

1956-15

Targeted Training Activity: Seasonal Predictability in Tropical Regions to be followed by Workshop on Multi-scale Predictions of the Asian and African Summer Monsoon

4 - 15 August 2008

MJO/ISV predictions: dynamical vs. statistical.

Kang In Sik

Seoul National University School of Earth and Environmental Sciences Division of Atmospheric Sciences San 56-1 Shillim-dong, Kwanak-ku, Seoul 151-742 REPUBLIC OF KOREA

Combined and calibrated predictions of intraseasonal variation with dynamical and statistical methods

Hye-Mi Kim and In-Sik Kang

Climate and Environment System Research Center Seoul National University, Korea

Targeted Training Activity, Aug 2008

WWhat is the predictability of the ISV at present ?t ?

- I. ISV predictions with various statistical models
- II. ISV prediction with a current dynamical model
- III. Combine and calibrate the ISV predictions
- IV. Access to upper limit of ISV prediction

Statistical ISV prediction

Previous studies

Different predictands

Studies	Statistical Models	Predictand	
Waliser et al. (1999)	SVD	Filtered OLR,U200	
Lo and Hendon (2000)	EOF and regression	OLR, stream function	
Mo (2001)	SSA and regression	Filtered OLR	
Goswami and Xavier (2003)	EOF and regression	Rainfall	
Jones et al. (2004)	EOF and regression	Filtered OLR, U200, U850	
Webster and Hoyos (2004)	Wavelet and regression	Rainfall, River Discharge	
Jiang et al. (2008)	Regression	RMM index, OLR, U200, U850	

Dynamical ISV prediction

Studies	Dynamical Models	Predictand
Chen and Alpert (1990)	NMC/NCEP DERF (DERF- Dynamical Extended Range Forecast)	30-90d filtered OLR,U200
Lau and Chang (1992)		OLR, stream function
Jones et al. (2000)		Filtered OLR, U200
Seo et al. (2005)		OLR, U200, U850
Vitart et al. 07	ECMWF-MFS	RMM index

Previous studies

Statistical ISV prediction

EOF, regression, wavelet, SSA, ...

Forecast skill : 15 - 25 days

Dynamical ISV prediction

DERF-based model

Forecast skill : 7-10 days

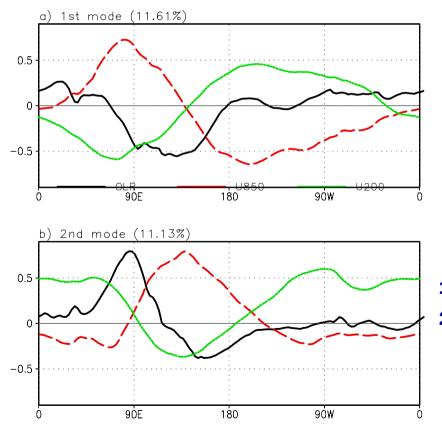
Different predictands

Fair and rigorous reassessment is needed in realreal time prediction frameworkvork

Real-time Multivariate MJO index (RMM):/):

The PCs of combined EOFs (Equatorially averaged OLR, U850, U200) (Wheeler and Hendon 04) (Wheeler and Wheeler and Hendon 04) (Wheeler and Wheeler and

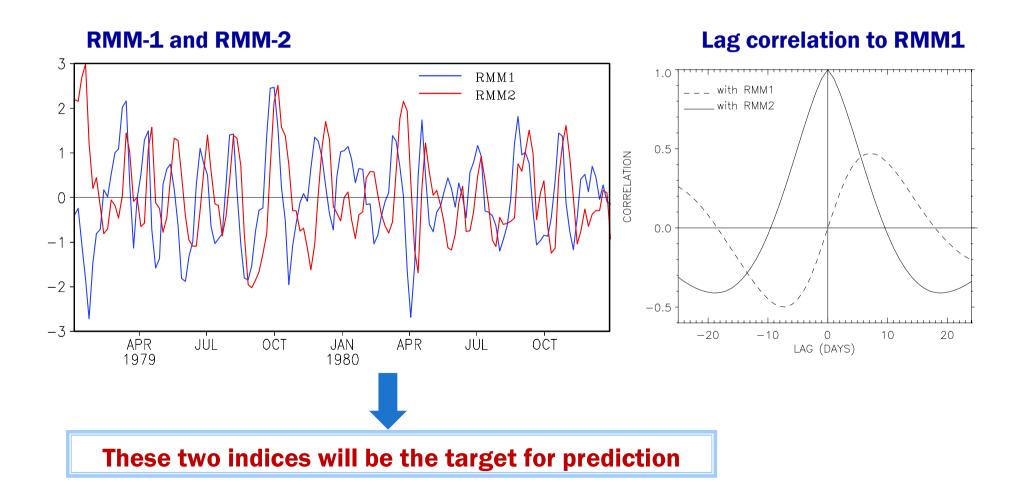
EV of Combined EOF



- **1.** Annual cycle removed;
- 2. Interannual variability (ENSO) removed:
- Regression pattern of each variable against NINO3.4
- Mean of previous 120 days

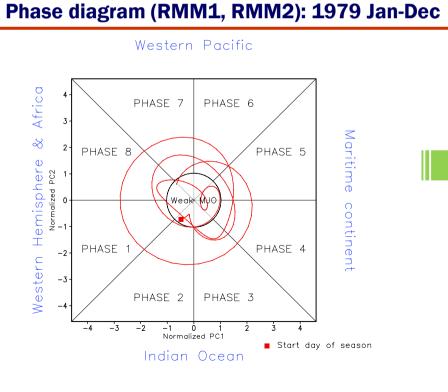
Real-time Multivariate MJO index (RMM)://):

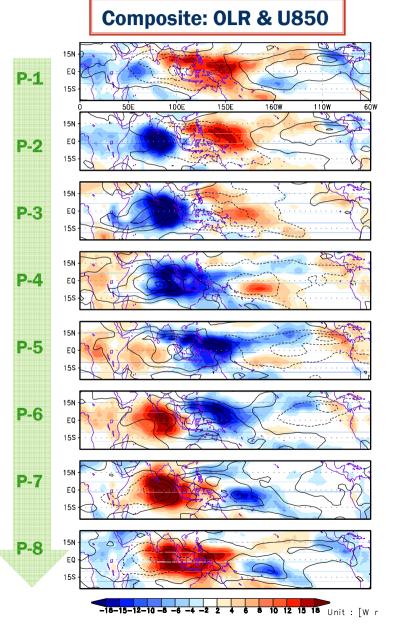
The PCs of combined EOFs \rightarrow RMM1 and 22



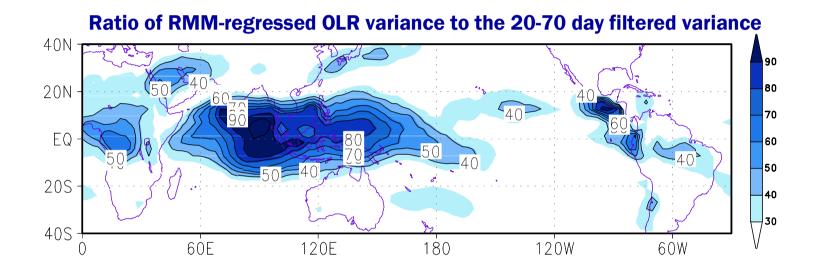
Advantages of RMM index

- **1.** Avoid the typical Filtering problem in real-time use
- 2. Convenient for application (monitoring and prediction): Reduction of parameters
- **3. Represent the MJO in individual phase**





