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OBSTACLES TO SEAMLESS PREDICTION

E.S. Sarachik, University of Washington

. What is Seamless Prediction?

. Weather Prediction

. Seasonal-to-Interannual Prediction
. Decadal Prediction

- Prediction of the Response to the Addition of Radiatively

Active Constituents (Greenhouse Warming)

. The State of Coupled GCMS

7. What Needs to be Done?



1. What is Seamless Prediction?

Seamless prediction is based on the idea that physical processes
span the time scales and predicting shorter term variability better
helps predict longer term variability better.

e.g. predicting MJO on weekly times scales would be would be useful
for ENSO seasonal-to-interannual prediction.

A corollary to this is that prediction across the time scales should be
made with the same model components.



2. Weather Prediction

1.Observations of the atmosphere, both direct and remotely sensed,
are collected within a few hours of the initial time (i.e. within the
initial time window). In general, the weather services of the world
send their data to the Global Telecommunication System (GTS) which
then makes the global collection of data available to all weather
services.

e Upper Air Balloons (T, p, q, winds)
o Satellite Radiances (Temperature, constituents)
e Cloud Winds, Pilot Balloons

e Surface Obs. (land, ship, buoy)



Obs Type

16846 SYNOP 2547 SHIP @ 9995 METAR

ECMWF Data Coverage (All obs DA) - SYNOP/SHIP
23/JUL/2008; 00 UTC
Total number of obs = 29388
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Obs Type

8515 DRFTER 276 MOORED

ECMWF Data Coverage (All obs DA) - BUOY
23/JUL/2008; 00 UTC
Total number of obs = 8791
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2.The observations are assimilated into a numerical model of the
atmosphere by a data assimilation procedure. This mode/-based
analysis of the atmosphere is performed by combining the
observations with the output of the forecast system for the initial
time.
e Optimum estimate of the state of the atmosphere
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3. The initial state for the forecasts is produced, essentially the model
based analysis at the initial time plus some subsidiary adjustments
(removing gravity waves, adjusting the envelope of mountains,
adjusting for shocks, etc.).

4. The model is run from the initial state out to n days thereby
providing forecasts for all times up to and including n days.

5. As each real forecast time is reached, the forecast is compared to
the analysis for that time in order to score the forecast.
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6. The forecast cycle is continually repeated and a series of forecasts
is built up and verified by the series of analyses. The long series of
forecasts is used to determine the overall skill, to analyze the
dependence of skill on season and synoptic conditions, and to
examine the forecasts for persistent biases in specific regions.

NH 500 mb Height ( wave 1-20 )
Average For 00Z08JUN2008 - 00Z23JUL2008
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7. The initial conditions are slightly perturbed (consistent with all
observations) and an ensemble of forecasts are made leading to a
probability distribution function for the future. The ensembles of many

models are combined (MMEs).



3. Seasonal-to-Interannual Prediction

1.Data is gathered in the atmosphere and ocean and at the land and ice
surface and assimilated into a coupled climate model.
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2.The data is combined with the forecast for the initial time (the so-
called “first guess”) and an analysis of the whole climate system is
made.

3. This analysis, plus whatever practical adjustments need to be made,
form the initial state of the forecasts. A number of possible perturbed
initial conditions are produced for the construction of forecast
ensembles.

4.The coupled model is run into the future for each of these initial
conditions.
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5. At each forecast time, the forecast is compared to the analysis at
that time and statistics of skill are gathered.

6. The initial conditions in the atmosphere and ocean are perturbed and
an ensemble of forecasts is obtained leading to a probability

distribution function of future outcomes. Ensembles from many

models are combined.



7. The cycle is continually repeated.

Because the climate evolves so slowly that it would be impractical to
determine skill in real time, an additional step is needed:

8. A series of retrospective forecasts is performed using the longest
possible series of past analyses (or reanalyses) used both for
initialization and for scoring (a retrospective forecast is one
performed and scored on past data). Using this long series of
retrospective forecasts, the overall skill of the forecast system is
determined, the regional and seasonal stratification of skill can be
assessed, and any systematic biases can be determined. Using the
knowledge of biases obtained from the retrospective forecasts,
forecasts can be corrected (so called post-processing).

The physical basis of S-to-l prediction is that the memory of the initial
conditions is encoded in the dynamics of thermocline variability.
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ECMWF System 3
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ECMWF System 3
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4. Decadal Prediction

The physical basis for decadal prediction in the Atlantic ocean is that the
decadal variability of the thermohaline circulation has such huge inertia
that an initialization of the state of the Atlantic can detect future
changes and allow a decadal prediction.

Keenlyside et al., 2008, initialized only with SST and predicted that the
THC in the next decade will slow down to its historical mean thereby
cooling the North Atlantic.
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5. Prediction of the Response to the Addition of
Radiatively Active Constituents

The prediction is the scenario of future emissions of
radiatively active gases. The model gives the response
to this prediction.

: Comprehensive Climate Model

I I
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I CONCENTRATIONS RADIATIVE |
CLIMATE
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6. The State of Coupled GCMS

sun et al-,2004 Omservation MASA CGCM
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7. What Needs to be Done?

1. The mean biases in the models are not intrinsic and need to be
fixed.

2. As we move towards longer prediction, the lack of a climate
observing system needs to be addressed. Without a climate
observing system:

e A model based climate analysis becomes impossible.
e The initialization data for predictions is compromised.

e The validation data for predictions is compromised.

3. A monthly (initially seasonal) model based climate analysis needs
to be researched, designed and implemented.

4. We need to know the mechanisms for the various large scale
climate patterns (annual cycle, ENSO, PDO, NAO) so that



o some scientific basis for prediction may be given
e the ultimate limit of predictability be determined.

The variability (annual cycle, ENSO, PDO, NAO) in coupled climate
models needs to be fixed.

Higher frequency variability (MJO) needs to be initialized and
predicted in the models.



