
Performance metrics for climate models

P. J. Gleckler,1 K. E. Taylor,1 and C. Doutriaux1

Received 15 May 2007; revised 3 August 2007; accepted 21 November 2007; published 20 March 2008.

[1] Objective measures of climate model performance are proposed and used to assess
simulations of the 20th century, which are available from the Coupled Model
Intercomparison Project (CMIP3) archive. The primary focus of this analysis is on the
climatology of atmospheric fields. For each variable considered, the models are ranked
according to a measure of relative error. Based on an average of the relative errors over all
fields considered, some models appear to perform substantially better than others.
Forming a single index of model performance, however, can be misleading in that it hides
a more complex picture of the relative merits of different models. This is demonstrated by
examining individual variables and showing that the relative ranking of models varies
considerably from one variable to the next. A remarkable exception to this finding is that
the so-called ‘‘mean model’’ consistently outperforms all other models in nearly every
respect. The usefulness, limitations and robustness of the metrics defined here are
evaluated 1) by examining whether the information provided by each metric is correlated
in any way with the others, and 2) by determining how sensitive the metrics are to
such factors as observational uncertainty, spatial scale, and the domain considered (e.g.,
tropics versus extra-tropics). An index that gauges the fidelity of model variability on
interannual time-scales is found to be only weakly correlated with an index of the mean
climate performance. This illustrates the importance of evaluating a broad spectrum of
climate processes and phenomena since accurate simulation of one aspect of climate does
not guarantee accurate representation of other aspects. Once a broad suite of metrics has
been developed to characterize model performance it may become possible to identify
optimal subsets for various applications.
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1. Introduction

[2] Climate models are routinely subjected to a variety of
tests to assess their capabilities. A broad spectrum of
diagnostic techniques are relied on in evaluations of this
kind, but relatively little effort has been devoted to defining
a standard set of measures designed specifically to provide
an objective overview or summary of model performance.
In this study we explore issues important to the develop-
ment of climate model performance ‘‘metrics,’’ addressing
how such measures can be defined and, by means of
example, illustrating their potential uses and limitations.
We evaluate a recent suite of coupled ocean-atmosphere
general circulation models (OAGCMs), focusing primarily
on global scales of the simulated mean annual cycle.
[3] Years ago, standard measures of forecast skill were

adopted by the Numerical Weather Prediction (NWP) com-
munity. Relying on these metrics, the Working Group on
Numerical Experimentation (WGNE) routinely reviews the
skill of weather forecasts made by the major weather

prediction centers [e.g., WMO, 1994]. (The WGNE reports
to the World Meteorological Organization Commission for
Atmospheric Sciences and World Climate Research
Programme (WCRP) Joint Scientific Committee.) Monitor-
ing NWP performance in this way has provided quantita-
tive evidence of increases in forecast accuracy over time as
well as characterizing the relative skill of individual
forecast systems.
[4] Although the value of climate model metrics has been

recognized for some time [e.g., Williamson, 1995], there are
reasons why climate modelers have yet to follow the lead of
the NWP community. First, a limited set of observables
(e.g., surface pressure anomalies) have proven to be reliable
proxies for assessing overall NWP forecast skill, whereas
for climate models, examination of a small set of variables
may not be sufficient. Because climate models are utilized
for such a broad range of research purposes, it seems likely
that a more comprehensive evaluation will be required to
characterize a host of variables and phenomena on diurnal,
intraseasonal, annual, and longer times scales. To date, a
succinct set of measures that assess what is important to
climate has yet to be identified.
[5] Another reason for the lack of accepted standard

measures of climate model performance is that opportunities
to test their ability to make predictions is limited. NWP
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systems are routinely verified against continuously varying
weather conditions whereas climate models are repeatedly
tested against an observed climatology that is only slowly
evolving. Although models are increasingly being tested
against field campaign data [e.g., Phillips et al., 2004], and
individual processes can sometimes best be evaluated in this
way, our emphasis here is on the climatological features at
large to global scales.
[6] There are additional factors to consider in developing

climate model metrics. A wide variety of variables are of
interest, and observational uncertainties are often substantial
but poorly estimated. Some aspects of climate model
simulations are deterministic, while others are not, making
quantitative verification more complex. Lastly, models can
to a certain degree be tunable to appear realistic in some
respects, but as a result of compensating errors.
[7] In the face of these challenges, initial work in this area

has nevertheless been carried out. The WGNE has encour-
aged development of standard diagnostics (see www-
pcmdi.llnl.gov/projects/amip/OUTPUT/WGNEDIAGS)
and has established benchmark experiments through model
intercomparison projects. Many of the metrics described in
this article have been routinely calculated by the Program for
Climate Model Diagnosis and Intercomparison (PCMDI)
and have been presented at public forums attended by
climate modelers. Until now, publication of these results
has been withheld because of the real danger that unwar-
ranted importance might be attributed to these measures of
model performance without appreciation of their limitations.
One of the objectives of the present study is to identify those
limitations, as well as to explore the potential uses of metrics.
[8] For the purposes of this study, the term ‘‘metric’’ will

be restricted to scalar measures. Many popular statistical
measures are consistent with this definition (e.g., mean
error, root-mean square error, correlation, and variance).
We also limit ourselves to metrics that directly compare
model simulations with observationally based reference
data, and distinguish them from diagnostics, which are
more varied and include maps, time series, distributions,
etc. Consistent with this nomenclature, metrics can be
derived from diagnostics, generally resulting in a conden-
sation of the original information. In this regard we expect
metrics to provide symptoms of problems, but to be less
informative than diagnostics for illuminating their causes.
[9] In section 2 we describe both the observationally

based reference data and model simulations used in this
study. In section 3 we introduce our choice of metrics and
apply them to the Coupled Model Intercomparison Project
phase 3 (CMIP3) simulations to evaluate the performance of
models relative to each other. After demonstrating that our
results can be sensitive to various factors (e.g., observational
uncertainty), we provide an example of how an overall index
of mean climate ‘‘skill’’ can be defined and discuss its
limitations. Lastly, in section 4 we summarize our results
and discuss how the use of metrics might be expanded and
explored further.

2. Model and Reference Data Sets

2.1. The CMIP3 Simulations

[10] The models evaluated in this study come from nearly
all the major climate modeling groups and are listed in

Table 1. Recently as part of CMIP3, these groups performed
an unprecedented suite of coordinated climate simulations.
This ambitious undertaking was organized by the WCRP’s
Working Group on Coupled Modelling (WGCM). The
WGCM designed this set of experiments to facilitate the
science and model evaluation they felt needed to be
addressed in the 4th Assessment Report (AR4) of the
Intergovernmental Panel on Climate Change (IPCC). The
CMIP3 multimodel data set has been archived by PCMDI
and has been made available to the climate research
community.
[11] Our analysis focuses on the 20th century simulations,

which were ‘‘forced’’ by a variety of externally imposed
changes such as increasing greenhouse gas and sulfate
aerosol concentrations, changes in solar radiation, and
forcing by explosive volcanism. Since considerable uncer-
tainty as to the true forcing remains, the forcing is not the
same for all models. Rather, these runs represent each
group’s best effort to simulate 20th century climate. The
models were ‘‘spun up’’ under conditions representative of
the pre-industrial climate (nominally 1850). From this point,
external time-varying forcing, consistent with the historical
period, was introduced, and the simulations were extended
through at least the end of the 20th century.
[12] Although the CMIP3 archive includes daily means

for a few fields and even some data sampled at 3-hourly
intervals, we shall focus here solely on the monthly mean
model output. This provides a reasonably comprehensive
picture of model performance, but excludes evaluation of
some aspects of climate, such as the frequency and intensity
of extratropical cyclones and the frequency of some types of
extreme events that would only be evident in the daily or
3-hourly data. Moreover, climatically important quadratic
quantities such as heat and momentum fluxes are not
available in the archive, and will not be considered here.
The initial list of fields evaluated here should in future
studies be expanded to include these other important aspects
of climate.
[13] In this study we focus mostly on climatologies of the

last 20 years of the 20th century simulations (1980–1999).
During this period, the observational record is most reliable
and complete, largely due to the expansion of and advances
in space-based remote sensing.

