

1956-5

Targeted Training Activity: Seasonal Predictability in Tropical Regions to be followed by Workshop on Multi-scale Predictions of the Asian and African Summer Monsoon

4 - 15 August 2008

Status of Seasonal Prediction Current & Predictability.

Kang In Sik

Seoul National University School of Earth and Environmental Sciences Division of Atmospheric Sciences San 56-1 Shillim-dong, Kwanak-ku, Seoul 151-742 REPUBLIC OF KOREA

Current Status of Seasonal Prediction & Predictability

In-Sik Kang

Climate and Environment System Research Center Seoul National University, Korea

Content

Seasonal Prediction & Predictability

- Potential Predictability
- Real predictability Tier-2 system
- Coupled model predictability Tier-1 system
- Multi-model Ensemble

Intraseasonal prediction & predictability

- Statistical models
- Dynamical model
- Statistical + Dynamical Combined

Seasonal Prediction System

Uncertainty of seasonal prediction

Ensembles Forecasts with Small Initial Perturbations

The Nature of the Seasonal Prediction

In climate prediction, potential predictability is regarded as the predictability with full information of future boundary condition (e.g., SST). Thus, predictability is varied with similarity between the response of real atmosphere and prediction method to the same BC.

Establish "potentially" possible prediction skill with state-of-art prediction system

Perfect model correlation & Signal to Total variance ratio

Z500 winter (C20C, 100 seasons, 4 members)

Although the 4 member is not enough to estimate Potential predictability precisely, the patterns of 2 metrics are quite similar

Decomposition of climate variables

Climate state variable (X) consists of predictable and unpredictable part.

- Predictable part = signal (Xs) : forced variability
- Unpredictable part = noise (Xn) : internal variability

X = Xs + Xn

The dynamical forecast (Y) also have its forced and unforced part. forecast signal (Ys) : forced variability of model forecast noise (Yn) : internal variability of model Y = Ys + Yn

The internal variability (noise) is stochastic

If the forecast model is not perfect, Xs≠Ys. (there is a systematic error)

Upper limit of prediction

Maximizing correlation in the presence of error in signal and noise

Observation : $x = x_s + x_n$ Forecast : $y = y_s + y_n = \alpha x_s + y_e + y_n$

Noise y_n and Error y_e are not correlated with others. α : regression coefficient of signal

$$Cov(x, y) = (xy) = (x_s + x_n)(\alpha x_s + y_e + y_n)$$

= $(\alpha \overline{x_s^2} + \alpha \overline{x_s x_n} + \overline{x_s y_e} + \overline{x_n y_e} + \overline{x_s y_n} + \overline{x_n y_n})$
= $\alpha V(x_s) + \alpha Cov(x_s, x_n) + Cov(x_s, y_e) + Cov(x_n, y_e) + Cov(x_s, y_n) + Cov(x_n, y_n)$
= $\alpha V(x_s)$

Correlation between observation (x) and forecast (y)

Cor (x,y) =
$$\frac{\alpha V(x_s)}{V(x)^{1/2} [\alpha^2 V(x_s) + V(y_e) + V(y_n)]^{1/2}}$$

The correlation coefficient is maximized by removing $V(y_e)$ and $V(y_n)$ The most accurate forecast will be the SIGNAL of perfect model.

Strategy of Prediction

The strategy of seasonal prediction is to

obtain "perfect signal" as close as possible.

(i.e. reducing variance of systematic error and variance of noise)

1. Reduction of Noise

• Averaging large ensemble members

(if number of ensemble members is infinite, Noise will be zero in the ensemble mean)

2. Correct signal

- Improving GCM
- Statistical post-process (MOS)
- Multi-model ensemble

Maximum prediction skill : potential predictability

$$Cor(x,y) = \frac{\alpha V(x_s)}{V(x)^{1/2} [\alpha^2 V(x_s) + V(y_e) + V(y_n)]^{1/2}} = \frac{V(x_s)}{[V(x)V(x_s)]^{1/2}}$$
$$= \frac{V(x_s)^{1/2}}{V(x)^{1/2}}$$

$$\sqrt{\frac{V_{Signal}}{V_{Total}}} = \sqrt{\frac{\rho}{1+\rho}}, \quad \rho = \frac{V_{Signal}}{V_{Noise}} \equiv SNR \qquad \begin{array}{l} \rho : Signal \ to \ Noise \ Ratio \\ V_{Total} = V_{signal} \ + V_{noise} \end{array}$$

Maximum prediction skill (=potential predictability of particular predictand) is a function of Signal to Noise Ratio

Forced & Free variance

Forced variance

Climate signals

caused by external forcing (e.g. SST)

$$\frac{1}{N-1} \sum_{i=1}^{N} (\overline{X}_{i} - \overline{\overline{X}})^{2} - \alpha$$
$$\alpha = \frac{1}{n} \cdot \text{ Free variance}$$

Free variance

Intrinsic transients

due to natural variability

$$\frac{1}{N(n-1)}\sum_{i=1}^{N}\sum_{j=1}^{n}(X_{ij}-\overline{X}_{i})^{2}$$

Ensemble mean variation

Variance analysis of JJA Precipitation Anomalies

Prediction Skill of JJA Precipitation (21 yr)

Temporal Correlation

-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Air-sea interaction in the tropical Pacific

Where radiative flux control the SST...

