two modes Explains more than half of the total variance

EOFs of VP200
a) OBS

b) CGCM

c) AGCM

1st mode 2nd mode

MJO simulation: Propagation

Dynamical model



Dynamical model: Experimental design 

EXP Period
Total 30-day 

forecasts
Using 
1-CPU

AGCM
Long-term

27-year
(79-05)

621
4 

month

CGCM
8-year
(98-05) 184

2 
month

Serial integration through all phases of MJO life cycle   

1 Nov
6 Nov

28 Feb

30 Day Integration

W
hole W

inter Does seasonal prediction work for 
MJO prediction?

Serial run > Seasonal predictionSerial run > Seasonal prediction
-- Plenty of prediction samplesPlenty of prediction samples

-- Include whole initial phasesInclude whole initial phases

C
O

R
R

EL
A

TI
O

N

Forecast skill : RMM1 and 2 (SNU CGCM)

Seasonal prediction

Serial run with SNU GCM



Statistical vs. Dynamical prediction

Statistical & Dynamical

Correlation 0.5 at (day)

RMM1 RMM2

DYN (CGCM) 13~14 13~14

DYN (AGCM) 11~12 11~12

STAT (MREG) 15~16 11~12

Comparable skill

Forecast skill: RMM1 Forecast skill: RMM2

FORECAST DAY

C
O

R
R

EL
A

TI
O

N

-------- DYN (CGCM)
-------- DYN (AGCM)
-------- STAT (MREG)



Statistical PredictionStatistical Prediction Dynamical PredictionDynamical Prediction

Accumulated 
Knowledge

Accumulated 
Knowledge

Comparable predictability 
Independent predictions

1. Simple Selection model
2. Bayesian forecast model
1. Simple Selection model
2. Bayesian forecast model

Combination and CalibrationCombination and Calibration



Statistical Dynamical Combined

Forecast skill of RMM1

PHASE

FC
ST

 D
A

Y
Combination: Selection model

Strong MJO
Selection process

STAT DYN

CORR 0.3 

- More than 0.3: Better prediction
- Lesser than 0.3: Persistence



Bayes’ theorem 

Posterior Likelihood Prior

Likelihood
Prior

P
ro

ba
bi

lit
y Posterior

Combination: Bayesian forecast

To construct a reliable data with combination of existing knowledge
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Prior PDF is updated by likelihood function
to get the less uncertain posterior PDF

- Choice of the Prior: Statistical forecast (MREG)
- Modeling of the likelihood function:

Linear regression of past dynamical prediction and on past observation
- Determination of the posterior



22

22

ds

dssd
comb σσ

μσμσμ
+
+

=

dynstatcomb KK Ψ⋅+Ψ⋅−=Ψ )1(

Combination: Bayesian forecast

Minimize the forecast error 
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Dynamical forecast

Statistical forecast

Combined forecast



Correlation 0.5 at (day)

Combined 14~15

Statistical 12~13

Dynamical 11~12

Persistence 7~8

Forecast skill of RMM1

FCST DAY

-------- Combined
-------- Statistical
-------- Dynamical
-------- Persistence

C
O

R
R

EL
A

TI
O

N
Combination: Bayesian forecast

Improvement of forecast skill through combination by Bayesian forecast model



Other Important Issues
1. Initialization

2. Model improvement 

- Physical parameterization

- High resolution modeling

3. Subseasonal (MJO) prediction



Advantages
Drawbacks

Initialization process of various institutes

Nudging 
3DVAR

OI method

Simple method
Weighing function is constant

Used in ECMWF, NCEP, IRI, GFDL, MRI, SNU, BMRC

4DVAR Forecast errors in the assimilation window is minimized
Tangent linear operator & adjoint operator is needed

Ensemble 
Kalman Filter

Evolving individual members with full model : 
Advantage for ensemble prediction

Tested in GFDL



Initialization

Model improvement

Subseasonal prediction

Physical Parameterization
High Resolution modeling



Simplified Arakawa-Schubert cumulus convection scheme

Minimum  Minimum  
entrainment entrainment 
constraintconstraint

Large-scale condensation scheme

Relative Relative 
Humidity Humidity 
CriterionCriterion

Cloud-radiation 
interaction suppress 
the eastward waves

Loose convection 
criteria suppress the 
well developed large-
scale eastward  waves

Impact of 
Cumulus 

Parameter

Influence 
of Cloud-
Radiation 
Interaction

Unrealistic 
precipitation occurs 

over the warm but dry 
region

LayerLayer--cloud cloud 
precipitation precipitation 

time scaletime scale

ProblemProblemProblem SolutionSolutionSolution ProblemProblemProblemSolutionSolutionSolution

Relaxed Arakawa-Schubert scheme

Prognostic clouds Prognostic clouds 
& Cloud microphysics& Cloud microphysics

((McRASMcRAS))

Absence of cloud 
microphysics

Physical parameterization



Physical parameterization

(a) RAS (b) McRAS(a) Control (b) Modified

(a) Control (b) Modified