2.2. Reference Data

[14] The climate characteristics of particular interest to us
in this study range from large to global scales, so we restrict
ourselves to using observationally-based data sets provided
on global grids that are readily comparable to climate
models. One limitation of most reference data sets is that
it is in general difficult to estimate their observational errors.
Sources of uncertainty include random and bias errors in the
measurements themselves, sampling errors, and analysis
error when the observational data are processed through
models or otherwise altered. In short, the quality of obser-
vational measurements varies considerably from one vari-
able to the next.
[15] Errors in the reference data are in fact usually all but

ignored in the evaluation of climate models. It is often
argued that this is acceptable as long as these errors remain
much smaller than the errors in the models. If models
improve to the point where their errors are comparable to
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observational uncertainty, a more rigorous approach will be
required. In a similar vein, some of the satellite data
described below are available for only a few years, whereas
model climatologies compared with such data are usually
computed from twenty or more simulated years. For the
metrics considered here, simple sampling tests (performed
on model simulations) indicate that the impacts of uncer-
tainties associated with a limited observational record are
small when compared to the magnitude of current model
errors.
[16] A full quantitative assessment of observational errors

is beyond the scope of this study. We shall, however,
provide for most fields some indication of the effects of

observational uncertainty by comparing model simula-
tions to two different reference data sets. For each of the
fields examined here, the reference data used are shown in
Table 2. Here, we briefly summarize these reference data
sets.
[17] For many fields examined here, the best available

reference data come from two 40-year reanalysis efforts,
namely the NCEP/NCAR [Kalnay et al., 1996] and ERA40
[Simmons and Gibson, 2000]. These products blend many
available measurements in a way that ensures their mutual
internal consistency as constrained by the physical laws
underlying the models. While there are important differ-
ences in the analysis systems and models used in these two

Table 1. Model Identification, Originating Group, and Atmospheric Resolution

IPCC I.D. Center and Location Atmosphere Resolution

BCCR-BCM2.0 Bjerknes Centre for Climate Research (Norway) T63 L31
CGCM3.1(T47)

Canadian Centre for Climate Modelling and Analysis (Canada)
T47 L31

CGCM3.1(T63) T63 L31
CSIRO-Mk3.0 CSIRO Atmospheric Research (Australia) T63 L18
CNRM-CM3 Météo-France, Centre National de

Recherches Météorologiques (France)
T42 L45

ECHO-G Meteorological Institute of the University of Bonn,
Meteorological Research Institute of KMA, and Model and
Data group (Germany and Korea)

T30 L19

GFDL-CM2.0 US Dept. of Commerce, NOAA N45 L24
GFDL-CM2.1 Geophysical Fluid Dynamics Laboratory (USA) N45 L24
GISS-AOM

NASA/Goddard Institute for Space Studies (USA)
90 � 60 L12

GISS-EH 72 � 46 L17
GISS-ER 72 � 46 L17
FGOALS-g1.0 LASG/Institute of Atmospheric Physics (China) 128 � 60 L26
INM-CM3.0 Institute for Numerical Mathematics (Russia) 72 � 45 L21
IPSL-CM4 Institut Pierre Simon Laplace (France) 96 � 72 L19
MIROC3.2(medres) Center for Climate System Research (The University of Tokyo), T42 L20
MIROC3.2(hires) National Institute for Environmental Studies, and

Frontier Research Center for Global Change (JAMSTEC) (Japan)
T106 L56

MRI-CGCM2.3.2 Meteorological Research Institute (Japan) T42 L30
ECHAM5/MPI-OM Max Planck Institute for Meteorology (Germany) T63 L32
CCSM3

National Center for Atmospheric Research (USA)
T85 L26

PCM T42 L18
UKMO-HadCM3 Hadley Centre for Climate Prediction and Research, 96 � 72 L19
UKMO-HadGEM1 Met Office (UK) N96 L38

Table 2. Observationally-Based Reference Data Sets

Variable I.D. Description Reference1/Reference2 Domain

ta Temperature, �C ERA40/NCEP-NCAR 200,850 hPa
ua Zonal wind, m/s ERA40/NCEP-NCAR 200,850 hPa
va Meridional wind, m/s ERA40/NCEP-NCAR 200,850 hPa
zg Geopotential height, m ERA40/NCEP-NCAR 500 hPa
hus Specific humidity, kg/kg AIRS/ERA40 400, 850 hPa
psl Sea level pressure, Pa ERA40/NCEP-NCAR Ocean-only
uas Surface (10m) zonal wind speed, m/s ERA40/NCEP-NCAR Ocean-only
vas Surface (10m) meridional wind speed, m/s ERA40/NCEP-NCAR Ocean-only
ts Sea surface temperature, �C ERSST/HadISST Ocean-only; equatorward of 50�
tauu Ocean surface zonal wind stress, Pa ERA40/NCEP-NCAR Ocean-only
tauv Ocean surface meridional wind stress, Pa ERA40/NCEP-NCAR Ocean-only
hfls Ocean surface latent heat flux, W/m2 SOC/ERA40 Ocean-only
hfss Ocean surface sensible heat flux, W/m2 SOC/ERA40 Ocean-only
rlut Outgoing longwave radiation, W/m2 ERBE/CERES
rsut TOA reflected shortwave radiation, W/m2 ERBE/CERES
rlutcs TOA longwave clear-sky radiation, W/m2 ERBE/CERES Equatorward of 60�
rsutcs TOA shortwave clear-sky radiation, W/m2 ERBE/CERES Equatorward of 60�
rlwcrf Longwave cloud radiative forcing, W/m2 ERBE/CERES Equatorward of 60�
rswcrf Shortwave cloud radiative forcing, W/m2 ERBE/CERES Equatorward of 60�
pr Total precipitation, mm/day GPCP/CMAP
clt Total cloud cover, % ISCCP-D2/ISCCP-C2
prw Precipitable water, g/kg RSS/NVAP
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products, for the most part they rely on the same observa-
tions. Although they are therefore not truly independent,
these products do represent the best observationally con-
strained estimates of the free-atmosphere variables evalu-
ated here. We shall analyze the most commonly studied
levels (200 hPa and 850 hpa for ta, ua, and va, 500 hPa for
zg, and 850 hPa and 400 hPa for hus — see Table 2 for
variable names). Specific humidity (hus) is of a fundamen-
tal importantance to climate, but the accuracy of analyzed
moisture is much lower than that of other state fields. We
use estimates of hus from the Atmospheric Infrared Sound-
er (AIRS) experiment, which includes a hyperspectral
infrared spectrometer and an Advanced Microwave Sound-
ing Unit radiometer, both carried on the Aqua spacecraft in
a sun-synchronous orbit [Aumann et al., 2003]. We eval-
uate hus using AIRS as our primary reference, and ERA40
as our alternate.
[18] Surface air fields (winds at 10 m, and temperature