MJO Variability

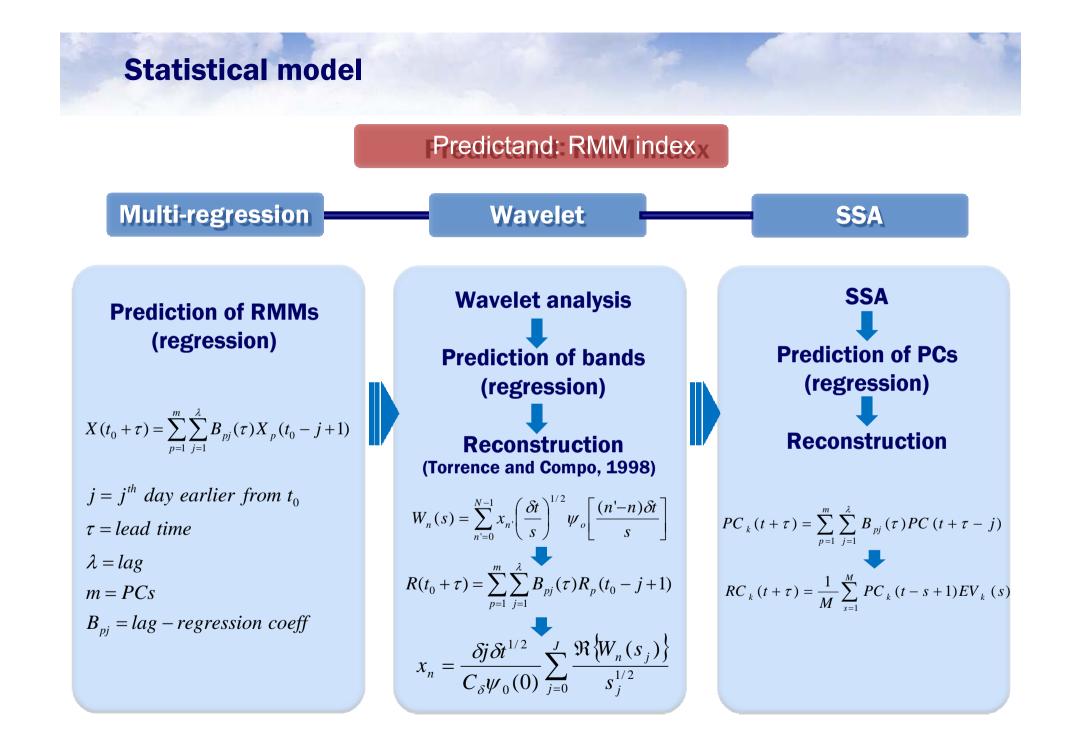


→ Two modes explain much of the tropical MJO variability
 → Recently, it is used for real-time monitoring/prediction of MJO (http://www.cdc.noaa.gov)

De Decision of common predictand for various prediction models \rightarrow PC1 and PC2 of combined EOF, the RMM/index

Statistical prediction

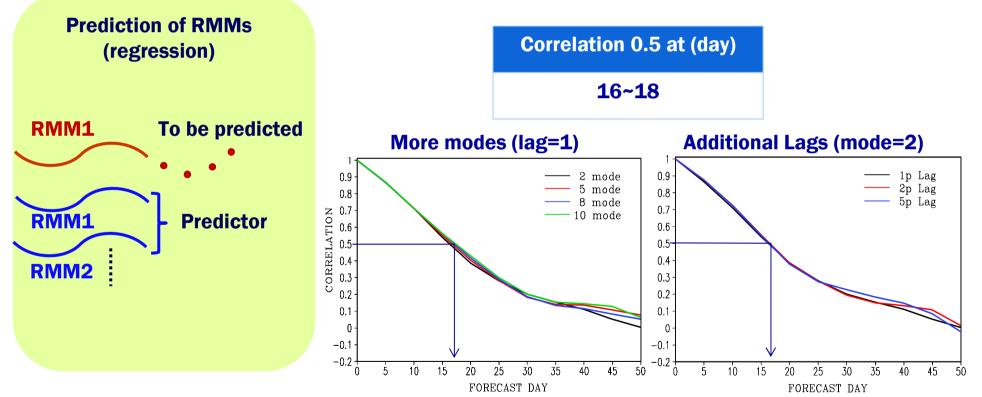
- Multi regression model
- Wavelet based model
- SSA based model



Statistical model

Multi-regression

Forecast skill of RMM1



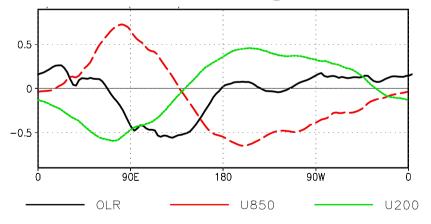
Statistical model

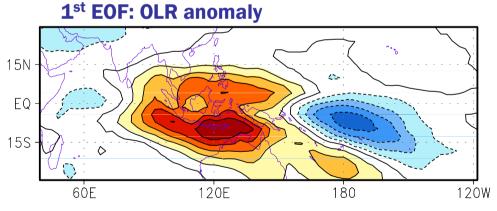
Multi-regression

Combined EOF

Spatial EOF

(Lo and Hendon 00, Goswami and Xavier 03, Jones et al. 04)





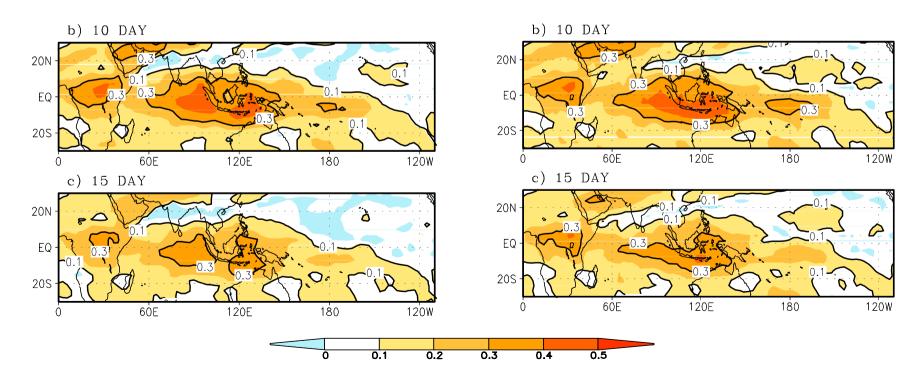
* Five Predictand = two EOFs of OLR and three of SF200

