



#### 1956-12

#### Targeted Training Activity: Seasonal Predictability in Tropical Regions to be followed by Workshop on Multi-scale Predictions of the Asian and African Summer Monsoon

4 - 15 August 2008

Predictability of ENSO and Monsoon.

JIN Kyung Emilia

Center For Ocean Land Atmosphere Studies (COLA/GMU) Institute For Global Environment & Society (IGES) 4041 Powder Mill Road Suite 302, 20705-3106 MD Calverton U.S.A TTA: Seasonal Predictability in Tropical Regions, ICTP, Trieste, Italy, 7 Aug 2008

## **Predictability of ENSO and Monsoon**

### Emilia Jin

George Mason University (GMU) Center for Ocean-Land-Atmosphere studies (COLA)

Thanks to J. Shukla, J. Kinter, V. Krishnamurthy, J.-S. Kug, F.-F. Jin

COLA/GMU

Univ. of Hawaii











# **Outline**

- Current Status of ENSO Predictability in CGCMs
  - Inherent limits to predictability
  - Model Flows
- Current Status of Monsoon Predictability in CGCMs
  - Intrasesasonal and seasonal predictability
  - ENSO-Monsoon relationship
- ENSO-Monsoon Relationship in GCM Experiments
  - Role of tropical Pacific SST anomalies





## Model Description and Experimental Design

| APCC<br>CLIPAS<br>5 CGCMs |               |     | <ul> <li>1980 – 2004</li> <li>4 case of initial time<br/>(Feb, May, Aug, Nov)</li> <li>3-15 member</li> <li>5-9 months duration</li> </ul> |                      |                          | DEMETER<br>• 4<br>(F<br>• 9<br>• 6 |                        | 980 – 2001<br>case of initial time<br>eb, May, Aug, Nov)<br>ensemble member<br>months duration |  |
|---------------------------|---------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------|------------------------------------|------------------------|------------------------------------------------------------------------------------------------|--|
|                           | Lead<br>month | run | Period                                                                                                                                     | AGCM                 | OGCM                     |                                    | AGCM                   | OGCM                                                                                           |  |
| FRCGC<br>SINTEX-F         | 6             | 9   | 82-04                                                                                                                                      | ECHAM 4<br>T106 L19  | OPA 8.2<br>2x2 L31       | CERFACS                            | ARPEGE<br>T63 L31      | OPA 8.2<br>2.0x2.0 L31                                                                         |  |
| NASA                      | 5             | 3   | 80-04                                                                                                                                      | NSIPP 1<br>2x2.5 L34 | Poseidon V4<br>1/3x1 L40 | ECMWF                              | IFS<br>T95 L40         | HOPE-E<br>1.4x0.3-1.429 L29                                                                    |  |
| SNU                       | 6             | 6   | 60-01                                                                                                                                      | SNU<br>T42 L21       | MOM 2.2<br>1/3x1 L32     | INGV                               | ECHAM 4<br>T42 L19     | OPA 8.1<br>2.0x0.5-1.5 L31                                                                     |  |
| UH                        | 6             | 10  | 83-03                                                                                                                                      | ECHAM 4<br>T31 L19   | UH Ocean<br>1x2 L2       | LODYC                              | IFS<br>T95 L40         | OPA 8.2<br>2.0x2.0 L31                                                                         |  |
| NCEP<br>CFS               | 9             | 15  | 81-03                                                                                                                                      | GFS<br>T62 L64       | MOM 3<br>1/3x5/8 L27     | Meteo-<br>France                   | ARPEGE<br>T63 L31      | OPA 8.0<br>192-152, L31                                                                        |  |
|                           |               |     |                                                                                                                                            |                      |                          | MPI                                | ECHAM-5<br>T42 L19     | MPI-IM1<br>2.5x0.5-2.5 L23                                                                     |  |
|                           |               |     |                                                                                                                                            |                      |                          | UK Met<br>Office                   | HadAM3<br>2.5x3.75 L19 | GloSea OGCM<br>1.25x0.3-125 L40                                                                |  |





## What is limiting the ENSO predictability?

#### ✓ Model Flaws

 $\rightarrow$  mean error, phase shift, different amplitude, and wrong seasonal cycle, etc

#### ✓ Flaws in the way the data is used

 $\rightarrow$  data assimilation and initialization; chaos within non-linear dynamics of the coupled system

#### ✓ Inherent limits to predictability

 $\rightarrow$  some times are more predictable than others; amplitude of SST anomalies with respect to ENSO phase

✓ Gaps in the observing system

Thanks to Prof. Mark Cane (TTA/ICTP, 2008)







## What is limiting the ENSO predictability?

#### ✓ Model Flaws

 $\rightarrow$  mean error, phase shift, different amplitude, and wrong seasonal cycle, etc

✓ Flaws in the way the data is used
 → data assimilation and initialization, chaos within non-linear dynamics of the coupled system

✓ Inherent limits to predictability
 → some times are more predictable than others, amplitude of SST anomalies with respect to ENSO phase

✓ Gaps in the observing system





ENSO Predictability (NINO3.4 index)



- In CGCMs, the intensity of annual cycle and interanual variability show linear relationship.
- Models with better climatology tend to have better skill.

