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Damaging Floods: River Flooding

1 large peak or extended duration

1 Affect agriculture: early floods in May, late floods in September

Recent severe flooding: 1974, 1987, 1988, 1997, 1998, 2000, 2004, and 2007
1998: 60% of country inundated for 3 months, 1000 killed, 40 million homeless, 10-
20% total food production
2004: Brahmaputra floods killed 500 people, displaced 30 million, 40% of capitol city

Dhaka under water
2007: Brahmaputra floods displaced over 20 million
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Overview:

Bangladesh flood forecasting

|. CFAB History -- Sea-level impacts on flooding
[1. 1-10 day Discharge Forecasting
1. precipitation forecast bias removal
2. multi-model river forecasting
3. accounting for all error: weather and hydrologic errors
[11. 2007 Floods and Warning System Pilot Areas
V. Verifying the ensemble spread-skill relationship
V. Calibrating ensemble forecasts with spread-skill information




Three-Tier Overlapping Ferecast System
Developed for Bangladesh

“Broad brush” probabilistic forecast
of rainfall and river discharge. Updated each month. Produced
out to 6 months, currently most useful skill out 3 months

Forecast of average 5-day rainfall
and river discharge 3-4 weeks in advance. Updated
every 5 days.

Forecast of rainfall and precipitation
In probabilistic form updated every day. Considerable skill
out to 5-days. Moderate skill 5-10 days.




Seasonal Forecasts

Brahmaputra 11-day lagged Monthly-Avg Discharge
ECMWF 1 to 6 month 40 member Ensemble Seasonal Forecasts
May - Aug, 2006 Precipitation Forecasts Compared to Verification

May : Verif {dash); Climate (dot) June : Verif (dash); Climate (dot)
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Topography of Bangladesh

Sea Level Impacts

-Very flat topography

-Can changes in Bay of
Bengal sea level height
significantly affect river
flooding over the whole
country?




Ocean Dynamics Effecting Sea-Level in the Bay of Bengal

Indian Ocean Zonal Mode Baroclinic Coastal Kelvin Wave
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Sea Level Impacts

Calculation: linearize the
depth-integrated Navier-
Stokes equation about the
“normal depth” D,

Results: exponential
decrease of sea-level
impacts with e-folding
length D,,/ (3S,)~150km

=Backwater effects limited
to lower third of country and
bounded by roughly 30cm

=Severe flood years affect
whole country, with water
depth variations of O(1m)

=> Look at precipitation-
driven effects on flooding

disasterous flood year

100% flooding

No data

60-90% flooding

No data
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CFAB Project: Improve flood warning lead time

Problems:

1. Limited warning of upstream
river discharges

2. Precipitation forecasting in
tropics difficult

Good forecasting skill derived from:.

1. good data inputs: ECMWF weather forecasts, satellite rainfall

2. Large catchments => weather forecasting skill “integrates” over large spatial
and temporal scales

3. Partnership with Bangladesh’s Flood Forecasting Warning Centre (FFWC)
=> daily border river readings used in data assimilation scheme




1) Rainfall Inputs

Rain gauge estimates: NOAA CPC and WMO GTS

0.5 X 0.5 spatial resolution; 24h temporal resolution
approximately 100 gauges reporting over combined catchment
24hr reporting delay

Satellite-derived estimates: Global Precipitation Climatology Project (GPCP)
0.25X0.25 spatial resolution; 3hr temporal resolution

6hr reporting delay

geostationary infrared “cold cloud top” estimates calibrated from SSM/I and
TMI microwave instruments

Satellite-derived estimates: NOAA CPC “CMORPH”
0.25X0.25 spatial resolution; 3hr temporal resolution

18hr reporting delay
precipitation rain rates derived from microwave instruments (SSM/I, TMI,
AMSU-B), but “cloud tracking” done using infrared satellites

Weather forecasts: ECMWF GCM 51-member ensemble weather forecasts
at 1-day to 10-day forecast lead-times (nominal resolution about 1degree)




2) Spatial Scale Skill-Score Improvement of Daily Precip Forecasts w/ Area
Reterence Measure: 1074 km#2 scale precip skill; mean statistics (norm)
"perfect model" used as "observed precip”
Plots/skill2000_ptgrd _perf mean_51_norm.ps
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Merged FFWC-CFAB Hydraulic Model Schematic

.
Panchagarh NESups
g 1

Primary forecast boundary
conditions shown in gold:

Ganges at Hardinge Bridge

Brahmaputra at Bahadurabad

3) Benefit: FFWC daily river

discharge observations used

L b h [ In forecast data assimilation

.h- scheme (Auto-Regressive

R Integrated Moving Average
[ model [ARIMA] approach)




Transforming (Ensemble) Rainfall into
(Probabilistic) River Flow Forecasts

Rainfall Probability Discharge Probability
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Above danger level probability 36%
Greater than climatological seasonal risk?