- 1. Radiative flux would lead the SST anomalies
- 2. Temporal correlation between PRCP & SST can be a negative sign

Lead-lag correlation between pentad SST and rainfall data for JJA 82-99

Western North Pacific (5-30N, 110-150E)

60N 0.2 40N 0.1 0 20N -0.1 -0.2 EQ -0.3-20S -0.4 160E 16⁰W 12⁰W 8ÓW 40E 80E 120E -20 -30 -10 0 +10+20 +30 days -5 +5 +10 +15 > -20 -15 -10 +20 < 0 **Rainfall lead Rainfall lag Rainfall lead SST** lead

Only more than 95% significance level is shaded

Lead-lag pentad number

→ Atmosphere forces the ocean where the correlation coefficients between rainfall and SST show negative.

Climate Prediction System

Two-tier

One-tier

Coupling of atmosphere and ocean process

The state-of-the-art Climate Prediction

Global domain pattern correlation(60S-60N, 0-360)

Strategy of Prediction

The strategy of seasonal prediction is to

obtain "perfect signal" as close as possible.

(i.e. reducing variance of systematic error and variance of noise)

1. Reduction of Noise

• Averaging large ensemble members

(if number of ensemble members is infinite, Noise will be zero in the ensemble mean)

2. Correct signal

- Improving GCM
- Statistical post-process (MOS)
- Multi-model ensemble

There are many approaches in post-process, All of them share similar assumption. : Statistics between forecast and observation is stationary

If statistics is not stationary, post-process will not work in independent forecast

Thus, statistical stability is a rule of thumb in the statistical post-process (avoiding overfitting)

Regarding actual constraints, available large ensemble forecast with well-tuned post process will be an appropriate strategy of seasonal forecast.

Statistically optimized multi model ensemble prediction

EOF of Summer Mean Precipitation

Correlation and Forecast Skill Score

Before Bias Correction

-0.8 -0.7 -0.6 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.6 0.7 0.8

After Bias Correction

-0.8 -0.7 -0.6 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.6 0.7 0.8

Benefits of Multi Model Ensemble

$$x_i = y + e_i + \mathcal{E}_i$$

Forecast = True + Error + Noise

 $\mathbf{E}_{\mathbf{M}}$: Error variance of Multi-Model Ensemble $E_{M} = \frac{1}{M} \left| \overline{V}(e) + \frac{2}{M} \sum_{ii} COV(e_{i}, e_{j}) + \overline{V}(\varepsilon) \right|$

E_S : Error variance of Single Model $E_s = \overline{V}(e) + \overline{V}(\varepsilon)$

[Example] Two Models (M=2)

Error variance of Multi-Model Ensemble $E_M = \frac{1}{2} \left[\overline{V}(e) + COV(e_1, e_2) + \overline{V}(\varepsilon) \right]$ Error variance of Single Model $E_s = \overline{V}(e) + \overline{V}(\varepsilon)$

Mean Square Error
$$E = E_M - E_s = -\frac{1}{2}\overline{V}(e) + \frac{1}{2}COV(e_1, e_2) - \frac{1}{2}\overline{V}(\varepsilon)$$

Systematic Error Random Noise

- For Improvement \rightarrow E < 0
- Where Models are independent each other $\rightarrow COV(e_i, e_j) = 0$

Characteristics of each MME method

MME1

 $P = \frac{1}{M} \sum_{i} F_{i}$ - simple composite - equal weighting

MME2

 $P = \sum_{i} a_{i}F_{i}$ - superensemble - Weighted Ensemble

MME3

 $P = \frac{1}{M} \sum_{i} \hat{F}_{i}$ - simple composite after correction

Correlation Skill of MME

Combined and calibrated predictions of intraseasonal variation with dynamical and statistical methods

Targeted Training Activity, Aug 2008

Statistical ISV prediction

Previous studies

Different predictands

Studies	Statistical Models	Predictand
Waliser et al. (1999)	SVD	Filtered OLR,U200
Lo and Hendon (2000)	EOF and regression	OLR, stream function
Mo (2001)	SSA and regression	Filtered OLR
Goswami and Xavier (2003)	EOF and regression	Rainfall
Jones et al. (2004)	EOF and regression	Filtered OLR, U200, U850
Webster and Hoyos (2004)	Wavelet and regression	Rainfall, River Discharge
Jiang et al. (2008)	Regression	RMM index, OLR, U200, U850

Dynamical ISV prediction

Studies	Dynamical Models	Predictand
Chen and Alpert (1990)	NMC/NCEP DERF (DERF- Dynamical Extended Range Forecast)	30-90d filtered OLR,U200
Lau and Chang (1992)		OLR, stream function
Jones et al. (2000)		Filtered OLR, U200
Seo et al. (2005)		OLR, U200, U850
Vitart et al. 07	ECMWF-MFS	RMM index

Previous studies

Statistical ISV prediction

EOF, regression, wavelet, SSA, ...