### **Experimental Design**

 $\rightarrow$  To investigate the property of this model without influence of initial condition, long run simulation is analyzed and compared with forecast data.

|                   | long run                                                                                           | forecast                                                                                                    |                         |
|-------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------|
| PRCGC<br>SINTEX-F | <ul> <li>202-year simulation</li> <li>Analyzing last 200 years<br/>(200-yr climatology)</li> </ul> | <ul> <li>1982-2004 period</li> <li>9 members</li> <li>May, Nov IC</li> <li>6 months lead</li> </ul>         | Luo <i>et al.</i> 2005  |
| NCEP<br>CFS       | <ul> <li>52-year simulation</li> <li>Analyzing last 50 years<br/>(50-yr climatology)</li> </ul>    | <ul> <li>1981-2003 period</li> <li>15 members</li> <li>12 calendar months</li> <li>9 months lead</li> </ul> | Saha <i>et al.</i> 2005 |
|                   |                                                                                                    |                                                                                                             |                         |











### **ENSO Characteristics in CFS CGCM Standard Deviation of SST Anomalies over Tropics**





### NINO3 Index in CFS 52-yr simulation

#### Warm minus Cold composite



**Reconstructed data with respect to lead time of 9-month forecast data starting from 12 calendar months (monthly forecast composite)** 

For observation and forecast, Warm composite (82/83, 86/87, 91/92, 97/98) - Cold composite (84/85, 88/89, 98/99, 99/00)

For CFS 52-yr run, 7 cases for El Nino and 12 cases for La Nina based on one standard deviation definition of DJF Nino3 index

### NINO3 Index in CFS 52-yr simulation

#### Warm minus Cold composite



Reconstructed data with respect to lead time of 9-month forecast data starting from 12 calendar months (monthly forecast composite)







## Model Flaw: Slow Coupled Dynamics

- This is particular true for a long lead seasonal forecast, because as the forecast lead increases, the model forecast tend to be determined by the model ENSO behavior.
- Therefore, continuing improvement of the one-tier climate model's slow coupled dynamics in reproducing a realistic ENSO mode is a key for long-lead seasonal forecast.
- For example, precipitation forecast depends on accurate forecast of the amplitude, spatial patterns, and detailed temporal evolution of ENSO cycle





### RMS Error and Differences between Successive Forecasts NINO3 SST in NCEP CFS forecasts



- ----- Forecast Error of Ensemble mean
  - Lorenz Curve of Ensemble mean
- • Mean Forecast Error of Each Member
- Mean Lorenz Curve of Each Member
- Forecast Error of Each Member Lorenz Curve of Each Member

 ✓ Lorenz Curve of Ensemble Mean is not growing

 $\rightarrow$  Initial error growth is saturated within two months.

→ After that, error growth is following the identical model error for all initial cases. For NINO3 index, it will be the error of model ENSO dynamics.

✓ Lorenz Curve of Individual
 Member grows as fast as Forecast
 Error.

→ CFS has large ensemble spread due to instability of coupled system.

Forecast error: lower bound of predictability, skill of "current" forecast
 Lorenz curve: upper bound of predictability (lower bound of error), growth of initial error defined as the difference between two forecasts valid at the same time (Lorenz 1982)

## What is limiting the ENSO predictability?

#### ✓ Model Flaws

 $\rightarrow$  mean error, phase shift, different amplitude, and wrong seasonal cycle, etc

✓ Flaws in the way the data is used
 → data assimilation and initialization, chaos within non-linear dynamics of the coupled system

✓ Inherent limits to predictability
 → some times are more predictable than others, amplitude of SST anomalies with respect to ENSO phase

✓ Gaps in the observing system





## **Different Flavors of El Nino in Nature**

#### Conventional El Niño

: "as a phenomenon in the equatorial Pacific Ocean characterized by a positive sea surface temperature departure form normal in the NINO 3.4 region greater than or equal in magnitude to 0.5C averaged over three consecutive months" (NOAA)

Different flavors of El Niño

• Trans- Niño (Trenberth and Stepaniak, 2001), Dateline El Niño (Lakin and Harrison 2005), El Niño Modoki (Ashok et al. 2007), Noncanonical ENSO (Guan and NIgam, 2008), Warm pool El Niño (Kug et al. 2008), etc.