Daily Operational Flood Forecasting Sequence

Statistically corrected
downscaled forecasts

Update soil moisture
states and in-stream flows
Generate forecasts Generate hindeasts

Calihrate AR error model
Generate forecasts Generate hindeasts

Calihrate model

Generate forecasts Generate hindrasts

Multi-Model Hindcast/Forecast Discharge Generation

| Calihrate multi-model |

4 4

| Generate forecasts | | Generate hindecasts |

Generate farecasted model error PDF

Convolve multi-model forecast
PDF with model error PDF

Above-critical-level
forecast probabilities
transferred to Bangladesh
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Forecast Bias Adjustment
-done independently for each forecast grid
(bias-correct the whole PDF, not just the median)

Model Climatology CDF “Observed” Climatology CDF
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Brahmaputra Basin ECWMEF Precipitation Rank Histogram
Rank of merged-GPCP/CMORPH/Raingage Obs Relative to Ensembles
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Rank Histogram Comparisons
(better but not perfect!)
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Quantile Regression approach:maintaining skill no

worse than “persistence” for non-Gaussian PDF’s
(ECMWEF Brahmaputra catchment Precipitation)

“Multi-model”
statistical

approach applied

to NCAR'’s
mesoscale
ensemble
forecasts
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Daily Operational Flood Forecasting Sequence

Statistically corrected
downscaled forecasts

Update soil moisture
states and in-stream flows
Generate forecasts Generate hindeasts

Calihrate model Calihrate AR error model
Generate forecasts Generate hindrasts Generate forecasts Generate hindeasts

/MﬁModel Hindcast/Forecast Discharge Gene%n\

| Calihrate multi-model |
v v

\ Generate forecasts | | Generate hindeasts |

Generate farecasted model error PDF

Convolve multi-model forecast
PDF with model error PDF

Above-critical-level
forecast probabilities
transferred to Bangladesh
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Multi-Model Forecast
Regression Coefficients
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Daily Operational Flood Forecasting Sequence

Statistically corrected
downscaled forecasts

Update soil moisture
states and in-stream flows
Generate forecasts Generate hindeasts

Calihrate model Calihrate AR error model
Generate forecasts Generate hindrasts Generate forecasts Generate hindeasts

Multi-Model Hindcast/Forecast Discharge Generation

| Calihrate multi-model |

4 4

| Generate forecasts | | Generate hindecasts |

Generate farecasted model error PDF

Convolve multi-model forecast
PDF with model error PDF

Above-critical-level
forecast probabilities
transferred to Bangladesh
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Step 1: generate discharge E
ensembles from precipitation S

: Sl
forecast ensembles (Q,): &

i |
Q, [més] |
Step 2: a) generate multi-model hindcast error time-series using precip estimates;
b) conditionally sample and weight to produce empirical forecasted error PDF:

a) 1000_ Residuals forecast b) T
horizon
3/ —
[m®/s] time =s .IH|“I|

/\ J} \ / \\\//x 9</ -1000 Residual [m3/s] 1000

-1000_

Step 3: combine both uncertainty PDF’s
to generate a “new-and-improved” more
complete PDF for forecasting (Q;):

Probability =

Q; [m3s]




nificance of Weather Forecast Uncertaint
Discharge Forecasts

2004 Brahmaputra Discharge

Corrected Forecast Ensembles
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Forecast Ensembles

Multi-Model Brahmaputra Discharge Forecasts
7-10 day using ECMWTF Precipitation Forecasts
Forecasts Inmtialized June 15, 2004 - October 10, 2004
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2004 Brahmaputra Forecast Results
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Overview:

Bangladesh flood forecasting

CFAB History -- sea-level backwater effects

[1. 1-10 day Discharge Forecasting
1. precipitation forecast bias removal
2. multi-model river forecasting
3. accounting for all error: weather and hydrologic errors

[11. 2007 Floods and Warning System Pilot Areas




Five Pilot Sites chosen in Sustainable End-to-End Climate/Flood Forecast
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2007 Brahmaputra Ensemble Forecasts and
Danger Level Probabilities

7-10 day Ensemble Forecasts

Observed Q) (black), 7-day Forecast (colors)

7 day

120

100

O [ 1043 mh s

il

0

0RE2 0712 0726 OBO9 D23 0906 QG20 1004 1018

Day
Observed Q) (black), 9-day Forecast (colors)

120 9 d ay

100

O [ 1043 mh s

il

01
OfE4 0714 0728 0811 082S 0908 0922 1006 1020

Day

Observed () (black), 8-day Forecast (colors)
120
8 day

100

20

01

(B3 0713 0727 0810 0824 0907 0921 1005 1019

Day

Observed Q) (black), 10-day Forecast (colors)

10 day

120
100

&0

20

01
DRSS OT15 07259 0R12 0826 090% 0023 1007 1021

Day

Probahility

Probahility

7-10 day Danger Levels

7-day For.: D.L.. Prob (red) and obs % Q

[l s = ==

0.8

06z, g z
H = =

04 Ry =

B-day For.: DL. Prob (red) and obs % Q

]
[]

l.{J-----E:n;E | l;:--...