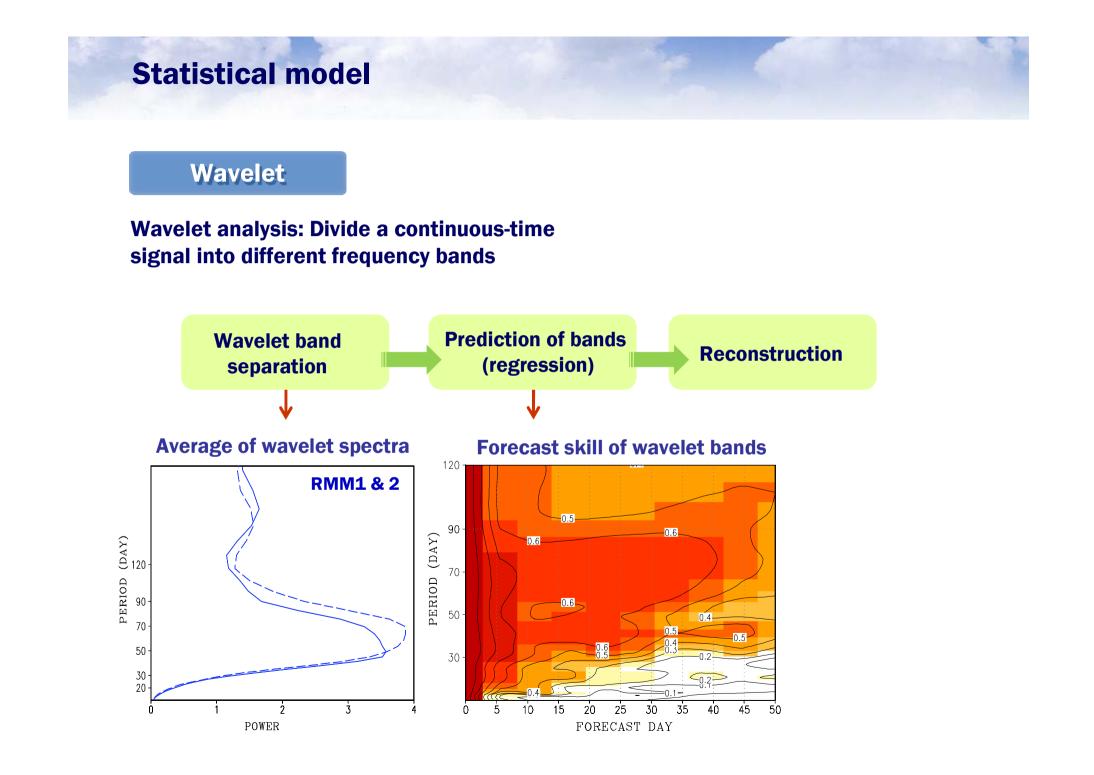
Multi-regression

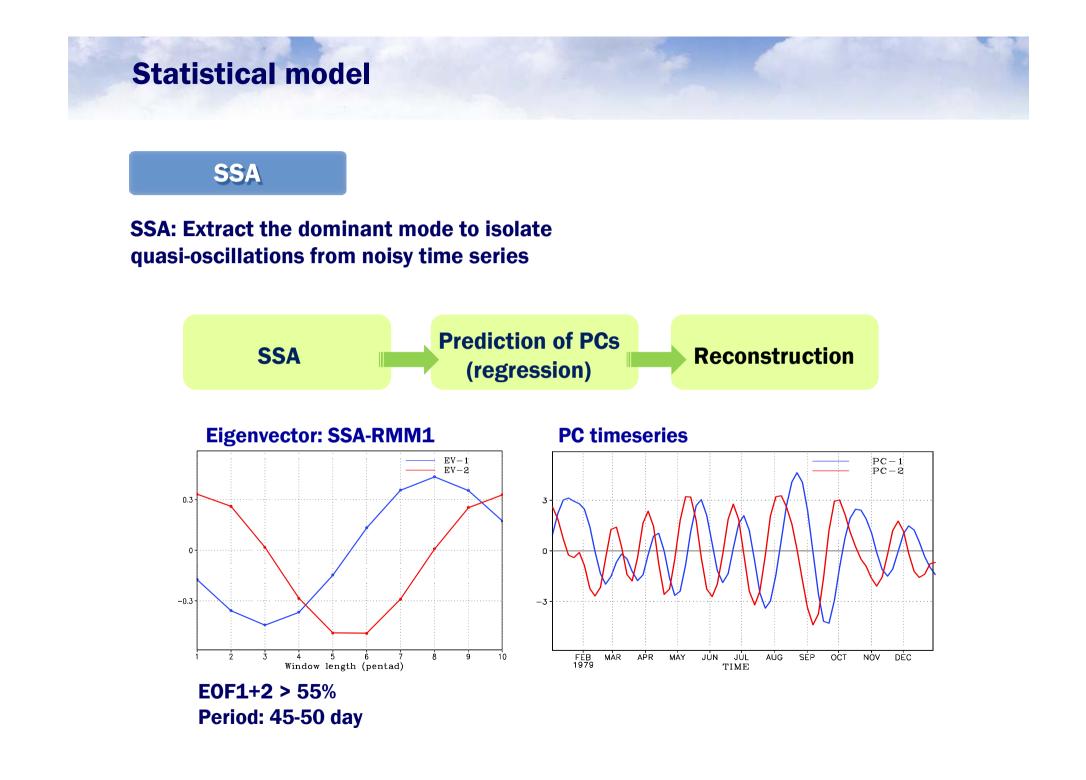
Combined EOF

Spatial EOF

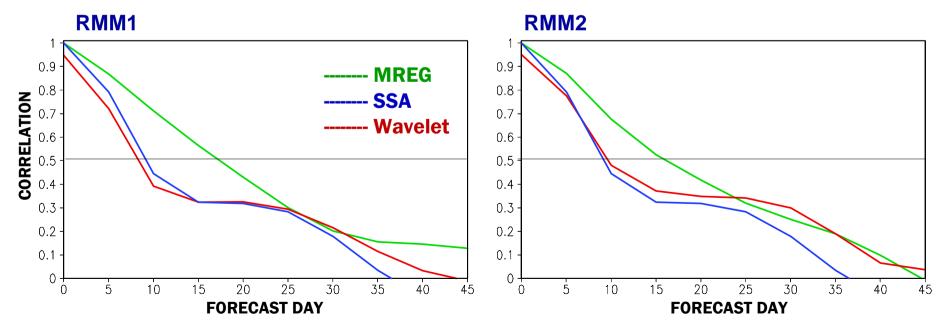
Predictability of unfiltered-OLR anomaly





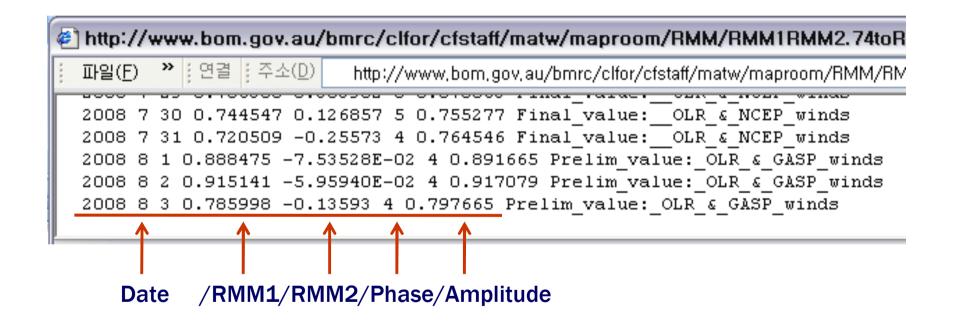


Correlation 0.5 at (day)			
	RMM1	RMM2	
MREG	16-17	15-16	
Wavelet	7-8	9-10	
SSA	8-9	9-10	



How to apply the statistical prediction in real-time?

1) Download the observed RMMs from BMRC in near real-time



" The index is usually available in near real time about 12 hours after the end of each Greenwich day (i.e. at about 1200 UTC) "

http://www.bom.gov.au/bmrc/clfor/cfstaff/matw/maproom/RMM/RMM1RMM2.74toRealtime.txt

How to apply the statistical prediction in real-time?