and humidity at 2 m) are also obtained from reanalysis.
While these estimates are of reasonable quality, it is
important to keep in mind that they are diagnostic quantities
in both the reanalyses and the climate models. They are
typically computed from complex iterative schemes based
on conditions in the lowest model level and at the surface,
and are not actually needed in any of the equations that
affect the simulation. Thus errors in these fields could
reflect, at least in part, poor diagnostics, not fundamental
model errors. Similar caveats should be noted in compar-
isons of ‘mean sea level pressure’, which is also diagnosed
through extrapolation both in reanalyses and in climate
models.
[19] We compare model-simulated top-of-the-atmosphere

radiation fields to data derived from the Earth Radiation
Budget Experiment [ERBE, Barkstrom, 1984] and the more
recent Clouds and the Earth’s Radiant Energy System
measurements [CERES, Wielicki et al., 1996]. Estimates
of ‘‘clear-sky’’ fluxes at the top-of-the-atmosphere are less
accurate than the all-sky fluxes [e.g., Cess et al., 1990], but,
nonetheless, useful. Our analysis excludes high latitude
clear-sky fluxes which are much less reliable. The ERBE
period is from 1985 to 1989, whereas the CERES data are
available from 2001 to 2004.
[20] The precipitation data sets we use are from GPCP

[Adler et al., 2003] and CMAP [Huffman et al., 1997].
There have been numerous comparisons of these products
[e.g., Yin et al., 2004], and while there are important
differences between them (particularly over oceans), they
have been derived from many of the same data sources.
Both are available from 1979 to near present.
[21] For total cloud cover, our primary data set is from the

International Satellite Cloud Climatology Project [ISCCP,
e.g., Rossow and Schiffer, 1999], available for the period
1983 through 2005. As an alternative to the recent ISCCP
‘‘D2’’ data, which is taken as the primary reference, we also
use the older ‘‘C2’’ ISCCP data. These two cloud data sets
have been compared by Rossow et al. [1993].
[22] The two references we have chosen for the sea

surface temperature are the NOAA Extended Reconstructed
sea surface temperature (SST) data set [ERSST, Smith and
Reynolds, 2004] and the Hadley Centre Sea Ice and SST
data set [HadISST, Rayner et al., 2006]. While these
analyses do make use of much of the same data, there are

important differences in their approaches. To avoid the
influence of sea-ice (both observed and simulated), we
exclude regions poleward of 50� from our analysis of SST.
[23] After mid-1997 estimates of precipitable water (or

column integrated water content) over the oceans are
available from the special sensor microwave imager
(SSM/I). We use two products: RSS version 6 [see Wentz,
2000] and the NASA water vapor project [NVAP, Simpson
et al., 2001]. Although both products derive precipitable
water from SSM/I, the independently developed RSS and
NVAP algorithms yield substantial differences [e.g.,
Trenberth et al., 2005].
[24] Several satellite-derived estimates of wind stress over

the ocean are available, however directional measurements
remain problematic. We use the a European Remote Sensing
(ERS) blended product derived from several satellites
[Bourassa et al., 1997] as our primary reference and the
ERA40 wind stress as an alternate.
[25] Estimates of ocean surface heat fluxes are even more

uncertain than wind stress. Significant efforts have been
devoted to the improvement of in situ estimates, but
uncertainties remain large in all terms, especially in the
Southern Hemisphere. For latent and sensible heat fluxes,
we contrast the Southampton Oceangraphic Center (SOC)
climatology [Josey et al., 1999] with ERA40. It is well
known that there are large differences in these [e.g., Taylor,
2000], with their patterns in better agreement than the
magnitude of their fluxes.
[26] In the following sections these data sets will simply

be referred to as ‘‘observations’’, keeping in mind that
‘‘observationally-based’’ or ‘‘reference’’ data is generally
more appropriate.

3. Results

3.1. Monthly Mean Statistics

[27] In this section we examine how well the CMIP3 20th
century simulations compare with observations during the
last two decades of the 20th century (1980–1999), our most
complete and accurate 20-year observational record. To
portray how the models perform relative to each other, we
shall use simple statistical measures to quantify the fidelity of
their simulations. Our results will be shown for the following
domains: global, tropical (20S–20N), and the extra-tropical
zones of the Southern (90S–20S) and Northern (20N–90N)
Hemispheres. These regions will respectively be referred to
as Global, Tropics, SHEX and NHEX.
[28] One statistical measure of model fidelity is the root-

mean square difference (E) between a simulated field F and
a corresponding reference data set R. For monthly mean
climatological data, the most comprehensive root-mean
square (RMS) error statistic accounts for errors in both
the spatial pattern and the annual cycle, and it is calculated
as follows:

E2 ¼ 1

W

X
i

X
j

X
t

wijt Fijt � Rijt

� �2
: ð1Þ

[29] The indices i, j, and t correspond to the longitude,
latitude and time dimensions, and W is the sum of the
weights (wijt), which for the spatial dimensions are propor-
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tional to grid-cell area and for time are proportional to the
length of each month. The weights are therefore approxi-
mately proportional to the cosine of latitude except when
there are missing data in which case wijk = 0 (e.g., over land,
when only the ocean portion of the domain is considered).
In most cases considered here the sums will be accumulated
over all 12 months and over one of the domains of interest
(Global, Tropics, SHEX, or NHEX). For these calculations
we interpolate each data set (model and reference data) to a
T42 grid, which is a resolution comparable to that used in
many of the models (Table 1). The sensitivity of our results
to the choice of target grid is examined in section 3.3.
[30] We begin by making use of the Taylor diagram

[Taylor, 2001], which relates the ‘‘centered’’ RMS error
(calculated as in equation (1), but with the overall time-
mean, spatial-mean removed), the pattern correlation and
the standard deviation. A reference data set is plotted along
the abscissa. Simulated fields are located in the first
quadrant if the correlation with the reference data is posi-
tive. For both the reference and any model data represented
on the plot, the radial distance from the origin is propor-
tional to the standard deviation. The pattern correlation
between the simulated field and the reference data is related
to the azimuthal angle, and the centered RMS difference
between a simulated field and the reference data is propor-
tional to the distance between these two points (i.e., the
closer a model is to the observational point, the lower its
centered RMS error). The overall model ‘‘bias,’’ defined
as the difference between the simulated and observed
time-mean, spatial-mean fields, is not shown on this
diagram.
[31] Three climatological annual-cycle space-time Taylor