" |"| . B

06 _. ‘; ”n £ |

04 E"fr.‘:“ “‘ | ‘ ::I—-'r-'n o

R
8 day ll IIII

0RE2 0712 0726 OBO9 D23 0906 QG20 1004 1018

Day
9-day For.: D.L.. Prob (red) and obs % Q

ﬁ:'""é:ﬁ‘:—"""

e

L RN

.
T

lluu,,.,.,“-II

08 | |
[ 22 2|3 =
062 ::‘i' [:*,:: 5, .5*7‘ | = =
AT | - | = -
4 r.-"'. ,\:': | I| :-_' C‘E

|I | I
0.2
Oday ., |
| M| |

e

00

11}

OT13 0727 0810 0824 0607 0021 1005 101
Day

10-day For.: D.L. Prob (red) and abs % )

OAR4 0714 0728 0811 0825 0908 0922 1006 1020
Day

l'{'l------iﬂ_z ----:i:'_----nl
: f@- *r
08 ) HIE
- = | I z z
_';_l‘l }': M S \' E
0., 5 | PR ‘ S
L5 |2
047 T | %,
2 10day . | Il
- 10 Ua]y | [ W]
0 I L/ mn | I -
DERS  OF15 07259 0R12 0826 0909 0923 1007 102

Day



&\ 5.2 July/August 2007 floods in Bangladesh

“Seven people had died and thousands

have been forced to leave their homes in - : 4
v JyLJRangpur

Bangladesh because of worsening floods.

. | ISylhet
o _ o River Padm3
Officials said that nearly half a million BANGEADESH

. . Nodkhdali |
people remained marooned in seven flood-

hit districts in the country's north west and Cox's Bazaar[]
in the south.” (8 August 2007, from
http://news.bbc.co.uk).

SMHI (13 September 2007) - Roberto Buizza: The ECMWF EPS: recent developments and future plans
D



&‘ 5.2 July/August 2007: floods in Bangladesh

The floods
were
linked to
intense
precip

towards

the end of

July,
especially
from 24
to 28
July.

75°E = - = - < 75°E = ~ = N =
80°E 85°E 90°E °E 100°E 80°E 85°E 90°E °E 100°E
EEE! zi : i;] i SMHI (13 September 2007) - Roberto Buizza: The ECMWF EPS: recent developments and future plans

20-22 July

VERIF DATE 2007-07-20 12:00:00 TP from t+0 to t+48
VERIFICATION - mean abs precip=22.57325

22-24 July

VERIF DATE 2007-07-22 12:00:00 TP from t+0 to t+48
VERIFICATION - mean abs precip=20.18012

24-26 July

VERIF DATE 2007-07-24 12:00:00 TP from t+0 to t+48
VERIFICATION - mean abs precip=20.78756

26-28 July

VERIF DATE 2007-07-26 12:00:00 TP from t+0 to t+48
VERIFICATION - mean abs precip=19.6367

28-30 July

VERIF DATE 2007-07-28 12:00:00 TP from t+0 to t+48
VERIFICATION - mean abs precip=18.31991

E
<

30 July- 1 Aug

VERIF DATE 2007-07-30 12:00:00 TP from t+0 to t+48

VERIFICATION - mean abs precip=20.66109
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5.2 2007 floods in Bangladesh — fcs for 24/07-26/07

PR(TP48>40mm) — 72/120hPR(TP48>40mm) — 120/168h

The right figure shows the 72/120h (left) and the INIT DATE 2007-07-21 12:00:00 TP from t+72 to t+120 INIT DATE 2007-07-19 12:00:00 TP from t+120 to t+168
P(tp gt 40) - cl=od expi=1 BS=0.05109 & P{tp gt 40) - cl2=od exp2=1 BS=0.05426 5
. - I V- [ W E
120/168h (right) fc probabilities of 48h- lﬁ‘ -."-\‘r 'h" "'q‘
\ \z

accumulated rainfall in excess of 40 (top) and 80 . 6 ...*-ﬂa

|
Ir.‘ v

(bottom) mm (Cl 5/10/20/30/40/60/110%).

2SO0k

The left 1-panel figure shows a 0/48h TL399L91

forecast (Cl 25/40/80/160/320mm).

80°E 85°E 90°E 95°E 100°E 80°E 85°E 90°E 95°E 100°E
TL399L91 — 0/48h PR(TP48=80mm) — 72/120h PR(TP48=>=80mm) — 120/168h
VERIF DATE 2007-07-24 12:00:00 TP from t+0 to t+48 INIT DATE 2007-07-21 12:00:00 TP from t+72 to t+120 INIT DATE 2007-07-19 12:00:00 TP from t+120 to t+163
VERIFICATION - mean abs precip=20.78756 - P(tp gt 80) - cl1=0d exp1 =1 BS=0.02413 o P(tp gt 80) - cl2=od exp2=1 BS=0.02559 -
: 5
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5.2 2007 floods in Bangladesh — fcs for 24/07-26/07

PR(TP48=40mm) — 144/192HPR(TP48=>40mm) — 192/240h

The right figure shows the 144/192h (left) and INIT DATE 2007-07-18 12:00:00 TP from t+144 to 1+192 INIT DATE 2007-07-16 12:00:00 TP from t+192 to t+240
P(tp gt 40) - cl1=od exp1=1 BS=0.06059 o8 P(tp gt 40) - cl2=od exp2=1 BS=0.07497

192/240h (right) fc probabilities of 48h-

accumulated rainfall in excess of 40 (top) and 80

(bottom) mm (Cl 5/10/20/30/40/60/110%).