2) Apply the multi linear regression prediction model to RMMs

$$X_{1,2}(t_0 + \tau) = \sum_{p=1}^{m} \sum_{j=1}^{\lambda} B_{pj}(\tau) X_p(t_0 - j + 1)$$

X : RMMs

 λ :5 pentads

 $m:2 \mod es$

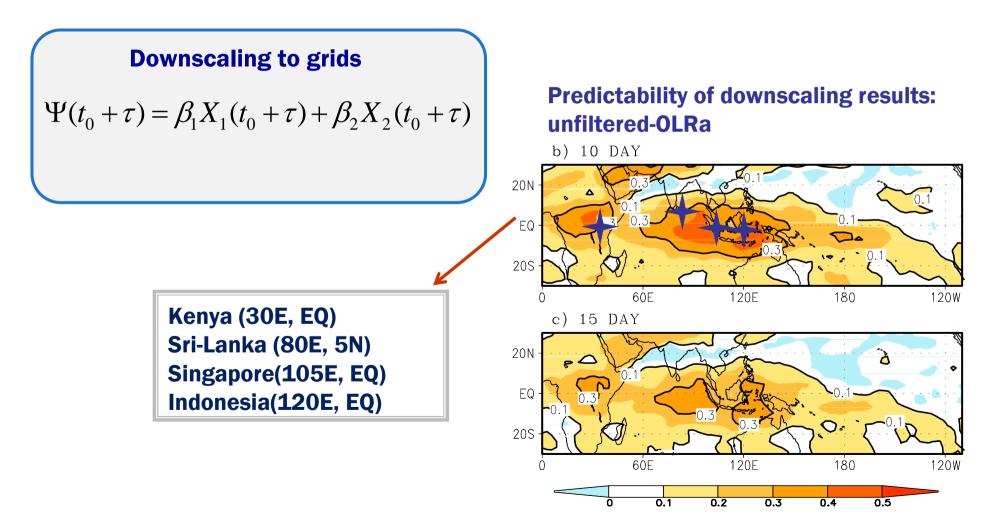
3) Downscaling to specific regions

$$\Psi(t_0 + \tau) = \beta_1 X_1(t_0 + \tau) + \beta_2 X_2(t_0 + \tau)$$

* Regression coefficients can be obtained from historical data

How to apply the statistical prediction in real-time ?

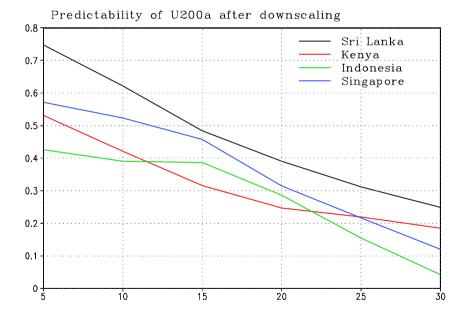
Example for downscaling



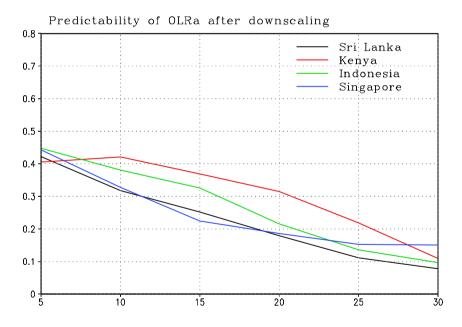
How to apply the statistical prediction in real-time?

Example for downscaling

Unfiltered U200 anomaly



Unfiltered OLR anomaly



Dynamical prediction

- Simulation Performance
- Optimal Experimental Design
- Dynamical Predictability

Dynamical model description

SNU CGCM

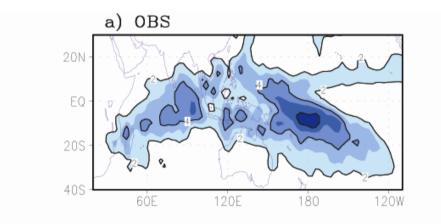
Model	Resolution	Note	
SNU AGCM	T42, 21 levels	Bonan (1996) land surface Relaxed Arakawa-Shubert cumulus convection (Moorti and Suarez 1992)	
MOM2.2 OGCM	1/3º lat. x 1º lon. over tropics(10S-10N), Vertical 32 levels	Ocean mixed layer model (Noh and Kim, 1999)	

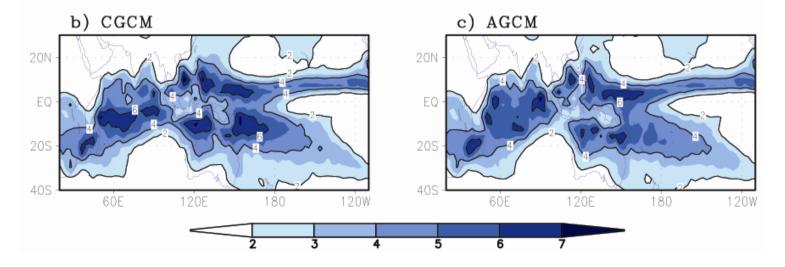
Coupling Strategy

- 1-day interval exchange
- Ocean : SST
- Atmosphere : Heat, Salt, Momentum Flux
- No Flux Correction is applied

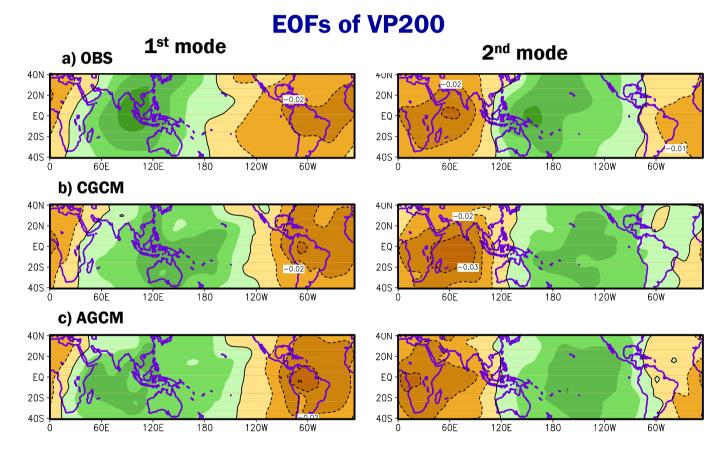
MJO simulation: Variability

Standard deviation of 20-70 filtered PRCP (1-30 day FCST)





MJO simulation: Propagation

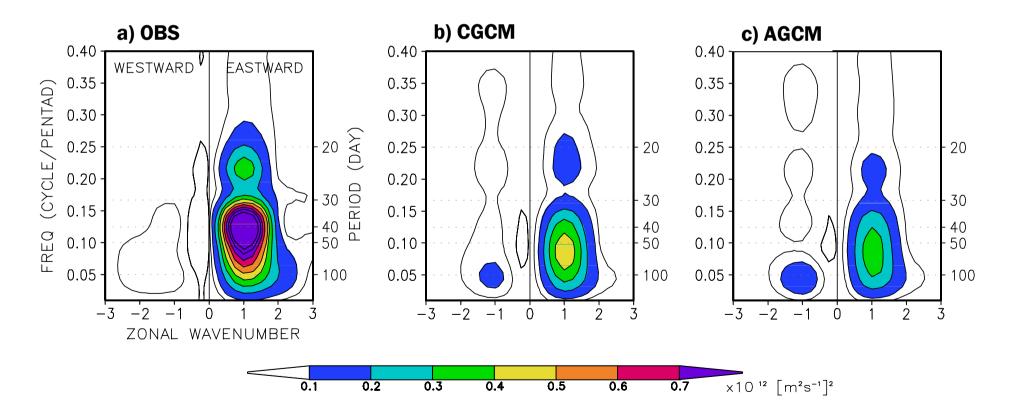


The observed two leading EOFs

- Eastward propagation mode
- Highly correlated between PC1 and PC2
- Two modes Explains more than half of the total variance

