

The Abdus Salam International Centre for Theoretical Physics

1956-8

Targeted Training Activity: Seasonal Predictability in Tropical Regions to be followed by Workshop on Multi-scale Predictions of the Asian and African Summer Monsoon

4 - 15 August 2008

Initialization Issues of Coupled Ocean-atmosphere Prediction System.

Kang In Sik

Seoul National University School of Earth and Environmental Sciences Division of Atmospheric Sciences San 56-1 Shillim-dong, Kwanak-ku, Seoul 151-742 REPUBLIC OF KOREA

Initialization Issues of Coupled Ocean-atmosphere Prediction System

In-Sik Kang

Climate and Environment System Research Center Seoul National University, Korea

Predictability of Seasonal Prediction

Statistical correction (SNU AGCM)

Predictability over equatorial region is not improved much

Is post-processing a fundamental solution?

Forecast error comes from

f model imperfectness for poor initial conditions

Model improvement Good initialization process

is essential to achieve to predictability limit

Impact of Initial condition

Issues about initial conditions

Is True state a best initial condition of imperfect forecast model?

Experiments with Lorenz model

$$\frac{dx_1}{dt} = -px_1 + px_2$$
$$\frac{dx_2}{dt} = rx_1 - x_1x_3 - x_2$$
$$\frac{dx_3}{dt} = x_1x_2 - bx_3$$

r=28 : true world (perfect forecast model)

r=26 : Imperfect forecast model

Is True state a best initial condition of imperfect forecast model?

$$\Psi_{Initial \ Condition} = (1-k) \cdot \Psi_{Model} + k \cdot \Psi_{TRUE}$$

K = nudging coefficient

Experimental Design

k=1: TRUE state k= 0.8 : 80% TRUE + 20% MODEL free run k= 0.5 : 50% TRUE + 50% MODEL free run k= 0.2 : 20% TRUE + 80% MODEL free run

Is True state best initial condition of imperfect forecast model?

Forecast Time

100 cases average

True state is not always best initial condition of imperfect model

 \rightarrow Physical balance of forecast model should be considered for optimal initial condition

What determines quality of Initial conditions?

Optimal (accurate & well-balanced) initial conditions

- > Accurate : Errors in initial condition is minimized
- Well-balanced : Physical laws in forecast model is satisfied
 (e.g. geostrophic balance, T-S relationship, thermal wind relationship, etc.)

Reducing inherent uncertainties

\rightarrow Ensemble Prediction

- Reduction of noise by averaging many ensemble members
- If number of ensemble members is infinite, unpredictable component will be zero in the ensemble mean

Data assimilation

" Produce well-balanced initial condition through a statistical combination of observations and short-range forecasts "

$$\Psi_{Analysis} = (1 - k) \cdot \Psi_{Model} + k \cdot \Psi_{OBS}$$

Characteristics of forecast error

Non-local (spatially correlated)
 Time variant

Forecast error is assumed as...

1. Nudging

- Local & Time invariant

$$\frac{\partial T}{\partial t} = -\overline{v} \cdot \nabla T + \frac{Q}{\rho C_P H} + \frac{T_{obs} - T}{\tau_T}$$

Nudging term in temperature equation τ_T is constant

2. 3DVAR, Optimal Interpolation (OI)

- Non-local & Time invariant

 $\Psi_{Analysis} = (1-k) \cdot \Psi_{Model} + k \cdot \Psi_{OBS}$ K = constant, but having a spatial structure

3. 4DVAR, Ensemble Kalman Filter

- Non-local & Time variant

4DVAR

Find the initial condition its forecast best fits the observations within the assimilation window by minimizing cost function

Cost function = $[x(t_0) - x^b(t_0)]^T B_0^{-1} [x(t_0) - x^b(t_0)] + \sum [y^{o_i} - H(x_i)]^T R_i^{-1} [y^{o_i} - H(x_i)]$

Assumptions

1. Causality :

The forecast model can be expressed as the product of intermediate forecast steps.

$$\mathbf{x}_{i} = \boldsymbol{M}_{i} \boldsymbol{M}_{i-1} \dots \boldsymbol{M}_{1} \boldsymbol{x}$$

2. Tangent linear hypothesis :

The cost function can be made quadratic by assuming that the M operator can be linearized.

$$\mathbf{y}_{i} - H_{i}M_{0 \to i}(\mathbf{x}) \approx \mathbf{y}_{i} - H_{i}M_{0 \to i}(\mathbf{x}_{b}) - H_{i}M_{0 \to i}(\mathbf{x} - \mathbf{x}_{b})$$