The left 1-panel figure shows a 0/48h TL399L91

forecast (Cl 25/40/80/160/320mm).

TL399L91 — 0/48h PR(TP48=80mm) — 144/192hPR(TP48=>=80mm) — 192/240h
VERIF DATE 2007-07-24 12:00:00 TP from t+0 to t+48 INIT DATE 2007-07-18 12:00:00 TP from t+144 to t+192 INIT DATE 2007-07-16 12:00:00 TP from t+192 to t+240

VERIFICATION - mean abs precip=20.78756

P(tp gt 80) - cl1=od exp1=1 BS=0.03024 o P(tp gt 80) - cl2=od exp2=1 BS=0.03276
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5.2 2007 floods in Bangladesh — fcs for 26/07-28/07

The right figure shows the 72/120h (left) and the

120/168h (right) fc probabilities of 48h-accumulated

rainfall in excess of 40 (top) and 80 (bottom) mm (ClI

5/10/20/30/40/60/110%).

The left 1-panel figure shows a 0/48h TL399L91

forecast (Cl 25/40/80/160/320mm).

TL399L91 — 0/48h

VERIF DATE 2007-07-26 12:00:00 TP from t+0 to t+48
VERIFICATION - mean abs precip=19.6367 -
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PR(TP48>40mm) — 72/120h

INIT DATE 2007-07-23 12:00:00 TP from t+72 to t+120
P(tp gt 40) - cl=od exp1=1 BS=0.04512 5
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PR(TP48>40mm) — 120/168h

INIT DATE 2007-07-21 12:00:00 TP from t+120to t+168

P(tp gt 40) - cl2=od exp2=1 BS=0.04842 -
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INIT DATE 2007-07-23 12:00:00 TP from t+72 to t+120

P(tp gt 80) - cl=od exp1=1 BS=0.01844 -
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PR(TP48=>80mm) — 120/168Hh

INIT DATE 2007-07-21 12:00:00 TP from t+120to t+168
P(tp gt 80) - cl2=od exp2=1 BS=0.02046
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5.2 2007 floods in Bangladesh — fcs for 26/07-28/07

PR(TP48>40mm) — 144/192HPR(TP48=>40mm) — 192/240h

INIT DATE 2007-07-20 12:00:00 TP from t+144 to t+192 INIT DATE 2007-07-18 12:00:00 TP from t+192to t+240
P(tp gt 40) - cl1=od exp1=1 BS=0.04759

The right figure shows the 144/192h (left) and

- P(tp gt 40) - cl2=od exp2=1 BS=0.04758 -
192/240h (right) fc probabilities of 48h- j o 4
L
accumulated rainfall in excess of 40 (top) and 80 L
(bottom) mm (ClI 5/10/20/30/40/60/110%). 8 = 8
The left 1-panel figure shows a 0/48h TL399L91 0 $
]
 aaa— —— N
forecast (Cl 25/40/80/160/320mm). e S
80°E 85°E 90°E 95°E 100°E 80°E 85°E 90°E 95°E 100°E
TL3991L91 — 0/48h PR(TP48=80mm) — 144/192hPR(TP48=80mm) — 192/240h
VERIF DATE 2007-07-26 12:00:00 TP from t+0 to t+48 INIT DATE 2007-07-20 12:00:00 TP from t+144 to t+192 INIT DATE 2007-07-18 12:00:00 TP from t+192 to t+240
VERIFICATION - mean abs precip=19.6367 2 P(tp gt 80) - cl1=od exp1=1 BS=0.01987 - P(tp gt 80) - cl2=od exp2=1 BS=0.01905 =
';' ® m m
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5.2 2007 floods in Bangladesh — fcs for 03/08-05/08

The right figure shows the 72/120h (left) and the
120/168h (right) fc probabilities of 48h-
accumulated rainfall in excess of 40 (top) and 80

(bottom) mm (Cl 5/10/20/30/40/60/110%).

The left 1-panel figure shows a 0/48h TL399L91

forecast (Cl 25/40/80/160/320mm).