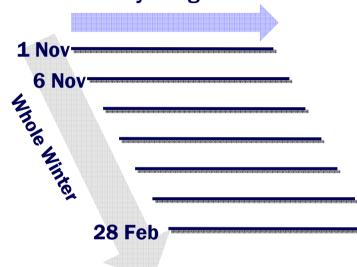
MJO simulation: Propagation

Space-time power spectrum (VP200 10S-10N, 1-30 day FCST)



Dynamical model: Experimental design

Serial integration through all phases of MJO life cycle

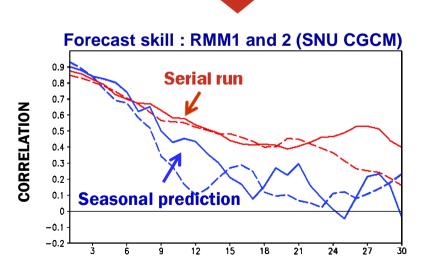


30 Day Integration

Serial run > Seasonal prediction ion

- Plenty of prediction samples les
- Include whole initial phases ses

Does seasonal prediction work for MJO prediction?



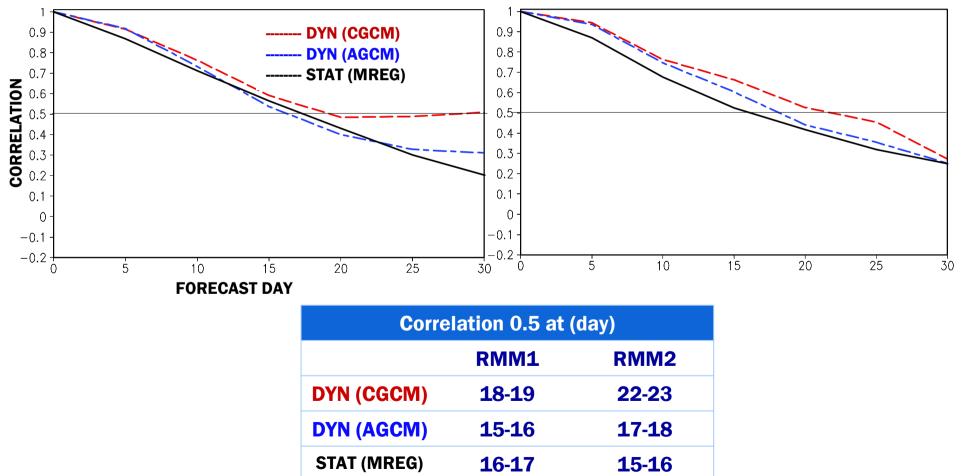
Serial run with SNU GCM

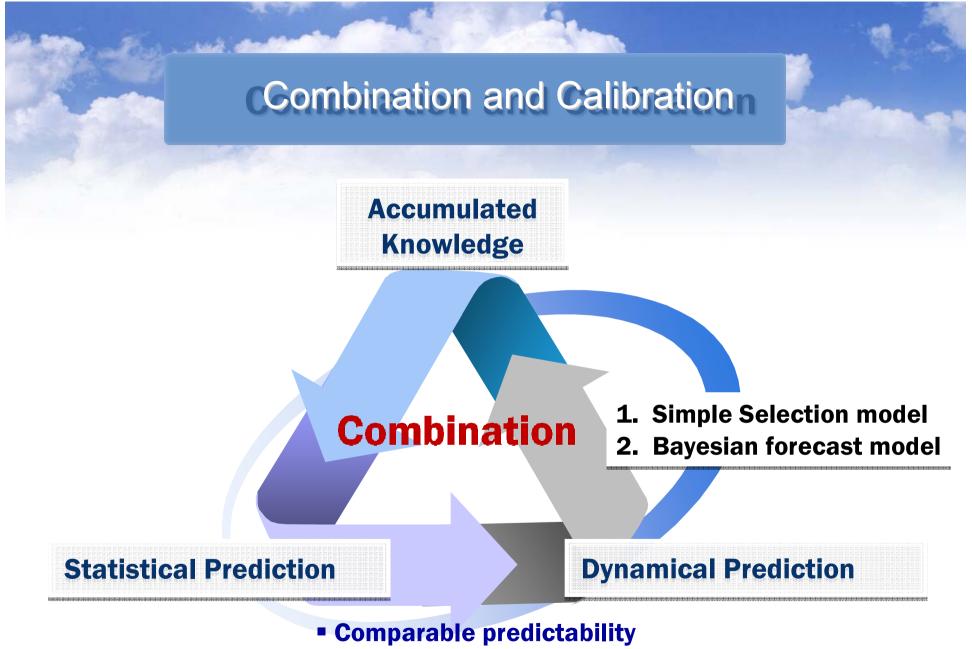
EXP	Period	Total 30-day forecasts	Using 1-CPU
AGCM Long-term	<mark>27-year</mark> (79-05)	621	4 month
CGCM	<mark>8-year</mark> (98-05)	184	2 month