diagrams are shown in Figure 1: (a) NHEX, (b) TROP and
(c) NHEX deviations from the zonal mean. (Here, as in
some subsequent figures, space constraints preclude inclu-
sion of statistics for the Southern Hemisphere performance
statistics. The observations are more plentiful in the North-
ern Hemisphere, which is why results are emphasized for
this region.) Each field is normalized by the corresponding
standard deviation of the reference data, which allows
multiple fields (distinguished by color) to be shown in each
panel of Figure 1. In this figure, each colored dot represents
an individual simulation made with a particular model,
whereas each triangle represents the ensemble ‘‘mean mod-
el.’’ The ‘‘mean model’’ statistics are calculated after
regridding each model’s output to a common (T42) grid,
and then computing the multimodel mean value at each grid
cell. Note that because the statistics considered here are
based on sums of quadratic quantities, the error in a
multimodel mean field is not the same as the mean of
the error statistics from the individual models. In fact, for
each variable considered in Figures 1a–1c, the mean
model simulated field matches, in an RMS sense, the
reference data more closely than most or all of the individ-
ual models. We shall return to this notable feature later.
[32] It is also clear from Figures 1a–1c that the accuracy

of a model simulation depends on the field and the domain
as well as the model. In Figure 1a (NHEX), some simulated
fields have correlations with the reference data of greater
than 90% (e.g., ta-850, ua-850, rlut, psl), whereas other
fields, have much lower correlations (e.g., clt and pr). In
general there is a much larger inter-model spread for fields

with poorer correlations. In addition to a range of skill
across variables and models (as reflected by the spread of
centered RMS or pattern correlation), there are large differ-
ences between different domains and between components
considered. Some fields with relatively high correlations in
the NHEX have a lower skill in the tropics. This might be
partly due to the fact that in higher latitudes more of the
total variance is forced by the insolation pattern which
creates land-sea contrasts and meridional gradients that are
relatively easily simulated by models. In Figure 1c, the
errors are computed on fields from which the zonal mean
has been removed so that the often dominating influence on
the statistics of merdional gradients are not considered and
the smaller scale features evident in deviations from the
zonal mean are emphasized. This aspect of climate involv-
ing smaller scale variations that are often strongly affected
by internal dynamics are more difficult to simulate accu-
rately, so some of the correlations are noticeable lower. Note
that the errors shown in these ‘‘normalized’’ diagrams are
relative to the magnitude of the variations in the observed
field, as quantified by the standard deviation. Thus for a given
apparent error shown in the diagram, the actual error will be
larger for variables or domains with a larger degree of
variation. Using Taylor diagrams,Pincus et al. [2008] discuss
additional aspects of model performance focusing on clouds,
radiation and precipitation in the CMIP3 simulations.
[33] For most fields considered here, the amplitude of

spatial and/or temporal variability simulated by models is
reasonably close to that observed, as is evident in Figure 1.
Thus the centered RMS error and the correlation coefficient
are not both needed to summarize model fidelity, and they
both omit any overall ‘‘bias’’ error. In preference to these
metrics, we shall hereafter rely on the full RMS error (i.e.,
‘‘uncentered’’ RMS error) because it includes the overall
bias. Furthermore, unlike the correlation it can be resolved
into components which when summed quadratically yield
the full mean square error.
[34] As an example that is particularly pertinent to later

discussion, Figure 2 shows (for several different variables)
how errors in the simulated mean annual cycle for the global
domain can be resolved into five orthogonal components: 1)
the annual mean, global mean (i.e., the bias), 2) the annual
mean zonal mean, with bias removed, 3) the annual mean,
deviations from zonal mean, 4) the annual cycle of zonal-
mean, with annual mean removed, and 5) the annual cycle
of deviations from zonal mean, with annual mean removed.
These are expressed as fractions of the total mean square
error and are partially accumulated before plotting, so that
when the last component is added to the earlier ones, the full
error is accounted for. The errors associated with individual
components is proportional to the lengths of the shaded
segments.
[35] The fractions appearing in Figure 2 are computed by

first averaging over all models each of the mean square
error components, then accumulating these, and finally
dividing by the average over all models of the total mean
square error. None of the components dominates, and the
error fraction associated with each component depends on
the variable. In most cases none of the components is
especially small, except in the case of upper air (200 hPa)
meridional wind, in which case the error associated with the
zonal mean component is negligible. Note that the 500 hPa
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geopotential height bias contributes a noticeably higher
fraction of the total error than other fields displayed in
Figure 2. It is also clear from Figure 2 that for most of
the variables considered, more than a quarter (and in the
case of precipitation, more than half) of the mean square
error is associated with the annual cycle (with the annual
mean removed). Thus it would likely be misleading to
judge models solely on their ability to simulate annual
mean climate unless the errors in the annual mean were
strongly correlated (across models) with errors in the
annual cycle.

3.2. Relative Model Performance

[36] Global scale observationally based estimates exist for
many more quantities than those shown in Figures 1 and 2.
In what follows we make use of all the observationally
based data sets given in Table 2, calculating RMS errors for
each model using both our primary (R1) and alternate (R2)
references. Using both references for each variable, we
therefore have twice as many RMS error values as available
models (N). For a given field f and reference r, we define a
‘typical’ model error, �Efr, as the median of our N RMS error
calculations. We use the median rather than the mean value
to guard against models with unusually large errors (out-
liers) unduly influencing the results. We then define a

Figure 1. Multivariable Taylor diagrams of the 20th century CMIP3 annual cycle climatology (1980–
1999) for (a) NHEX (20N–90N), (b) Tropical (20S–20N), and (c) NHEX as in Figure 1a but with the
zonal mean removed. Each colored dot represents an individual simulation made with a particular
model, whereas each triangle represents the ensemble ‘‘mean model,’’ as defined in the text.
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relative error (E0) for a given model m, field f, and reference
set r, as:

E0
mfr ¼

Emfr � �Efr

�Efr

ð2Þ

[37] Normalizing the RMS calculations in this way yields
a measure of how well a given model (with respect to a
particular reference data set) compares with the typical
model error. For example, if the relative error has a value
of �0.2, then the model’s RMS error (Emfr) is 20% smaller
than the typical model. Conversely, if E0

mfr = 0.2, then the
Emfr is 20% greater than �Efr. (The reader should keep in
mind the distinction between the typical or median error
within the distribution of model errors and the error in the
multimodel ensemble mean or median field.)
[38] In Figures 3a–3f we provide a summary of the

models’ relative errors using ‘‘portrait’’ diagrams in which
different colors indicate the size of errors. The portraits are
arranged such that the rows are labeled by the variable name
(see Table 2) and the columns by the name of the model (see
Table 1). Each grid square is split by a diagonal in order to
show the relative error with respect to both the primary
(upper left triangle) and the alternate (lower right triangle)
reference data sets. In each panel the two columns on the far
left represent results for the multimodel ensemble mean and
median fields. Variables (rows) are loosely organized as
surface fields, clouds and radiation, and upper-air fields.
Shades of blue indicate cases where a model fares better
than the typical model with respect to the reference data,
and shades of red the contrary. White squares indicate the
unavailability of model data. For the surface fluxes, our
results are based only on the centered RMS error (i.e., the
overall mean bias is excluded) because the ‘observed’ large

scale patterns of these fields are thought to be more accurate
than their absolute magnitudes.
[39] Relative error calculations for the global domain are