TL399L91 — 0/48h

VERIF DATE 2007-08-03 12:00:00 TP from t+0 to t+48
VERIFICATION - mean abs precip=21.63504
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3.501

EEE! Zi:i:] i SMHI (13 September 2007) - Roberto Buizza: The ECMWF EPS: recent developments and future plans
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INIT DATE 2007-07-31 12:00:00 TP from t+72 to t+120
P(tp gt 40) - cl=od exp1=1 BS=0.07915
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PR(TP48>40mm) — 120/168h

INIT DATE 2007-07-29 12:00:00 TP from t+120to t+168
P(tp gt 40) - cl2=od exp2=1 BS=0.08683
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Response of National Institutions for 2007 flood forecasts

Flood Forecasting and Warning Center (FFWC) incorporated the
CFAB forecasts to produce water level forecasts for many locations
along Brahmaputra and Ganges well in advance

National level Disaster Emergency Response Group prepared
emergency response plans, logistics for preparedness and relief in
advance

Selvaraju (ADPC)




Response of local institutions for 2007 flood forecasts

Local project partners used community vulnerability
maps to assess the risk of flooding

Local NGOs and CBOs mobilise boats to rescue people '- =5
and livestock from the “char” areas i

Selvaraju (ADPC)




Community level decision responses g -
for 2007 flood forecasts (High lands) s teas

* Protected homestead vegetables by creating adequate
drainage facilities

Livestock was protected in high lands with additional
dry fodder (paddy straw)

Early harvesting of B.aman rice and jute anticipating
floods in Gaibandha and Sirajganj, respectively.

Selvaraju (ADPC)




Community level decision
responses for 2007 flood
forecasts (Low lands)

Secured cattle, poultry birds, homestead vegetables, :

protected fishery by putting nets in advance

Planed to evacuate and identified high grounds with
adequate communication and sanitation facilities




Community level decision responses
for 2007 flood forecasts (Low lands)

“... on 25th July we started communicating the information to as many
people as possible ... especially those people living in river islands
(“chars”)...”

“On the 28th and 29™, meetings were organized in villages near Rangpur
... they perceived that the river water level would fall, but our forecasts
showed a rising trend...[with] significant chance of overflow and
breaches [of weak] embankments ... We engaged ... an evacuation plan
urgently”

“We communicated the forecast to another pilot union ... on July 26th ...
to mobilize resources for evacuation ... All the six villages in the union
were later flooded to a height of 4-6 feet on July 29th... about 35% of the
people in the union were evacuated in advance.”

“The communities in Rajpur Union ... were able to use the forecast for ...
mobilizing food, safe drinking water for a week to 10 days, protecting
their ... rice seedlings, fishing nets, and ... fish pods.”




Conclusions

2003: CFAB forecast went operational

2004

-- Forecasts fully-automated

-- CFAB became an entity of Bangladesh government
-- forecasted severe Brahmaputra flooding event

2006:
-- Forecasts incorporated into operational FFWC model
-- 5 pilot study dissemination areas trained

2007: 5 pilot areas warned many days in-advance
during two severe flooding events




Euture Work

1 Dartmouth FloodWatch Program river discharge estimates
assimilated for improved river routing

1 Fully-automated forecasting scheme relying on global inputs
(ECMWEF forecasts, satellite rainfall) rapidly and cost-effectively
applied to other river basins with in-country capacity building
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Verifying the Relationship between
Ensemble Forecast Spread and Skill

Tom Hopson ASP-RAL, NCAR

-




Greater-accuracy of ensemble mean
forecast (half the error variance of single
forecast)

Likelihood of extremes
Non-Gaussian forecast PDF's

Ensemble spread as a representation of
forecast uncertainty




Probabllity

“skill” ‘error”

“di lon” or “spread”

Rainfall [mm/day]




ECMWEF Brahmaputra catchment Precipitation Forecasts
vs TRMM/CMORPH/CDC-GTS Rain gauge Estimates

Observed (black), 1-day Forecast (colors) Observed (black), 4-day Forecast (colors)

Points: | -y lday @ z* 4 day
-- ensemble dispersion & =
. . w30 = 30
iIncreases with forecast 3 2
lead-time i}m =20
-- dispersion variability = E
within each lead-time £ =10

. . . A -
-- Provide information = | J X

about forecast Certainty’? May  Jmn JuI“ g Sep  Oct My  Jun Ju]H hAug Sep O
V1N Maont

Observed (black), 7-day Forecast (colors) Observec (black), 10-day Forecast (colors)

How to Verify?

-- rank histogram? ¥ 7 day 5 10 day
No. (Hamill, 2001) " ”
20 20

-- ensemble spread-
forecast error
correlation?

—
.

=
Cutchment-Av g Precip [mm/dday |

Catchment-Avg Precip [mm/day |

=
f |
-

May Jun Jul Aug Sep Oct May Jan Il Aug Sep Ot
Manth Month



———

= Spread-Skill Correlation misleading (Houtekamer, 1993:
Whitaker and Loughe, 1998)

Propose 3 options
1) “normalized” spread-skill correlation
2) “binned” spread-skill correlation

3) “binned” rank histogram
Considerations:

-- sufficient variance of the forecast spread? (outperforms
~_ensemble mean forecast dressed with error climatology?)