Statistical vs. Dynamical prediction

Forecast skill: RMM1

Forecast skill: RMM2

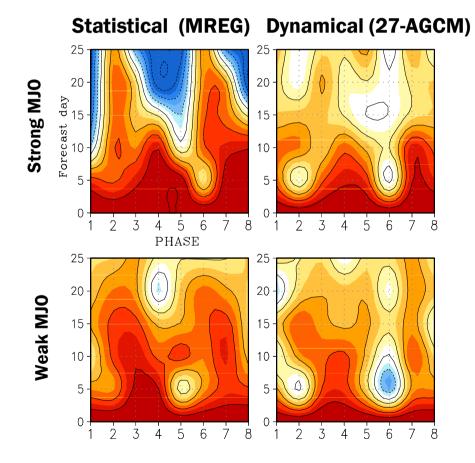




Independent predictions

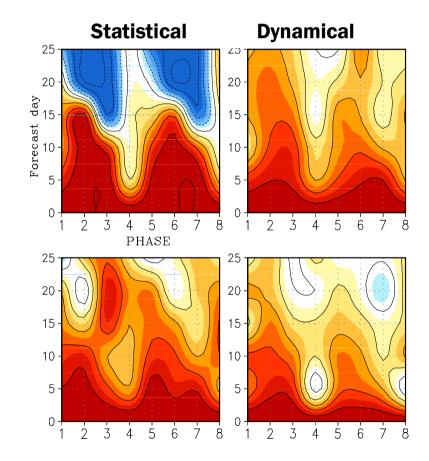
Combination: Selection model

Sensitivity to initial phase and amplitude: Prediction skill of RMMs



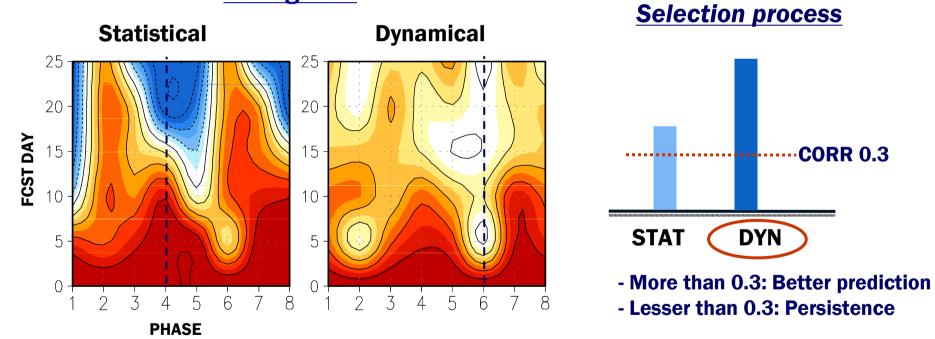
<u>RMM1</u>

<u>RMM2</u>



Combination: Selection model

Forecast skill of RMM1

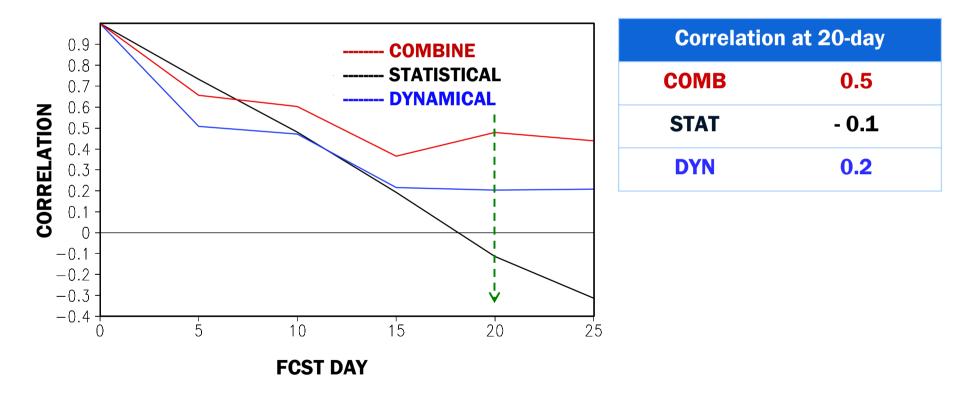


Strong MJO

Combination: Selection model

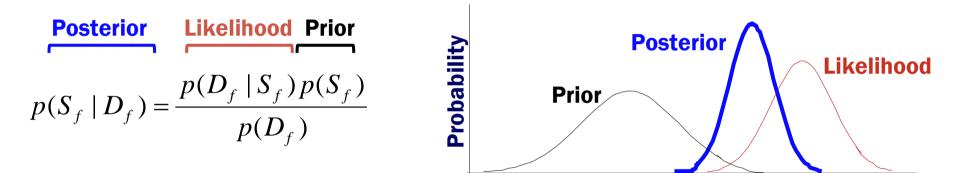
Forecast skill of RMM1

Predictability of RMM1 (Strong MJO)



Bayes' theorem

To construct a reliable data with combination of existing knowledge



→ Prior PDF is updated by likelihood function to get the less uncertain posterior PDF

- Choice of the Prior: Statistical forecast (MREG) REG
- Modeling of the likelihood function: tion:

Linear regression of past dynamical prediction and on past observation reation

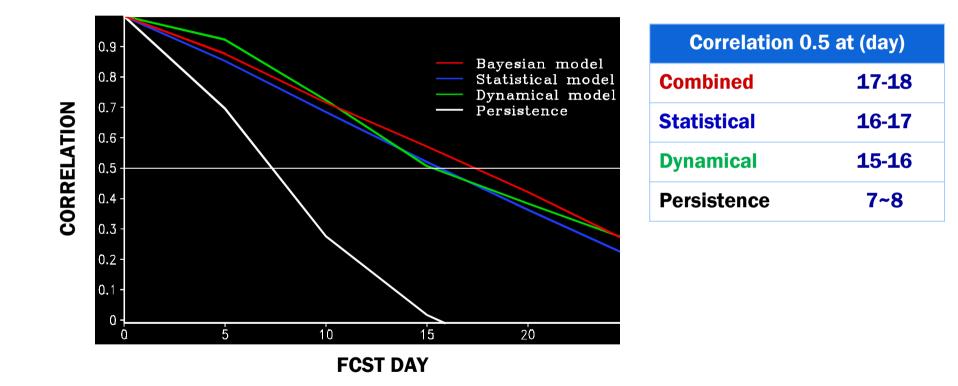
- Determination of the posteriorerior

Minimize the forecast error

$$\Psi_{comb} = (1 - K) \cdot \Psi_{stat} + K \cdot \Psi_{dyn} , K = \frac{\sigma_s^2}{\sigma_d^2 + \sigma_s^2}$$
Combined forecast $\rightarrow \mu_{comb} = \frac{\sigma_d^2 \mu_s + \sigma_s^2 \mu_d}{\sigma_s^2 + \sigma_d^2}$

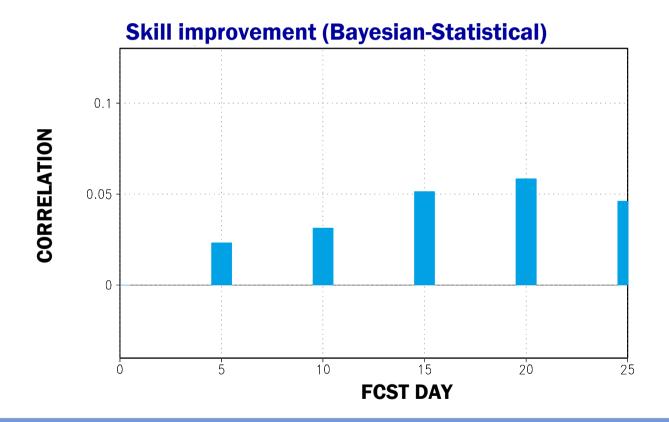
$$\mu_{comb} \quad \text{Statistical forecast}$$
Dynamical forecast
$$\mu_s \quad \sigma_c \quad \sigma_s \quad \sigma_s$$

Forecast skill of RMM1



Improvement of forecast skill through combination by Bayesian forecast model t model

Forecast skill of RMM1



Bayesian method is superior to both of dynamical and statistical prediction, just by just minimizing the forecast error

PPossibilities for improvement t

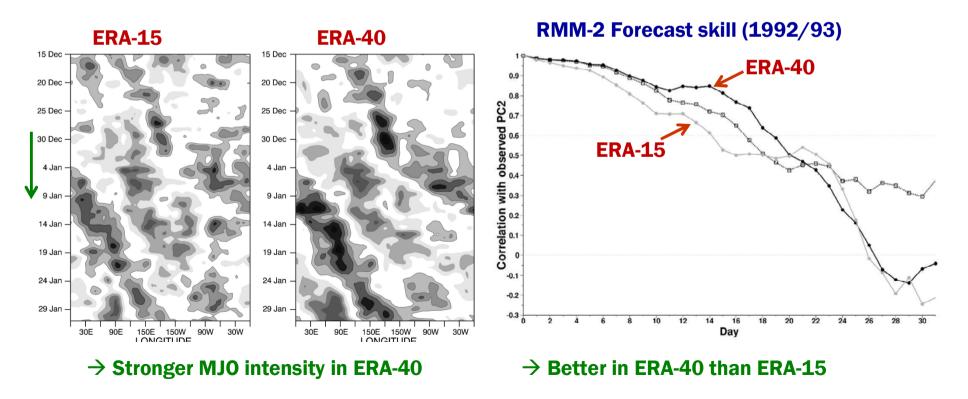
- Better initialization
- Multi-model ensemble
- Model improvement
 - High resolution modeling
 - Physical parameterization