shown in Figure 3 for (a) the annual cycle of the full spatial
pattern, (b) the annual cycle of the zonal means, and (c) the
annual cycle of the deviations from the zonal means. The
relative errors shown in Figure 3a for the global domain are
shown for subglobal domains in Figure 3d (NHEX, 20N–
90N), 3e (Tropics, 20S–20N), and 3f (SHEX, 90S–20N).
[40] An obvious feature in all panels of Figure 3 is that

for virtually all variables, both the mean and median model
fields are in better agreement with observations than the
typical model. In most cases the mean and median models
score best. This has been noted in other model comparisons
[e.g., Lambert and Boer, 2001; Taylor and Gleckler, 2002],
but stands out rather strikingly across the broader spectrum
of fields and regions examined here. This favorable char-
acteristic of the multimodel ensemble may in part be due to
smoothing of higher frequency and smaller scale features,
but this is almost certainly not the full explanation.
[41] One exception to the usual multimodel superiority

apparent in Figure 3a is temperature at 200 hPa, where
several models (notably GFDL-CM2.1) have noticeably
smaller RMS errors than both the mean and the median
models. Most atmospheric models continue to have cold
biases at high latitudes in the summertime upper tropo-
sphere and throughout the stratosphere. Because this error is
prevalent (though not universal), it is reflected in both the
mean and median models. In the newer generation GFDL
model this persistent and common error has been reduced.
[42] Errors in the annual cycle climatology (shown in

Figure 3a) can be resolved into two components: 1) the
annual cycle of the zonal means (Figure 3b), and 2) the
annual cycle of deviations from the zonal mean (Figure 3c).
The relative error differences among models is larger for the
zonal means than for the deviations from the zonal mean,
but the two error portraits are similar in the sense that
models that accurately simulate the zonal mean (in a relative
sense) also accurately simulate the deviations from the zonal
mean. These figures also show that the relative errors in the
mean and median fields are again smaller than the errors in
the individual model fields, and this is perhaps even more
evident in the deviations from the zonal mean. Note that the
cold bias in the upper level temperature field affects the
zonal mean component in the multimodel mean and median
fields, but not the deviations from the zonal mean.
[43] Some models clearly fare better than others in

Figure 3, although none scores above average or below
average in all respects. For example, in the extra-tropics the
UKMO-HadGEM1 relative errors are negative for most
fields (indicating better than average performance) in the
extratropics, while this model does not appear to excel in the
tropics. The ECHO-G model, on the other hand, scores
higher in the tropics, but does not stand out elsewhere. With
respect to the upper air fields, the relative performance of
the GFDL-CM2.1 is exemplary in the Southern Hemisphere
(Figure 3f), whereas elsewhere it is closer to average
(Figures 3d and 3e). The skill of many of the other models
appears to depend more on the variable than the region.
[44] The sensitivity of the relative error (E0) to the choice

of reference data set can be inferred from the differences in
color within any given square of Figure 3. Recall that for

Figure 2. Decomposition of mean square error for the
seasonally varying global pattern of simulated fields. The
fraction of the total error due to each of the components
listed in the legend is represented by the length of the
corresponding bar segment.
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Figure 3. Portrait diagram display of relative error metrics for 20th century CMIP3 annual cycle
climatology (1980–1999): (a) full field, (b) zonal mean (with bias removed), and (c) deviations from zonal
mean, all based on the full global domain, and for the full field only, based on subglobal domains of (d)NHEX,
(e) Tropics, and (f) SHEX. Each grid square is split by a diagonal in order to show the relative error with
respect to both the primary (upper left triangle) and the alternate (lower right triangle) reference data sets.
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some fields there is only a single reference data set (e.g.,
top-of-atmosphere clear-sky longwave radiation), and in
other cases (e.g., cloud cover) there are strong inter-
dependencies between the reference data, so for these we
expect at most minor differences. For many of the other
fields, however, there are notable differences. For example,
in the NHEX and SHEX it is not unusual for a model’s
relative error in simulating precipitation (pr) to differ by
10%, depending on which reference is used. A more
surprising example is the case of temperature at 850 hPa,
a relatively well ‘‘observed’’ field. Here in both the Tropics
and SHEX we often see differences of 20% or more
between the two reference data sets (ERA40 and NCEP/
NCAR). Note that it is not uncommon for one model to
have two different triangle colors while for another model
(and the same field) the colors are identical. (Our 10%
discrete color interval is only a partial explanation.)
[45] There are mountainous regions where the surface

elevation is high enough that the surface pressure is less
than 850 hPa. Here modelers either flagged data as ‘‘miss-
ing’’ or simply extrapolated from a pressure level above the
surface to the ‘‘below ground’’ standard pressure level
(850 hPa). The choice presumably has at least some
influence on the error differences among models. Above
500 hPa this problem must certainly be negligible.
[46] Surface air temperature and humidity (2 m above the

surface) and winds (10 m above the surface) are not
prognostic variables in the models, and they may be
sensitive to the method used to diagnose them. These fields
are analyzed over the oceans only.

3.3. The Sensitivity of Metrics to Analysis Choices

[47] One of our objectives is to develop metrics that
summarize model performance in a way that is both
concise, but also reasonably complete. To a certain extent
this has been achieved in Figure 3a where the large-scale
characteristics of the simulated annual cycle have been
distilled down to several hundred statistical quantities. Even
so, one wonders whether the portrait contains unnecessary
detail and whether in fact some of the information is
redundant. One way to determine whether the individual
metrics are each providing independent information is to
plot the performance metrics for one variable against the
performance metrics of another. Two extreme cases are
shown in the scatterplots of Figure 4, which shows the
relationships between errors in simulating two different
pairs of variables. In Figure 4a the relative errors (taken
from Figure 3a) are compared for global precipitation and
outgoing longwave radiation. There is clearly a strong
relationship (R = 0.92) between how well models simulate
precipitation and outgoing longwave radiation. A contrast-
ing example is shown in Figure 4b, which indicates that
there is almost no relationship between how well a model
simulates geopotential height (500 hPa) and mean sea level
pressure.
[48] A more comprehensive summary of the relationship

between errors in simulating various pairs of variables is
provided by Figure 5a. Here we examine how the ranking of
models (based on the RMS error) depends on the variable
considered. Figure 5a shows for each pair of variables how
much the ranking of a model typically changes in an
absolute sense depending on which variable the ranking is

based. The ‘‘typical’’ change is the average across all
models of the absolute change in ranking. For the pair of
variables shown in Figure 4a (precipitation and outgoing
longwave radiation), the average difference in ranking is
3 (out of 24 models), whereas for geopotential height
(500 hPa) and mean sea level pressure it is 6. In more than
90% of the cases, the jump in model position is at least 4,
depending on which of the two different variables is used to
determine the ranking.
[49] Figures 4a and 5a indicate that there is some redun-

dancy in the information depicted in the global relative error
metrics in Figure 3a. This suggests that one might be able to
portray mean climate model performance with fewer fields
than we have chosen. On the other hand, Figures 4b and 5a
also indicate that accurate simulation of one variable does
not in most cases imply equally accurate simulation of
another. For example, errors in 200 hPa temperature and
850 hPa specific humidity are not well correlated with
errors in any of the other fields, so these metrics are clearly
not redundant with any of the others. Thus consideration of
multiple fields provides a more complete characterization of
model performance.
[50] Working toward a reduced set of metrics will require