_-- outperform heteroscedastic error model?
“=-"account for observation uncertainty and under-sampling




~— Error measures:
= absolute error of the ensemble mean forecast
= absolute error of a single ensemble member

— Spread measures:

= ensemble standard deviation
= mean absolute difference of the ensembles about the ensemble mean

= Set Il (squared moments):

— Error measures:
= square error of the ensemble mean forecast
- = square error of a single ensemble member
= Spread measures:
= ensemble variance

—




Spread-Sxill Correlation ...

1-day Forcsts [blmk] Ferfacl MﬂﬂLl [blue} 4-day Forcsts (black); Perfect Model (blue)

i

= | |
: 1day ECMWF [ T 4 day ECMWF !
2 r=033 i3 r=041 3
: “Perfect” ' % “Perfect” '
. E(?MWF spread- &, r=0.68 5 2 . r=056
skill (black) LE :E 5 "y
correlation <<1  : . :
- Even‘perfect  Z :

model” (blue)

: b o [ b
Correlat!on <‘< 1 Spread (mean abs. dev.) [mm)] Spread (mean ebs. dev.) [mmy|
and varies Wlth 1- da:,i orests ( [hlack] Perfect Model [blue} 10- d.-w__l orests (hlack} I-‘EI'fEEl Model [hlue]
forecast lead-time 7 day ecMwr = 10 day ECMWF
30 : r=0.39 g =30 r=0.36 )
“Perfect” ' ' “Perfect” '
i

. r=053 w . . . r=0.49

Skill Pleasore (abs err mean) [mm)|
Skill Belensure (abs err mean) [mom)

B

0 2 4 b H
Spread {mean abs. dev.) [mmy| Spread (mean ebs. dev.) [mmy|



lelts on.the s s¥s d skill

—Cor [onTora Perfect” N OCE

e —

Governing ratio, g:
(S = ensemble spread: variance, standard deviation, etc.)

(s)’ (s)’

g —
Limits: <SZ> <S>2 T var(s)
Set |
B o S —-—— 0

What's the Point?
-- correlation depends on
d—0, roJ2/7 how spread-skill defined
Sétrll -- depends on stqbility properties
g—1 r—0 of the system being modeled
! -- even Iin “perfect” conditions,
d—0, r>J1/3 correlation much less than 1.0




-

How can you assess whether a
IBIECEISINTIONE S \/rlr/Jf SREISEINID;

e —————— =

‘spread has utility?——

= Positive correlation? Provides an indication.,
but how close to a “perfect model”.

= Uniform rank histogram? No guarantee.

1) One option -- “normalize” away the
system’s stability dependence via a sKill-
__Score: -

: rfrcst - rref
SS, = X100%

r

Mo — T

perf ref



two other options ...

ign dispersion bins,
then:

2) Average the error
values in each bin, then
correlate

3) Calculate individual
rank histograms for each
bin, convert to a scalar

measure

Skill Measure (abs arr mean) [mm]

Skill Meos ure {obs arr mean) [mm]

a0

0

ECMWFr= 33
"rerf. model” r = 68
perf. theor.r = 6&
theor. up. lim. = 80

Skill Beleasure (abs err mean) [mm]

2 3 fi ¥
Sprad (mean abs. dev.) [mm]

T-uy Forcus (black): Perfect Mol (hing)

fnr
=

Fodt
=

=)

=
=h I

ECMWFr= 39
"rerf. model" r= 53
perf. theor.r = 56
theor. up. lim. = 80

Skill Bens ure {ahs err mean) [mm]

2 4 f #
Spread (mean abs. dev.) [mm]|

I-day Forcsts (black); Perfect Model (blue) - 4-cay Forcsts (black); Perfect Model (blue)

ECMWFEr= 4!
"berf. mode!” r= 56
%) perf. theor. r= 56
theor. up. m. = 80

£ i
Spread (mean ads. dev.) [mm]
10y Forestn (e, Perfact Modariee)
ECMWF r= 36
. "perd. model” r= 4%
50 : perf. theor. r= 31
: -\heor. up. lim. = &0

20

0 2 4 £ i
Spread (mean os. dev.) [mm|




Skill Score approach

—r

ref

Foert == FANdOmIly choose one ensemble member
as verification

[ - three options:
1) constant “climatological” error distribution (r --> 0)
2) “no-skill” -- randomly chosen verification
3) heteroscedastic model (forecast error dependent.on

—

forecast magnitude)

| _Forecast
Probabllity

0




Heteroscedastic Error model dressing the Ensemble Mean
Forecast (ECMWF Brahmaputra catchment Precipitation)

Observed (black), 1-day Forecast {colors) Observed {black), 4-day Forecast (colors)
40 40 '
z 1day = 4 day
B 5
= From fit E) ¥
heteroscedastic & g
error model, £ g

ensembles can be

May Jun Jul Aup Sep Ot
generated Month
(tem porally Observed (black), 7-day Forecast (colors) Observed (black), 10-day Forecast (colors)
4L 4l

uncorrelated for
clarity)