Forecast skill : 15 - 25 days

Dynamical ISV prediction

DERF-based model

Forecast skill : 7-10 days

Different predictands

Fair and rigorous reassessment is needed in realreal time prediction framework work

Real-time Multivariate MJO index (RMM):
The PCs of combined EOFs (Equatorially averaged OLR, U850, U200)
(Wheeler and Hendon 04)4)

a) 1st mode (11.61%) 0.5 -0.5 U850 OLR U200 90E 180 90w b) 2nd mode (11.13%) 0.5 -0.5 90E 180 90W Ó

Combined EOF

Lag correlation: RMM1

- **1.** Annual cycle removed;
- 2. Interannual variability (ENSO) removed:
- Regression pattern of each variable against the NIN03.4 index
- Mean of previous 120 days

Advantages of RMM index

- **1.** Avoid the typical Filtering problem in real-time use
- 2. Convenient for application (monitoring and prediction): Reduction of parameters
- 3. Represent the MJO in individual phase

Statistical prediction

- Multi regression model
- Wavelet based model
- SSA based model

Corre	lation 0.5 at	(day)
	RMM1	RMM2
MREG	16-17	15-16
Wavelet	7-8	9-10
SSA	8-9	9-10

Statistical model

Multi-regression: Downscaling

Downscaling to grids

 $X(t) = \beta_1 RMM_1(t) + \beta_2 RMM_2(t)$

Regression coefficients can be obtained from historical data

Predictability of downscaling results: unfiltered-OLRa

Statistical model

Multi-regression: Downscaling

Unfiltered U200 anomaly

Unfiltered OLR anomaly

Dynamical prediction

- Simulation Performance
- Optimal Experimental Design
- Dynamical Predictability

MJO simulation: Variability

Standard deviation of 20-70 filtered PRCP (1-30 day FCST)

MJO simulation: Propagation

The observed two leading EOFs

- Eastward propagation mode
- Highly correlated between PC1 and PC2
- Two modes Explains more than half of the total variance

Dynamical model: Experimental design

Serial integration through all phases of MJO life cycle

30 Day Integration

Serial run > Seasonal prediction

- Plenty of prediction samples les
- Include whole initial phases ses

Does seasonal prediction work for MJO prediction?

18

21

27

24

30

Serial run with SNU GCM

EXP	Period	Total 30-day forecasts	Using 1-CPU
AGCM Long-term	<mark>27-year</mark> (79-05)	621	4 month
CGCM	<mark>8-year</mark> (98-05)	184	2 month

Statistical vs. Dynamical prediction

Correla	tion 0.5 at (day	y)
	RMM1	RMM2
DYN (CGCM)	13~14	13~14
DYN (AGCM)	11~12	11~12
STAT (MREG)	15~16	11~12

Comparable skill

Combination: Selection model

Forecast skill of RMM1

Strong MJO

Combination: Bayesian forecast

Bayes' theorem

To construct a reliable data with combination of existing knowledge

→ Prior PDF is updated by likelihood function to get the less uncertain posterior PDF

- Choice of the Prior: Statistical forecast (MREG) REG
- Modeling of the likelihood function:

Linear regression of past dynamical prediction and on past observation

- Determination of the posterior

Combination: Bayesian forecast

Minimize the forecast error

$$\Psi_{comb} = (1 - K) \cdot \Psi_{stat} + K \cdot \Psi_{dyn}$$

Combination: Bayesian forecast

Forecast skill of RMM1

Improvement of forecast skill through combination by Bayesian forecast model model

Other Important Issues

- **1.** Initialization
- **2.** Model improvement
 - Physical parameterization
 - High resolution modeling
- 3. Subseasonal (MJO) prediction

Initialization process of various institutes

Nudging 3DVAR	Simple method Weighing function is constant
OI method	Used in ECMWF, NCEP, IRI, GFDL, MRI, SNU, BMRC
4DVAR	Forecast errors in the assimilation window is minimized Tangent linear operator & adjoint operator is needed
Ensemble Kalman Filter	Evolving individual members with full model : Advantage for ensemble prediction Tested in GFDL

✓ Advantages✓ Drawbacks

Initialization

Model improvement

Physical Parameterization High Resolution modeling

Subseasonal prediction

Physical parameterization

Physical parameterization