: Even though there are differences, the distinctive interannual SST variation over the central Pacific which becomes more active in recent year and significantly different global impact form conventional El Niño are common features.

□ The transition mechanisms and dynamical structure of two-types of El Nino are significantly different (Kug et al. 2008).











### Composite of SST Anomalies along the Equator Forecast lead month 7

Composite of seasonal mean SST anomalies

- Warm-pool: 4 cases (1990/91, 1994/95, 2002/03, 2004/05)
- Cold-tongue: 2 cases (1982/83, 1997/98)

## Shading is for model bias, contour is for observed composite









## **Relationship between NINO3 and NINO4**







## Scatter Diagram of Normalized DJF NINO 3 vs. NINO 4

#### From free long run of two CGCMs



### → Model Flaw: One Flavor of El Nino





Outline

- Current Status of ENSO Predictability in CGCMs
  - Inherent limits to predictability
  - Model Flows
- Current Status of Monsoon Predictability in CGCMs
  - Intrasesasonal and seasonal predictability
  - ENSO-Monsoon relationship
- ENSO-Monsoon Relationship in GCM Experiments - Role of tropical Pacific SST anomalies





## **Background and Objective**

Observed dominant modes of intraseasonal variability of summer South Asian monsoon (Krishnamurthy and Shukla 2007, 2008)

- 1. Two intraseasonal oscillatory patterns
- 45 and 28-day modes
- Their average cycles of variability are correspond to the life cycles of active/break periods of monsoon rainfall over India
- 2. Two large-scale standing patterns
- ENSO mode and Indian Ocean Dipole mode
- They persist through out the monsoon season, and seasonal mean monsoon is mainly determined by the two standing patterns.

→ In this study, the space-time evolution of convection over the monsoon region containing the Indian subcontinent, the Indian Ocean, and the Western Pacific and its role on seasonal predictability is investigated in 7 CGCM forecast dataset.





**Dominant Modes of Observation** 



• Data: Reconstructed component (RC) which is constructed from the corresponding ST-EOF and ST-PC as the original field

 $\rightarrow$  The time length and sequence are exactly those of the original time series (Ghil et al. 2002)

Krishnamurthy and Shukla, 2008





## **Dominant Modes of Observation**

#### **Standing modes**



## 1<sup>st</sup> Spatial EOF of daily RC

The seasonal mean monsoon is mainly determined by the two standing patterns, without much contribution from the oscillatory modes.





## **Dominant Modes of Observation**

#### **Oscillatory modes**

**28-Day** 

140E

#### 45-Day



Composites of eight phases of a cycle of oscillatory mode : Their average cycles of variability are shown to correspond to the life cycles of active and break periods of monsoon rainfall over India.



member of each model.



## Dominant Modes of 7 CGCMs

#### Standing ENSO mode

- They persist through out the monsoon season.
- Most of models show indifferent pattern to observed over the Indian continent.
- 1st EOF of MSSA RC explains more than 90 % of variance.

#### 1<sup>st</sup> EOF of MSSA ENSO mode RC



## **Relationship with SST Anomalies**

#### **Correlation of ENSO mode with daily SST**



Dominant Modes of 7 CGCMs

#### **Oscillatory 45-day mode**

• It is associated with the life cycles of active and break periods of monsoon rainfall with 45 days period.

• Some eastward and northward movements are found to be associated with this oscillatory mode.

#### 1<sup>st</sup> EOF of MSSA Oscillatory mode RC



## **Relationship with SST Anomalies**

#### **Correlation of Oscillatory 45-day mode with daily SST**



## Role of Intraseasonal Variability on Seasonal Predictability of Indian Monsoon Rainfall



The strength of the JJAS seasonal mean OLR anomalies is mainly determined by the two persisting standing patterns while the contribution from the oscillatory modes is small.



Krishnamurthy and Shukla, 2008

## **Seasonal Predictability of Indian Monsoon Rainfall**

**JJAS Extended IMR Indices of RC** 



# Seasonal Predictability of Indian Monsoon Rainfall

**JJA Indices** 





NINO

3.4

0.78

0.77

0.81

0.73

0.82

0.74

0.77





 The most dominant obstacle in realizing the potential predictability of intraseasonal and seasonal variations is inaccurate models, rather than an intrinsic limit of predictability.