7 day 10 day

L
b —
—
Tk
=

10

Catchment-Avg Precip | mmyday |
Catchrment-Av g Precip [mmyday |
o ]
=

o N

May Jun Jul Augp Sep Oct
Month




Correlation

Skill Score

Option 1

Forecast (black); Perfect Model (blue); no-skill (red)
1.0

0.8

0.6 \

04—

0.2

0.0

1 s 3 4 s A 7 8 9 10

Forecast Day
Skill Score using Climate Spread Reference

//\

0.4

0.2

0.0
1 2 3 ' - ! K 8 9 10
Forecast Day

“Norrmalized” Spread-sxill C

Correlation

Operational Forecast
spread-skill approaches
“perfect model”

However,
heteroscedastic model
outperforms

Skill-scores show utility in
forecast ensemble
dispersion improves with
forecast lead-time

However, “governing
ratio” shows utility
diminishing with lead-
time



Skill Measure (ahs err mean) [mm]

Lkill Measure {ahs err mean) [mm]

Option 2: “oinned” Spread-skill Correlation

1-day Forecasts

/ 1day

1 2 3
Spread (mean abs. dev ) [mm]

T-day Forecasts

7 day

-
-
F
A

1 2 3

Spread {mean abs. dev ) [mm]

4

4

kil Measure {abs err mean) [mm]

Skill Meas ure [abs err mean) [mm]

4-day Forecasts

. 4 day

-y

1 . 3 4

Spread (mean abs. dev.) [mm]

10-day Forecasts
) 10 day
5 /” -

1 2 3 4
Spread {mean abs. dev.) [mm]

“perfect model” (blue)
approaches perfect
correlation

“no-skill” model (red)
has expected under-
dispersive “U-shape”
ECMWEF forecasts
(black) generally
under-dispersive,
improving with lead-
time

Heteroscedastic
model (green) slightly
better(worse) than
ECMWEF forecasts for
short(long) lead-times



Probabilive/{ unit s kill mesure)

Probablite/f unat skill measure)

Option 2: PDF's of “binned” spread-s«ill correlations --
accounting for saj nolmg and verification uncertainty

1-day Forecasts " _ 4-day Forecasts “perfect model” (blue)
ESUPNS =007 4 d ESUPNS =099
1 da a r . ay PDF peaked near 1.0 for
y EEQPF003 5 10 EEQP=0. [!3: all lead-times
E “no-skill” model (red)
= 5 PDF has broad range of
E i values
= ECMWF forecast PDF
Z 10 (black) overlaps both
= “perfect” and “no-skill”
P —— PDF’s
il o% T (e 50 e i Heteroscedastic model
Skill Measure Skill Measure (green) slightly
e e better(worse) than
| = S ) — ESUPNs=og§  ECMWF forecasts o
4 day EEQP Rt 5 10 day EEQ P — 008 short(long) lead-times
= 30 '
%
2w
=
E
- : | DL
nn 04 1 0 00 s 10

Skill Measure Skatl Measure



Conclusions

Spread-skill'c

—-Dependent on “stability” properties of environmental system
3 alternatives:
1) “normalized” (skill-score) spread-skill correlation
2) “binned” spread-skill correlation
3) “binned” rank histogram
ratio of moments of “spread” distribution also indicates utility

-- if ratio --> 1.0, fixed “climatological” error distribution may provide a far
cheaper estimate of forecast error

Truer test of utility of forecast dispersion is a comparison with a
heteroscedastic error model => a statistical error model may be superior
(and cheaper)

Important to account for observation and sampling uncertainties when
~ doing a verification

For more information and publications: hopson@ucar.edu




Motivation for Generating Ensemble Forecasts “ycar

1)

2)
3)
4)

N\

Greater accuracy of ensemble mean forecast (half the error
variance of single forecast)

Likelihood of extremes
Non-Gaussian forecast PDF’s
Ensemble spread as a representation of forecast uncertainty

=> All rely on forecasts being calibrated

NCAR/RAL - National Security Applications Program

Meeting with John Pace 28-29 May 2008 NCAR, Boulder, CO 63



©) What do we mean by “calibration” or =,

“post-processing’?

“bias”

2| obs Forecast >
3 2 Forecast
: P . . orecas
‘é oo’ calibration 2 obs PDE
al > 0
Temperature [K] Temperature [K]

Post-processing has corrected:

* the “on average” bias

 as well as under-representation of the 2nd moment of the empirical
forecast PDF (i.e. corrected its “dispersion” or “spread”)

NCAR/RAL - National Security Applications Program
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Proper Ensemble Forecast Post-

processing Is expensive

»Proper calibration requires multiple years of hindcast generation

=Requiring significant allocation of computational resources,
along with scientific manpower investment

Begs the question: Do the gains justify such expense?

NCAR/RAL - National Security Applications Program
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Specific Benefits of Post-Processing =

NCAR

Improvements in:

»statistical accuracy, bias, and, reliability
B Correcting basic forecast statistics (increasing user “trust”)
=discrimination and sharpness

B Increasing “information content”; in many cases, gains equivalent to
years of NWP model development!

—=Relatively inexpensive!