Procedures

- **1.** Integrate forecast model to get forecast values $x_{T+\alpha}$
- 2. Calculate difference between obs and model $y_{T+a} x_{T+a}$
- 3. Integrate backward in time using adjoint model

$$\frac{\partial J(x)}{\partial x} = \sum_{i=1}^{\alpha} L_{T+\alpha \to T} {}^{T} R^{-1} (y_{T+\alpha} - x_{T+\alpha})$$

4. Gradient of cost function is used to determine the direction to search the minimum cost function

$$X_{new} = X_{old} - \frac{\partial J(x_{old})}{\partial x}$$

5. 1-4 procedure is repeated until find stable solution

Is 4DVAR applicable for seasonal prediction? : Linear assumption in CGCM

- 1. Is linearized CGCM dynamically meaningful?
- Ocean physics is highly nonlinear
- 2. Is linear assumption valid in seasonal time scale?
- Assimilation window is about several months for seasonal prediction

3. Problem in 4DVAR procedure

 Forward integration with nonlinear model, Backward integration with linearized model
 Inconsistency problem

Ensemble Kalman Filter (EnKF)

Procedures

- **1.** Integrate one cycle from random perturbation plus control initial condition
- 2. Calculate the forecast error covariance based on ensemble spread
- 3. Update the each ensemble states with analysis equation
- 4. Repeat 1-3 processes

Assumptions

- **1. Ensemble spread is assumed as model forecast error**
- 2. Model & observational error distribution is gaussian

Forecast error & ensemble spread

Forecast error magnitude is represented by ensemble spread to a certain extent

Is ensemble spread always appropriate tool to measure model forecast error?

Optimal Perturbation Method for Ensemble Prediction

Conditions for optimal Ensemble prediction

- **1.** Knowledge about initial error distribution
 - \rightarrow Information about initial error distribution is never given
- 2. Infinite ensemble members
 - \rightarrow Only finite ensemble member is possible

Generate few ensemble members to efficiently describe forecast uncertainty \rightarrow Fast-growing perturbations

• Fast-growing perturbations

Ensembles Forecasts with Small Initial Perturbations

Ensembles Forecasts from Small Initial Perturbation

Optimal Perturbation Method for Ensemble Prediction

To extract fast growing initial perturbation

Breeding Method

- Repeat breeding and rescaling in the (nonlinear) model integration
- Bred vector as a fast growing mode
- NCEP for medium-range prediction

Singular Value Decomposition (SVD) Method

- Linear Stability of linearized model
- Singular vector as a fast Growing mode
- ECMWF for medium-range prediction

Breeding method

Procedure of Breeding Cycle

- **1.Integrate one cycle from random** perturbation plus control initial condition
- 2.Calculate error by control run
- **3.Rescaling the error**
- 4.Integrate one cycle from rescaled error perturbation plus control initial condition
- 5.Repeat 2-4 processes to initial forecast time

Potential Benefit

- Ensemble prediction using Bred vector
- > The bred vector represents fast growing mode of the model and nature

Is Bred Vectors applicable for seasonal prediction?

Rescaling time interval : 1 month

- To catch up longer time-scale variability

Selection of Norm : RMS of Monthly mean SST over Indo-Pacific Region
 To reduce effects of fast atmospheric fluctuation because SST is slowly varying.

STD of Bred Vector SST in SNU CGCM

Singular Vector method

Let
$$X = \Psi(t)$$
, $Y = \Psi(t + \tau)$
 $Y = L \cdot X$

By solving singular value of L operator

$$L = USV^{T}$$
$$UY = SVX$$
$$u_{i} \cdot Y = s_{i}v_{i}X$$

If $S_i > 1$, then V_i is an initial perturbation of growing mode U_i is a final perturbation of growing mode

For maximum S_i : fast growing perturbation

Singular Vector method

SVD Method : linear stability of linearized model - Usually linearized model is not available, especially for fully coupled system

Empirical linear operator is formulated using time-lag relationship

Tangent linear operator

 $Y = L \cdot X$ $L = YX^{T} (XX^{T})^{-1}$ $\land \qquad \land$ Variance of X
Covariance between X and Y

X: 5 EOF modes of thermocline depth Y: 5 EOF modes of SST after 6-month

Equatorial Temperature perturbations at May 1st

Thank you