careful consideration of several factors. Even when a strong
relationship is found between relative skill in simulating
two different fields, it might be difficult to decide whether
one field should be eliminated or whether, perhaps, the
errors of the two should somehow be combined. In the case
of outgoing longwave radiation and precipitation (where the
redundancy is greater than for most variable pairs), both are
of interest to model developers, and it would be hard to
argue that one should be removed in favor of the other.
[51] Another question of interest is whether it is really

necessary to consider the full seasonal cycle. Would the
relative merits of models be evident simply by considering
the annual mean spatial distribution of each variable? In
Figure 5b we show how the average absolute change in
model ranking depends on whether it is based on the global
pattern of deviations from the annual mean or the annual
mean pattern itself. The results are mixed. In many cases the
differences are small, but there are numerous instances
where they are very large. In other words, relative model
ranking in some cases strongly depends on whether the
annual means or deviations from the annual means are
considered. Thus it is not always sufficient to merely consider
the annual mean climate.
[52] We next explore several additional factors that might

affect the metrics used here to characterize model perfor-
mance: 1) simulation initial conditions, 2) spatial scales
considered, and 3) the period of the simulation evaluated.
[53] Multiple realizations, differing only in their initial

conditions, are available for some of the models considered
here and are critical for many studies, particularly those in
which internal variability of the climate system is of
interest. Until now we have focused on a single realization
from each model. (We have used the first realization in the
CMIP3 database at PCMDI.) In what follows we shall make
use of all available realizations in the CMIP3 20th century
experiment. We also computed 20-year climatologies for
two different periods: 1900–1919 and 1980–1999 (on
which the results in Figures 1–5 where based). Last, for
the first realization of each model and our primary reference
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data set, we compute all of our statistics on two additional
grids: a coarser grid (45 � 72) of 4� latitude by 5� longitude
and a finer, gaussian grid (96 � 192) normally used in
spherical harmonic decompositions truncated at T63.
[54] In Figure 6 we show results for precipitation and

mean sea level pressure for the NHEX. In each case we
have ordered the models, based on the relative errors given
in Figure 3d, and denoted this error by an asterisk. We also
show errors based on the alternate reference data set (o),
other available realizations (�), the 1900–1919 climatology
(a) and the lower and higher resolution ‘‘target’’ grids (4 �
5 and T63, +). The results are mixed. In some cases these
variations on our analysis choices lead to small differences

in a model’s relative ranking, whereas in others the differ-
ences can be quite large. Rarely, however, would the model
rank position change by more than 5 or 6.
[55] The choice of reference data set for precipitation can

have a moderate effect on a model’s relative ranking in the
NHEX, although for several models the difference is small.
In the tropics (not shown) the ranking is more systemati-
cally sensitive to the choice of precipitation data set. This is
perhaps not surprising given the large uncertainties in
precipitation estimates, especially over the ocean. The effect
of the model initial conditions and the climatology averag-
ing period is not very large. One exception is the GFDL
CM2.1 which later (in Figure 8) is shown to have excessive

Figure 4. Relative errors for each model (taken from Figure 3a): (a) precipitation versus outgoing
longwave radiation, and (b) 500 hPa geopotential height versus mean sea level pressure. Each symbol
represents one of the models.
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variability, making climatologies more sensitive to the 20-
year averaging period. Finally, considering the target grid
resolution, we find, generally speaking, the coarser the grid,
the better the model agreement with observations of pre-
cipitation. The ranking sensitivity of mean sea level pres-
sure is similar in most respects to precipitation, but is clearly
less sensitive to the target grid resolution.

3.4. An Overall Model Performance Index?

[56] There would be considerable value in deriving a
single index of model reliability. If this were possible and
could be justified, the index could be used, for example, to
weight individual model results to form more accurate
multimodel projections of climate change [Murphy et al.,
2004; Stainforth et al., 2005]. Projections by individual

Figure 5. Average absolute change in model ranking: (a) variable-by-variable (taken from Figure 3a),
and (b) the annual cycle versus annual mean.
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models judged to be more reliable would be weighted more
heavily than the other models in forming the consensus
prediction.
[57] Although defining an optimal index of this kind is

beyond the scope of this study, for exploratory purposes
only a ‘‘Model Climate Performance Index’’ (MCPI) has
been constructed. This is done rather arbitrarily by simply
averaging each model’s relative errors across all of the fields
appearing in Figure 3. Results are shown in Figure 7a
(NHEX) and Figure 7b (Tropics), with models sorted by
their MCPI (black line) and with the zero line indicating the
mean result across all models. For each model the relative
error for each variable contributing to the index is also

shown (symbols). Not surprisingly, the MCPI’s based on the
multimodel mean and median fields are lower than the
MCPI’s of individual models. The models that fare well
by this measure also stand out in Figure 3, as do the outliers
with the larger errors. However, even the ‘‘better’’ models
have a large spread in their variable-by-variable perfor-
mance, particularly in the tropics. Also note that the ranking
of models is somewhat different between the NHEX and
Tropics. Thus combining these two indices of performance
would result in a noticeable loss of information concerning
model error.
[58] The average relative error of each model (i.e., MCPI)

is a residual of a rather large spread of variable-specific

Figure 6. Model RMS errors in the Northern Hemisphere extra-tropics (20N–90N) for (a) precipitation
and (b) mean sea level pressure. The sensitivity to different analysis choices are shown by use of different
symbols: standard choice (*), alternate reference data set (o), different climatological averaging period
(a), target grid at different resolutions (+), and alternate ensemble members (�). The models are ordered
according to the errors calculated with the standard analysis procedure.
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model performance, which means that the MCPI can hide
substantial model errors. Although the MCPI seems to
reinforce the general impression of model performance
conveyed by Figures 3d and 3e, it is our view that the
complexity of the models and the characteristics of their
simulated fields cannot be adequately captured by a single
measure of performance. Furthermore, our decision to
weight all fields uniformly is highly subjective and arbi-

trary, and therefore counter to the goal of gauging model
performance by measures that are objective. At this point
the utility of this or any similarly defined MCPI is therefore
unclear. It is likely that depending on the application, it
would be appropriate to weight different aspects of model
error by different amounts.
[59] The primary appeal of a single index is its simplicity,

but a single index could lead some naive individuals to draw

Figure 7. Relative errors, with models ordered by the ‘‘Model Climate Performance Index,’’ for
(a) NHEX (20N–90N) taken from Figure 3d, and (b) Tropics (20S–20N) taken from Figure 3e. The
indices are connected by the solid line, and the colored symbols indicate the relative error for each of the
variables that contribute to the index.
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unwarranted conclusions concerning the relative value of
different models. This is especially true if the index is based
solely on the climatology of global scale fields, completely
omitting any evaluation of the wide variety of modes of
variability that might indicate whether models have really
captured the physics of the climate system. There is under-
standable concern among model developers that a single
index used to rank models could prematurely discourage
development of new modeling approaches, which might at
first appear inferior, but which might more realistically
represent the physics of the system and, after further work,
could eventually produce a better model.