NCAR/RAL - National Security Applications Program
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(cont) Benefits of Post-Processing N\

NCAR

Essential for tailoring to local application:

*NWP provides spatially- and temporally-averaged
gridded forecast output

=> Applying gridded forecasts to point locations requires

location specific calibration to account for spatial- and
temporal- variability ( => increasing ensemble dispersion)

NCAR/RAL - National Security Applications Program



What are we doing ... N\

NCAR

Working with NOAA Reforecast Data Set for algorithm development:

. Developed post-processing procedure for temperature (applicable to other
weather variables)

. Introduce Quantile Regression

- powerful under-utilized approach in atmospheric applications

. Other more-standard approaches (i.e. Logistic Regression) employed under
Quantile Regression framework

Results of this study applied to 30 member HPC operational ensemble forecasts,
available in 6 - 12 months

———  \CAR/RAL - National Security AppliCationS P 1O a1 e ————————
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. N
Ensemble reforecast and observations NCAR

( Hamill, Whitaker, Wei 2004: MWR)

= 1979-2001 15-member 24hr ensemble forecasts (MRF ca.
1998; bred modes)

= Conditional climatology for winter and summer:
— include forecasts valid 15 Jan/July +/- 15 days
= persistence is obs valid at initialization

Surface temperature observations at Salt Lake City (KSLC)
valid 00 UTC (4 PM LST)

NCAR/RAL - National Security Applications Program
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Example of Quantile Regression (QR) N\

NCAR

July 24hr Temperature Forecast versus Persistence Our application

35 1 .
: Fitting T quantiles
S0p - using QR
conditioned on:
2 305 1) Reforecast ens
g |
%mﬂ_ X " 1 2) ensemble mean
EF] .
R TP 1 3) ensemble median
Emi 4) ensemble stdev

285 200 205 300 3105 310 315 5) Persistence
Persistence [K]

6) Log Reg guantile

——————————————— N CAR/RAL - National Security Applications Program
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obs Forecast
PDF

Probability| =

Temperature [K]

T [K]

observed Forecasts
Time

Meeting with John Pace 28-29 May 2008 NCAR, Boulder, CO

NCAR/RAL - National Security Applications Program

Calibration Procedure NCAR

1) Fit Logistic Regression (LR) ensembles
— Calibrate CDF over prescribed set of
climatological quantiles
— For each forecast: resample 15 member
ensemble set

For each quantile:

2) Perform a “climatological” fit to the data

3) Starting with full regressor set, iteratively select best
subset using “step-wise cross-validation”

—  Fitting done using QR
— Selection done by:
a) Minimizing QR cost function
b) Satisfying the binomial distribution

( 2nd pass: segregate forecasts into differing ranges of
ensemble dispersion, and refit models )

Regressors for each quantile: 1) reforecast ensemble
2) ens mean 3) ens median 4) ens stdev 5)
persistence 6) logistic regression quantile
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Example: January T N i

Before Calibration After Calibration

T[K]
[
~]
=

260

1980 1982 1983 1985 1979 1980 1982 1983 1985

Black curve shows observations: colors are ensemble

NCAR/RAL - National Security Applications Program
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Example: July T N

NCAR

Before Calibration After Calibration

290

2851 - |
1979 1980 1982 1983 1985 1979 1980 1982 1983 1985

Black curve shows observations: colors are ensemble

NCAR/RAL - National Security Applications Program
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Count

Example: July T N

NCAR
Before Calibration After Calibration
| 50
600
500 40
400 _ 30
=
2
300 )
20
200
100 10
om - —  — _ 0
1 5 0 13 1 5 9 13
Interval Interval

After quantile regression, rank histograms uniform

NCAR/RAL - National Security Applications Program
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| N\
Raw versus Calibrated PDF’'s NCAR

Forecast PDFs (blue-raw, black-calib)
; :

1.0 ||
|

Blue is “raw” ensemble |
Black is calibrated ensemble 08 |
Red is the observed value ‘|

=
Notice: significant change in E \| |
both “bias” and dispersion of z 1
final PDF e | | obs

E 04 pi il

(also notice PDF asymmetries) [

/N -

296 298 300 302 304 306 308
Temperature [K]
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Results I\

NCAR

Regressor Usage

. Log Reg
Optimal regressor set

varies, depending on:

Ens Member

*The quantile
Ens Std

=The season

Regressors

Persistence

Ens Mean

Times Used
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Summary (to-date) R

NCAR

= Quantile regression provides a powerful framework for improving the whole (potentially
non-gaussian) PDF of an ensemble forecast

= This framework provides an umbrella to blend together multiple statistical correction
approaches (logistic regression, etc.) as well as multiple regressors (non-NWP)

= As well, “steF-wise cross-validation” calibration provides a method to ensure forecast skill
greater than climatology, persistence, and logistic regression (for a variety of cost functions)

=As shown here, significant improvements made to the forecast’s ability to represent its own
potential forecast error:

—More uniform rank histogram

—guaranteeing utility in the ensemble dispersion (=> more spread, more uncertainty)

———  \CAR/RAL - National Security AppliCationS P 1O a1 e ————————
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