Possibilities for improvement

Better initialization

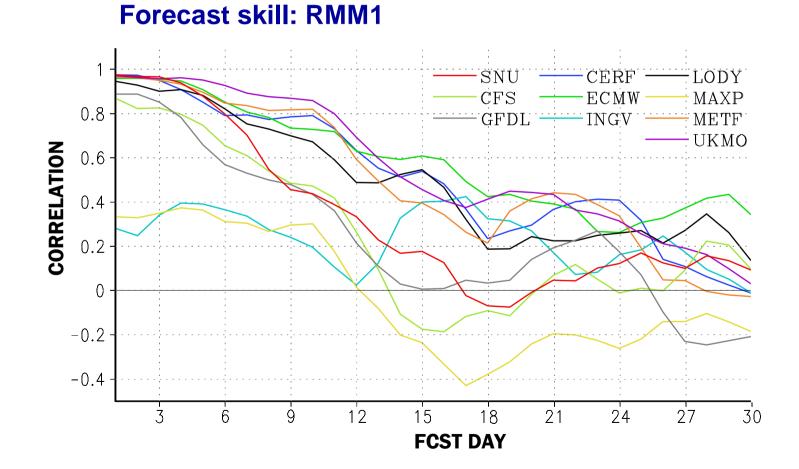
Sensitivity to the quality of the Atmospheric initial conditions

<u>Vitart et al. (2007)</u>



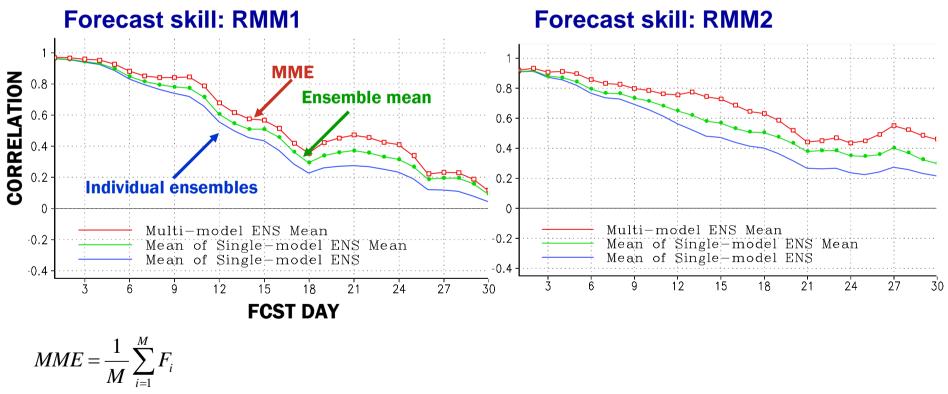
Possibilities for improvement

Better initialization



Possibilities for improvement

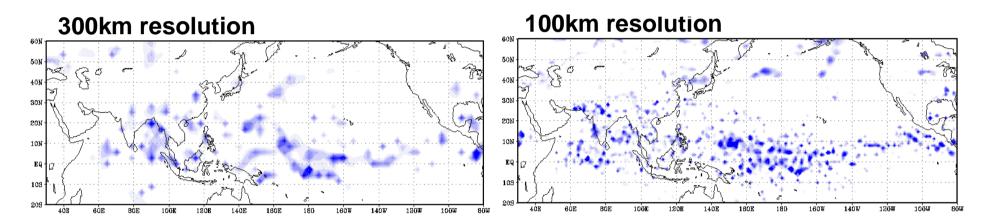
Multi-Model Ensemble (MME)



F = forecastsM = Model number (M = 10)

Model improvement: High-resolution (FV AGCM, 10-year)

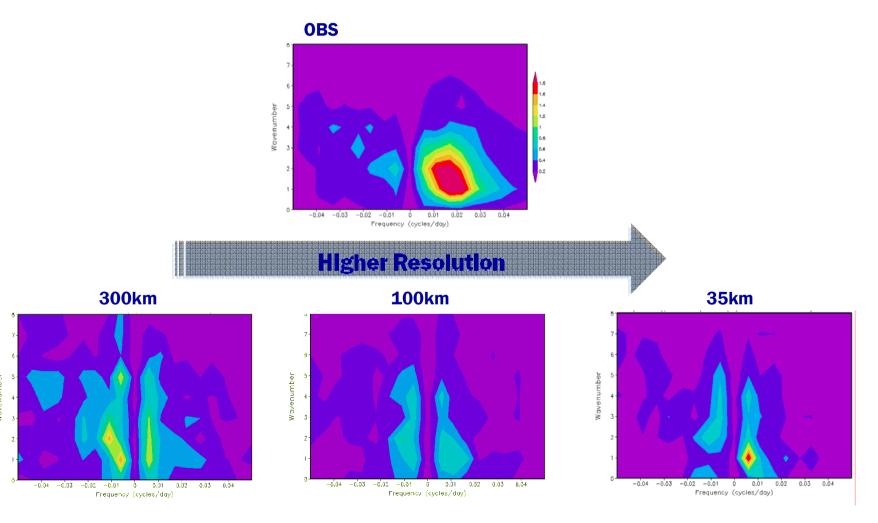
3-hourly precipitation



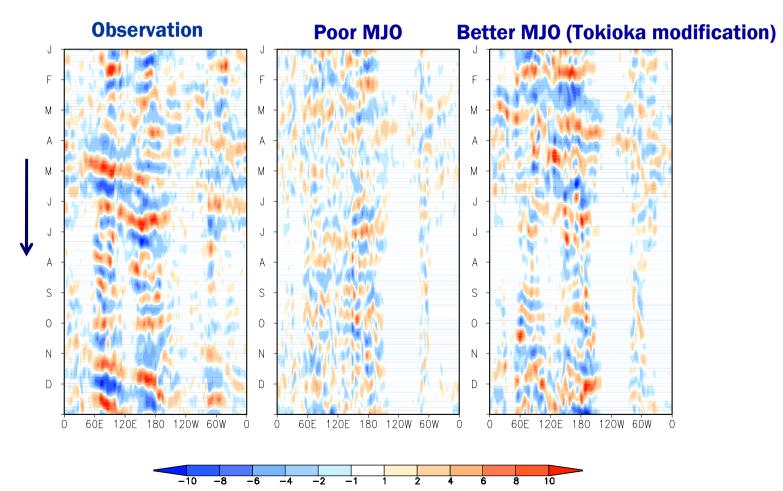


Model improvement: High-resolution

Space-time power spectrum (Winter OLR)



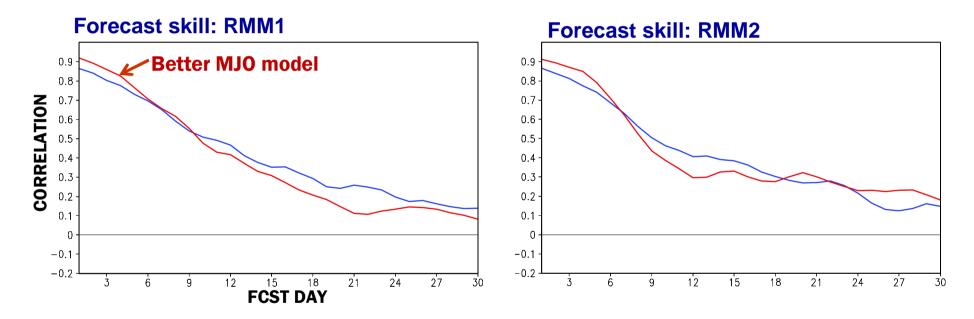
Model improvement : Physical parameterization