3.5. Beyond the Mean Climate

[60] The focus of this study has thus far been on the
simulation of the mean annual cycle. While this may be a
reasonable starting point, it provides only a limited per-
spective of overall climate model performance. Here we
take a preliminary look at simulated inter-annual variability
by examining variances of monthly mean anomalies, com-
puted relative to the monthly climatology. The RMS error is
not an appropriate metric for characterizing this aspect of
model performance because there is no reason to expect
models and observations to agree on the phasing of internal
(unforced) variations (e.g., the timing of El Niño events).
On the other hand, correctly matching the observed variance
does not guarantee correct representation of the modes of
variability responsible for the variance.
[61] In order to obtain a robust statistical estimate of

observed variability, we need data available for a period of a
decade or more. This constraint eliminates some of the
reference data sets used in our earlier comparisons of the
simulated mean climate state. As a first step in our assess-
ment of model simulation of climate variability, we focus on
the upper air fields available from the ERA40 and NCEP-
NCAR reanalyses. After removing the mean annual cycle
from each reanalysis data set, monthly anomalies are
computed for the period 1980–1999. A similar procedure
is followed for each of the 20th century simulations, where
for each model we use the same realization included in
Figures 1–5.
[62] Figure 8 depicts the ratio of simulated to observed

variances for the NHEX, Tropics and SHEX (with reference
to each of the reanalyses). Ratios close to unity indicate that
the variance of simulated monthly anomalies compare well
with the reanalyses, whereas lower ratios suggest there is
too little simulated variability and higher ratios imply too
much. The statistics for the multimodel mean field are
omitted in this figure because the phasing of the monthly
anomaly variations cannot be expected to be the same from
one model to the next because they are not externally
forced. Thus the temporal variance found in ‘‘mean model’’
and ‘‘median model’’ anomaly fields is unrealistically small
and would in fact become smaller still if additional models
were added to the ensemble.
[63] In the NHEX, the variance in both reanalyses are

comparable, as evidenced by the preponderance of single
color boxes. In the Tropics and in the SHEX the two
triangles in each box are more frequently different, indicat-
ing larger discrepancies between the two reanalyses. This is
not surprising, since the reanalyses are less well constrained
by observations outside the Northern Hemisphere midlati-

tudes. In areas of relatively sparse data, the reference data
sets are more heavily influenced by the reanalysis model
and therefore the observational estimates of variability are
likely to be less accurate.
[64] Most models have too little extra-tropical variability

in temperature at 200 hPa. This may be because the high-
latitude winter tropopause is well below 200 hPa, and most
models have relatively crude representation of the strato-
sphere. Several models stand out consistently across all
fields with too little variability in tropics, whereas others
appear to have too much.
[65] We can create an exploratory Model Variability

Index (MVI), much as we did for the mean climate by
arbitrarily weighting each of the variables in Figure 8 uni-
formly. To avoid cancellation between excessive and defi-
cient variability, we define for a given model (m) and
reference data set (r) the MVI as follows:

MVImr ¼
XF
f¼1

bmrf �
1

bmrf

" #2

ð3Þ

where b2 is the ratio of simulated to observed variance and
F is the total number of variables (rows in each of the panels
of Figure 8). Defined in this way, the MVI is positive
definite, with smaller values indicating better agreement
with the reference data.
[66] Is there any relationship between how well a model

simulates the mean climate and its ability to capture large-
scale characteristics of inter-annual variability? Using our
simple indices of performance, we compare each model’s
climate and variability skill for both the NHEX and Tropics
(Figures 9a–9b). For both our MCPI and MVI, the smaller
the value, the better the skill, so the ‘‘better’’ models would
be found in the lower left corner of Figure 9. In the NHEX
there appears to be some relationship between the two
performance measures, although there is substantial scatter.
In the tropics, on the other hand, there seems to be hardly
any relationship between a model’s relative skill in simu-
lating the mean climate and its inter-annual variability
performance. Note that for consistency, the MCPI values
shown in Figure 9 are based on the set of fields used for the
MVI. For most models this leads to only modest changes in
the MCPI shown in Figure 7, but it is interesting to note that
in the tropics there are substantial changes for all three GISS
models.
[67] There is a possibility that the results in Figure 9b

might be sensitive to the occurrence of relatively rare events
such as El Niño. We can check whether our results are
sensitive to sampling a particular realization of climate
‘‘noise’’ of this kind by analyzing the multiple realizations
available for some models (not shown). We find little
change in the results of Figure 9, which suggests that for
our global scale measures, a sample size of 20 years yields a
robust measure of each model’s relative performance in
simulating variability.
[68] It can be argued that a realistic simulation of the

annual cycle might be required for a model to have
reasonable characteristics of inter-annual variability (e.g.,
to account for the influence of the Asian monsoon on
ENSO). This is not necessarily inconsistent with the results
displayed in Figure 9, but improving a model’s simulation
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of the mean climate is no guarantee that its variability will
also improve.
[69] These results underscore the limitations of mean

climate metrics; they may be woefully inadequate for
assessing the multiple facets of model performance. At this
time it therefore appears that the climate research commu-
nity is better served by further work to develop a compre-
hensive hierarchy of model metrics, which can be used to

assess the spectrum of processes and phenomenon consid-
ered important for the simulation of climate.

4. Summary and Discussion

[70] Climate model ‘‘metrics,’’ as described here, are
scalar quantities designed to gauge model performance.
Defined for this purpose, metrics can be contrasted with

Figure 8. Variance ratios (CMIP3/reanalysis) for 1980–1999 monthly anomalies in the (a) NHEX
(20N–90N), (b) Tropics (20S–20N), and (c) SHEX (90S–20N). In each rectangle the upper triangle is
based on ERA40 and the lower on NCEP-NCAR.
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Figure 9. Model Climate Performance Index (MCPI) versus Model Variability Index (MVI) for (a)
NHEX (20N–90N) and (b) Tropics (20S–20N). For consistency, the MCPI values shown here are
based on the same set of fields used for the MVI shown in Figure 8.
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‘‘diagnostics,’’ which may take many forms (e.g., maps,
time series, power spectra) and may often reveal more about
the causes of model errors and the processes responsible for
those errors. There is, for a variety of reasons, growing
interest within the climate research community in establish-
ing a standard suite of metrics that characterize model
performance. Metrics are usually designed to quantify
how simulations differ from observations, and they are
generally used to characterize how well models compare
with each other. Unlike numerical weather prediction, there
is currently no widely accepted suite of metrics for evalu-
ating climate model performance. The greatest challenge in
selecting metrics for measuring climate model performance
is determining what phenomena are important to simulate
accurately, and therefore what the metrics need to measure.
It remains largely unknown what aspects of observed
climate must be correctly simulated in order to make
reliable predictions of climate change.
[71] The metrics used here indicate that models are not all

equally skillful in simulating the annual cycle climatology
and the variance of monthly anomalies. The information
provided by our metrics makes it possible for anyone to
draw inferences about the relative performance of different

models, but here we point out some obvious generaliza-
tions. First, the ‘‘mean model’’ and ‘‘median model’’ exhibit
clear superiority in simulating the annual cycle climatology.
This conclusion is robust across variables, regions (tropics
and extra-tropics) and the component considered (e.g.,
deviations from the annual mean, annual mean, deviations
from the zonal mean). Second there are some models that in
many respects stand out as superior. In the extra-tropics, for
example, we find the UKMO-HadCM3, UKMO-
HadGEM1, GFDL-CM2.1, MICROC3.2 (hires), and MPI-
ECHAM5 errors are smaller than those found in the
‘‘typical’’ model by more than 10%. Relative to the most
poorly performing models, these errors are lower by up to
30%–40%. In the tropics, the UKMO-HadCM3, MPI-
ECHAM5, CCCMA-CGCM-1 (at both resolutions), and
both GFDL model versions, each have overall errors on
the order of 5% less than the typical error, and on the order
of 30% lower than the most poorly performing models.
While quantitative, these conclusions are drawn by looking
collectively at a host of variables having a wide range of
observational uncertainty. Moreover, even for these ‘‘bet-
ter’’ performing models we must reiterate the fact that the
range of performance across variables is substantial, and at

Figure 10. Example of a Taylor diagram used in the evaluation of two different versions of an NCAR
coupled climate model. The following equivalence between acronyms applies: OLR = rlut, LH = hfls,
SH = hfss, P = pr, LWclr = rlutcs, and TAS = surface air temperature.

