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&= /. Example applications to forecast models

—
—
e

— 5. Some caveats/issues

6. The specific US-CLIVAR/WGNE recipe for forecast
models

7. Forecast verification and a statistical benchmark




£ I Detection of the MJO has

| traditionally been performed
by examination of time-
longitude diagrams of a

g— Ly e, N g S W — ——— ==

single field (e.g. OLR or
zonal wind).

But with this approach,
difficulty sometimes arises in
determining the approximate
state or phase of the MJO,

especially near the end-
WA e s W n0iNts Of the data.
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. helps for providing a more

: precise MJO phase in

. : continuous data.

But still there Is uncertainty
B | near the end-points, and If
E oo applied to model forecasts,

an ambiguous spread of

- forecast information across

- .y time occurs.
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This lead us to éonsider: Can a_n appr_opriate MJO Iindex
be derived with only daily, non-time-filtered, data?

Yes, by using multiple fields (satellite OLR and winds at
multiple levels) to better extract the MJO signal from
the noise.

= Such an index allows for the unambiguous
' _" determination of the MJO In real-time, and is readily
applied to forecast model output as well.




Building on much previos research, we applied
Empirical Orthogonal Function (EOF) analysis to
observed data in the Tropics.

(e.g. Lau and Chan 1985, Knutson and Weickmann 1987, Maloney
and Hartmann 1998, Slingo et al. 1999, Matthews 2000)

of bandpass filtered data, we applied it to unfiltered
data with multiple fields combined.
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In particular, fields chosen were:

15°S-15°N averaged OLR, u850; and u200. e

Only minimal prior removal of lower-freguency.
varanility (e.g. ENSO) was required.

Computed using all seasons of data.
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B he EOFs describe the convectively-

coupled vertically-oriented circulation SEEESclrIE=es

cells of the MJO that propagate
eastwaradlalongl the equator.
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The time-series coefficients associated with each
EQGE vary mostly on the time-scale of the MJO' only;, §

analare In approximate gquadrature for eastward
prepagation.

We call them Real-time Multivariate MJO 1 (RMM1), and RMM2.
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and our testing reveals that this dominance of B
the MJO Is helped by the use of multiple fields.

—
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VIBZiIpower spectra of leading| PCs for three different EOF analyses
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" . £ [EMMT,RMMZ2] phase space for“. 1-Dec-2007 to 31-Mar-2008
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Composites fier different seasons demonstrate that the all-
seaspn index still captures the strong seasonality. exhibited
By the MJO.
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Interannual modulation of the MJO amplitude/variance

91-day running mean RMM12+RMM22
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Impacts on rainfall
and extreme
8 weather
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Mormalized rainfall anomalies
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Top: Composite rainfall anomalies for
different MJO phases (defined using the
RMM index) during the March-May rainy
season in two regions of Kenya / Northern
Tanzania (blue : Western region ; red :
Eastern region, as located in Fig.1 and on
the lower panels). The rainfall anomalies
are obtained after extraction of the mean
annual cycle.

Midd/e : Composite wind anomalies (zonal
and vertical) for MJO phases 7 and 2, along
an equatorial cross-section between the
Congo Basin and the Western Indian
Ocean. Shading indicates anomalies
statistically significant at the 5% level.



ExampieNfpacts 1n Nokth America based

N on RMMI phases (K. Welckdiienig)
1 e Signal/Noise for 2 meter air temperature
Eight MJO Phases, DJF 1979-2006
N Max ~+0.5 sigma => 67% prob > 0 anomaly
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[RMM1,RMM2] forecast for 2007/12/ 4 to 2007/12/18
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Others leading the way in the application of S
the WHO4 EOFs to model forecast data are:

NCEP — N Higg‘ins, and M. L'Heureux
ECMMWE —
CVIC (Canada) —

== NOAA/PSD — K. Weickmann

& ABOM (Australia) — H. Rashid, A. Charles, L. Rikus
~~  NRL (USA) -

You will hear much more In the next lectures.