Thanks to Prof. Jagadish Shukla (TTA/ICTP, 2008)





**Outline** 

- Current Status of ENSO Predictability in CGCMs
  - Inherent limits to predictability
  - Model Flows
- Current Status of Monsoon Predictability in CGCMs
  - Intrasesasonal and seasonal predictability
  - ENSO-Monsoon relationship
- ENSO-Monsoon Relationship in GCM Experiments - Role of tropical Pacific SST anomalies







### **ENSO-Monsoon Relationship in GCM Experiments**

□ ENSO-monsoon relationship in NCEP/CFS forecasts

□ The role of ocean forcing in coupled systems: CGCM vs. "Pacemaker"

□ The role of air-sea interaction on ENSO-monsoon relationship

□ Shortcoming in "Pacemaker": Decadal change of ENSO-Indian monsoon relationship







• From the summer of Year 0, referred to as JJA(0), to the spring of the following year, called MAM(1), a covariance matrix was constructed using four consecutive seasonal mean anomalies for each year.

SEOF (Wang and An 2005) of 850 hPa zonal wind over 40E-160E, 40S-40N

High-pass filter of eight years

• The seasonally evolving patterns of the leading mode concur with ENSO's turnabout from a warming to a cooling phase (Wang et al. 2007).



### Impact of the Model Systematic Errors on Forecasts





# In CFS coupled GCM, what is responsible to drop the predictability of ENSO – monsoon relationship?

✓ Ocean forcing?

....

- ✓ Atmospheric response?
- ✓ Air-sea interaction?





### "Pacemaker" Experiments

> The challenge is to design numerical experiments that reproduce the important aspects of this air-sea coupling while maintaining the flexibility to attempt to simulate the observed climate of the 20th century.

"Pacemaker": tropical Pacific SST is prescribed from observations, but coupled air-sea feedbacks are maintained in the other ocean basins (e.g. Lau and Nath, 2003).

Anecdotal evidence indicates that pacemaker experiments reproduce the timing of the forced response to El Niño and the Southern Oscillation (ENSO), but also much of the co-variability that is missing when global SST is prescribed.

➢ In this study, we use NCEP/GFS T62 L64 AGCM.





### "Pacemaker" Experimental Design

In this study, the deep tropical eastern Pacific where coupled ocean-atmosphere dynamics produces the ENSO interannual variability, is prescribed by observed SST.







### **Model and Experimental Design**









- Western North Pacific Summer Monsoon Index (Wang and Fan, 1999)
   WNPSMI : U850(5°N–15°N, 100°E–130°E) minus U850(20°N–30°N, 110°E–140°E)
- Extended Indian Monsoon Rainfall Index (Wu and Kirtman 2004)
   EIMR: Rainfall (5°N–25°N, 60°E–100°E)
- ISMI: U850(5°N-15°N, 40°E-80°E) minus U850(20°N-30°N, 70°E-90°E)





### Lead-lag correlation with Nino3.4 Index



Ensemble spread of 4 members of Pacemaker exp.

## ENSO Characteristics in CFS CGCM NINO3.4 Index during 1950-2005



NCEP CFS has long life cycle of ENSO and associated summer peak. This slow coupled dynamics of model must be responsible for the delay of relationship.





## **ENSO Characteristics in CFS CGCM** Regression of DJF NINO3.4 Index to SST anomalies







### JJA Regression map of 1<sup>st</sup> SEOF of 850 hPa zonal wind



### **Model and Experimental Design**







### Lead-lag correlation with Nino3.4 Index





ISMI: U850(5°N-15°N, 40°E-80°E) minus U850(20°N-30°N, 70°E-90°E)

Ensemble spread of 4 members of Pacemaker exp.



### JJA Regression map of 1<sup>st</sup> SEOF of 850 hPa zonal wind





Indian Summer Monsoon Index (Wang and Fan, 1999): U850(5°N–15°N, 40°E–80°E) - U850(20°N–30°N, 70°E–90°E) Extended Indian Monsoon Rainfall index (Wu and Kirtman, 2004): Rainfall (5-25N, 60E-100E)







### Lead-lag Correlation between NINO3.4 and Monsoon indices



Decadal change of ENSO-Monsoon relationship based on SEOF analysis (Wang et al. 2007)

- 1. Remote El Niño/La Niña forcing is the major factor that affects A-AM variability.
- → The mismatch between NINO3.4 SST and the evolution of the two major A-AM circulation anomalies suggests that EI Niño cannot solely force these anomalies.
- 2. The monsoon-warm pool ocean interaction is also regards as a cause (a positive feedback between moist atmospheric Rossby waves and the underlying SST dipole anomalies)
- → The enhanced ENSO variability in the recent period has increased the strength of the monsoon-warm pool interaction and the Indian Ocean dipole SST anomalies, which has strengthened the summer westerly monsoon across South Asia, thus weakening the negative linkage between the Indian summer monsoon rainfall and the eastern Pacific SST anomaly.



However, in pacemaker, the strengthen of the Indian Ocean dipole SST anomalies is not shown due to fixed mixed-layer depth and SST climatology.





# **THANK YOU!**

## **ANY QUESTIONS?**