D06104 GLECKLER ET AL.: CLIMATE MODEL METRICS

17 of 20

D06104



least in the tropics there is little indication that relative mean
climate performance translates to how well models simu-
lated basic characteristics of variability.
[72] This study has shown that the relative performance

of models reflected by metrics proposed here can be
sensitive to the choice of reference data, internal variability
(e.g., exhibited via multiple realizations of the same model),
and even the resolution of the regridded data. While none of
these factors leads to a complete rearrangement of the
relative ranking of models (the ‘‘above average’’ models
typically remain so), their impact can move a model up or
down in the ranking by several slots.
[73] There are a number of ways one can arbitrarily

construct an ‘‘index of climate skill,’’ and we have illus-
trated one obvious way to do this. While the results are
generally consistent with our impressions gleaned from a
large suite of metrics (as to which models do relatively well,
and which do not), we have not demonstrated that in fact
this metric has any specific value in determining which
model might be more reliable in predicting climate change.
We note that even the ‘‘better’’ models score below average
in the simulation of some fields, while the ‘‘poorer’’ models
score above average in some respects (especially in the
tropics). Thus an overall performance index of this kind is a
relatively small residual resulting from the large range of
scores on which it is based. Because the component scores
are to a considerable degree offsetting, the reasonable, but
somewhat arbitrary, decision to weight each variable equally
is a critically important one. A different choice could lead to
a rather different ranking of the models. It is likely that the
optimal weighting of individual metrics contributing to a
performance index will depend on the application (e.g.,

prediction of climate change versus study of ENSO).
Additional research is needed to determine which aspects
of a model simulation that can be verified against observa-
tions are most critical for predictive reliability. Until then,
the use of a single index to gauge model performance is
unwarranted and scientifically unjustified.
[74] Further research should lead to more comprehensive

and useful means of summarizing mean climate perfor-
mance. Initially it might be fruitful to explore a wide range
of metrics, rather than striving for a single index of overall
skill, and then to use some objective method to reduce
redundant information (e.g., Single Value Decomposition
techniques). This might lead us to a more robust measure of
skill. In this study our aim has been to set the ground-work
for future efforts to define standard metrics by exploring the
sensitivity of metrics to various analysis choices. At this
stage, however, it would be premature to suggest that this
(or any other) set of metrics be adopted as a standard for
climate modeling. Eventually it should be possible to
establish standard performance metrics that could be rigor-
ously justified as providing a useful guide to their predictive
capability, but this will require a better understanding of the
relationship between a model’s ability to simulate observed
phenomena and its ability to simulate climate changes.
[75] Metrics are currently being used by some groups to

aid in the development of new model versions by quanti-
fying how model changes affect performance. This practical
application of metrics can help modelers distill a range of
diagnostic information in ways that can enable them to
quickly review chosen performance measures of many
model versions. Figure 10 is an example of how the Taylor
diagram has been exploited to track performance changes in

Figure 11. CMIP2 and CMIP3 model errors in simulating precipitation, mean sea level pressure and
surface air temperature (prepared for IPCC, 2007). All fields were mapped to a 4x5 degree latitude-
longitude grid before computing the errors. Results from the earlier generation of models (CMIP2) are
based on the output from control runs (specifically, the first 30 years, in the case of temperature, and the
first 20 years for the other fields), whereas results from the recent model versions (CMIP3) are based on
the 20th century simulations.
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an atmospheric model. Knowledgeable model development
teams are unlikely to over-emphasize the value of metrics
because they will be aware of a much broader suite of
diagnostics routinely considered during model develop-
ment. Any subjectivity associated with the definition of
performance indices will be recognized within these groups
and taken into account.
[76] Another important use of model metrics is to monitor

how climate models improve over time. This is greatly
facilitated by established ‘‘benchmark’’ experiments that are
expected to be performed whenever a new model version is
developed. The protocol for the Atmospheric Model Inter-
comparison Project [AMIP, Gates et al., 1999] and the
control experiments of the Coupled Model Intercomparison
Project [CMIP, Meehl et al., 2000] are prime examples of
standard experiments of this kind. Figure 11 provides a
summary of the ability of OAGCMs to simulate the sea-
sonally varying climate state. The RMS error normalized by
the amplitude of the pattern (i.e., the standard deviation) is
given for precipitation, sea level pressure and surface
temperature. The subset of the climate research centers
given in Table 1 who contributed model output to the CMIP
database from both an earlier and more recent version of
their model are included in the plot. The models in Figure 11
are identified by open or filled symbols, depending on
whether or not flux adjustments were applied. Only two of
the 8 groups who originally used flux adjustment continue
that practice. The figure shows that flux adjusted models on
average have smaller errors than those without (in both
generations), but considering all the models, the smallest
errors in simulating sea level pressure and surface temper-
ature are found in those without flux adjustment. Also,
despite the elimination of flux adjustment in all but two of
the recent models, the mean error obtained from the recent
suite of 14 models is smaller than errors found in the
corresponding earlier suite of models. Moreover, both flux
adjusted models, as a group, and their non-flux-adjusted
counterparts have with one exception improved.
[77] A third use of model metrics is to rely on them to

make quantitative judgments on how to use information
from a collection of models for a particular application [e.g.,
Annamalai and Hamilton, 2007]. One way this can be done
is to establish what is important, and then to weight
individual simulations accordingly. A variant of this is to
use metrics to eliminate some models from a multimodel
ensemble (i.e., assigning them a weight of 0).
[78] Finally, in spite of the increasing use of metrics in the

evaluation of models, it is not yet possible to answer the
question often posed to climate modelers: ‘‘What is the best
model?’’ The answer almost certainly will depend on the
intended application. Conceivably, a set of metrics could be
developed for a specific application that would accurately
quantify the relative merits of different models. It is unlikely,
however, that the same set of metrics would be optimally
suited for all applications. Therefore, a prudent strategy
would be to encourage the development of performance
metrics for a wide range of processes and phenomenon of
known importance for climate. Among these metrics would
be peformance measures of the simulated atmosphere, the
ocean [e.g., McClean et al., 2006], and the land and cryo-
sphere. With a reasonably comprehensive set of model
metrics identified, the climate research community will be

better positioned to evaluate overall climate model perfor-
mance and determine which metrics are particularly relevant
to any given application.
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