Filtered (20-100 day) Precipitation (5°S-5°N)

Model improvement : Physical parameterization

13-year Serial forecast experiment (AGCM, 1983-2005)



The ISV (MJO) prediction has possibility for improvement through better initialization, multi-model ensemble, and model improvement improvement

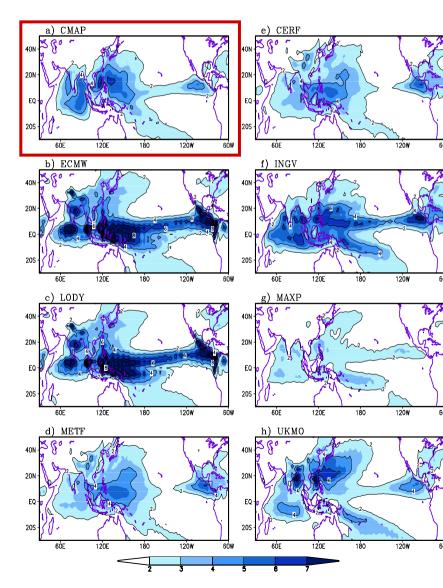
Thank you

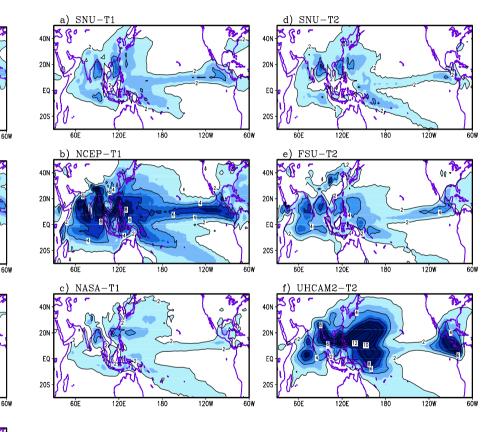
Statistical correction of ISV activity

ISO activity (MJJA) : STD of 20-90 days filtered PRCP

DEMETER

APCC/CliPAS

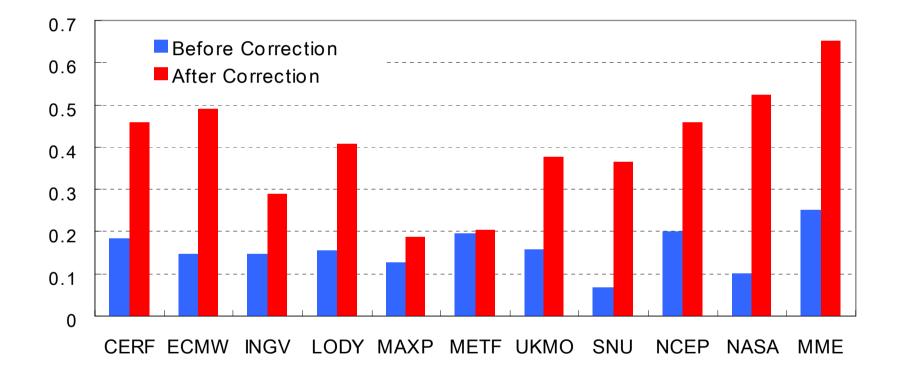




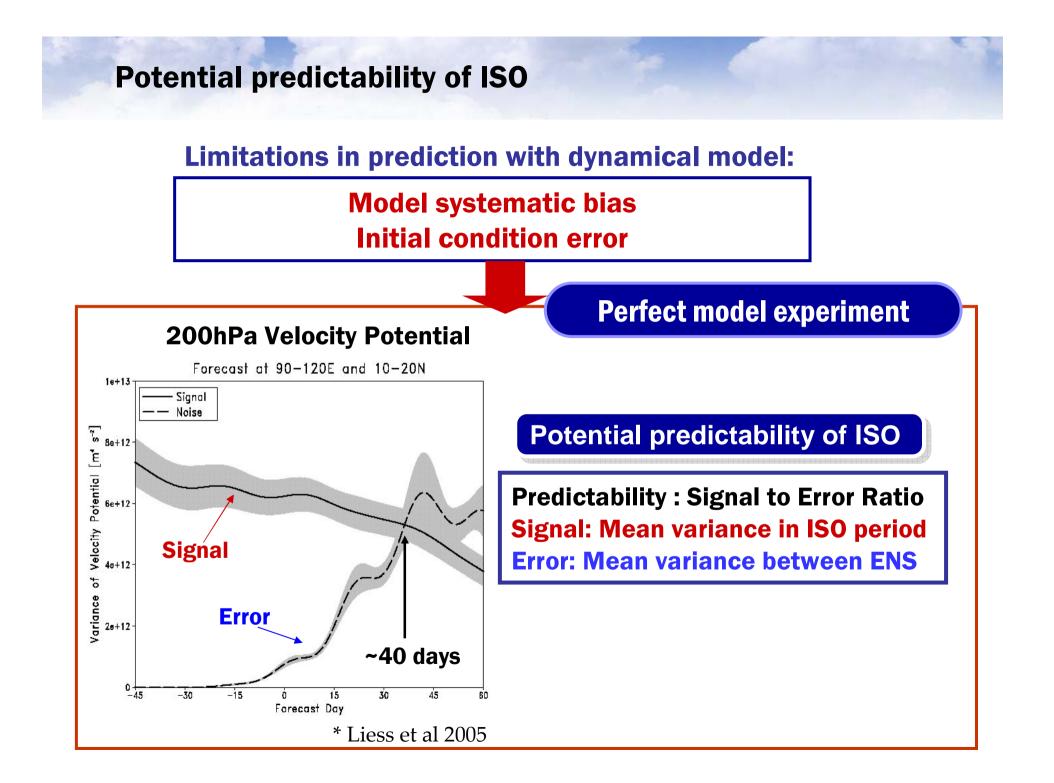
Kim et al. (2008) Climate Dynamics

Predictability of ISO activity

Pattern Correlation of ISO activity (60-180E.10S-30N)

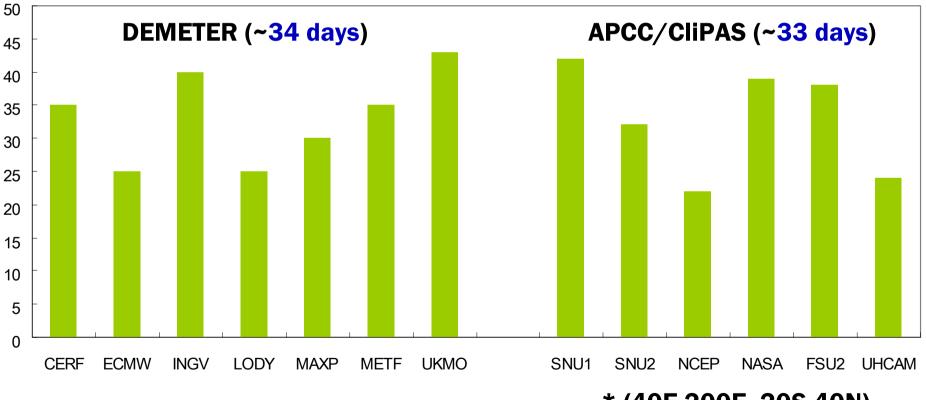


The predictability of ISO activity is enhanced in all models after correction



Potential predictability of ISO

Potential predictability of ISO (when error overwhelms signal)



* (40E-200E, 20S-40N)