= Tihere is still some day-to-day noise retained in the

index. For some diagnostic work,, this may. be removed

Withra 5-day running mean.

s ilie WIHHO4 EOFs do not fully capture the northward-
prepagating intraseasonal variability in the Asian
[MOMASo0N.

&= - Removal of interannual variability in WHO4 involved two
_ £ steps, one of which is not easily reproduced. (This has
— been simplified for the US-CLIVAR/WGNE recipe.)

- » Re-computing the EOFs on different sets of observations
may result in a linear exchange between the MJO pair of
EOFs. This is equivalent to a rotation in the RMM phase
space. We thus recommend the use of the WHO4 EOFs.




Initially. it has been very informative to see the

diffierent calculation and presentation strategies of
e different Operational Centres.

iHewever, In a meeting of the US-CLIVAR MJO

& Working Group in Nov 2007, it was decided to
&= standardize the RMM calculation and presentation,
— and help entrain further Centres by offering to
' perform the RMM projection for them (at NCEP!).

This activity has been formalized through the
iInvolvement of WGNE and a letter sent to all
Operational Modelling Centres.




The “WGNE letter” specifies the data
requirements and recipe in full. In brief,
they are:

& Data requirements

Daily fields of OLR, u850, and u200, averaged for 15°S-15°N
= from the model analysis and forecasts (out to at least 10
= days), with a longitudinal resolution of 2.5°.

Plus a model analysis history of the past 120 days.




US-CLIVAR/WGNE _recipe

Create anomalies from seasonal cycle

Also remove lower-frequency variability by subtracting
the most recent 120-day mean.

Divide each field by its observed normalization factor
from WHO4 (OLR=15.1 Wm~, u850=1.81 ms, u200=4.81
ms-1)

Project this data onto the pre-computed WHO04 EOFs.

= Divide the projection coefficients by their respective

—

= observed standard deviations.

For Centres wishing to compute the index themselves, the
WHO04 EOFs and normalization factors are available as an
asclil file from me or Jon Gottschalck.




A statistical. benchmark fo_recast of RMM1 and RMM2 can be
provided through a first-order vector autoregressive model:

Southern summer

X1 = 0.9561x, —0.1207y,
Vi1 = 0.1256x, + 0.9837y,

Northern summer

i1 = 0.9786x, — 0.1049y,
$41 = 0.0936x, + 0.9545y,

Which provides a very similar forecast to lagged linear
regression
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Figure 3. RMM1 and RMM2 forecasts (triangles) and their validating observations (circles) for four example periods, as represented
in the two-dimensional phase space they define. Initialisation dates of the 1- to 20-day ahead forecasts are 3 January 1986, 21 January|
1991, 15 November 2002, and 21 October 2003. Also labelled are the approximate locations around the earth where the enhanced
convective signal of the MJO will be located for that part of the (RMM1, RMM?2) phase space (e.g. ‘Indian Ocean’ for the MJO signal
in convection located over the near-equatorial Indian Ocean)




Forecast Verification

The easiest verification statistics to calculate

are the correlation between the forecasted
= and observed RMM1/2 values, and the root
= mean square error (RMSE).
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But we can also categorize the

forecasts In many different ways

Dependence on
the initial MJO
amplitude
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Dependence on the initial MJO phase

Phase dependence of prediction skills g

a) Anomaly Correlations (DynMod) b) Anomaly Correlation (VARMod)
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» \We have available aniMJOsindex that is useful
fior Impacts studies, real-time monitoring,
statistical forecasting, basic MJO understanding,
and as a dynamical forecast model metric.

—— Applicable in all seasons, and available for
&= 1974 to the present (except 1978).

P Obtainable from my web-site.

e The next few speakers will discuss in detall Its
application to dynamical forecast model output.




S0 far we have concentrated only on the
canonical eastward-propagating MJO. A

—— metric designed specifically to the northward
B=== propagation in the Asian monsoon would also

i

==~ be desirable.




THE END
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