

1957-1

Miniworkshop on Strong Correlations in Materials and Atom Traps

4 - 15 August 2008

Fermi Arcs and Fermi Pockets in Cuprates.

NORMAN Michael R.

Argonne National Laboratory Materials Science Division Building 223 9700 South Cass Avenue, IL 60439 Argonne U.S.A.

Fermi Arcs and Fermi Pockets in Cuprates

Mike Norman

Materials Science Division Argonne National Laboratory

Norman, Kanigel, Randeria, Chatterjee, Campuzano, PRB 76, 174501 (2007) Millis and Norman, PRB 76, 220503 (2007)

ICTP - Aug. 4, 2008

Norman, Pines, Kallin, Adv. Phys. (2005)

What is the Pseudogap?

- 1. Pre-formed pairs
- 2. Spin density wave
- 3. Charge density wave
- 4. d density wave
- 5. Orbital currents
- 6. Flux phase
- 7. Stripes

Assuming the "sudden approximation", ARPES in 2D systems measures the single particle spectral function

 $I(\mathbf{k},\omega) = c \langle A(\mathbf{k},\omega)f(\omega) \rangle + background$ where

- 1. A is the single particle spectral function
- 2. f is the Fermi-Dirac function
- 3. c is the square of the dipole matrix element (plus intensity normalization)
- 4. <> is the convolution with the energy resolution gaussian and sum over the momentum window
- 5. background is secondaries plus other contributions

Extraction of the Superconducting Energy Gap from ARPES Ding *et al.*, PRL (1995) & PRB (1996)

 $\Delta_k \rightarrow \cos(k_x) - \cos(k_y) \rightarrow \text{Implies near-neighbor pair interaction}$

Gap closing with T (2) versus Gap filling with T (1)

Norman et al., PRB (1998)

Norman et al., PRB (2007)

Is the T=0 limit of the pseudogap phase a nodal metal?

Nodal Liquid Implied by Low T Thermal Conductivity

Doiron-Leyraud et al., PRL (2006)

Collapse of Arcs Through T_c

Kanigel et al., PRL (2007)

Dynamical Mean Field Theory (Georges, Kotliar, Tremblay) Magnetic correlations wipe out parts of the Fermi surface

Senechal & Tremblay, PRL (2004)

Charge ordering?

McElroy - Nat. Phys. (2006)

Charge ordering? $q=(0.36,0)\pi$

Zero energy intensity maps, left (q) and right (q,-q)

Norman et al., PRB (2007)

ky

Energy gap *below* E_F in the 'arc' region for charge ordering scenario

Stanescu, Phillips, Choy, PRB (2007)

1.0 100-(b) (a) 0.8-50 0.6-≳ 0 ш 0.4--50-0.2-0.0--100-0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5 kх ky (a): x=0.05(b): *x*=*θ*.1*θ* (c): *x*=0.14 × * (d): x=0.18 k_x k_{x} (e): x=0.20 (f) x=0.05 x=0.10 x=0.14 x=0.18 x=0.20 × k k_{x} k_{x} k_{x}

Yang, Rice, Zhang, PRB (2006)

Dispersing Fermi Arcs in the Flux Phase State?

Wen and Lee - PRL (1998)

 $\Sigma = -i\Gamma_1 + \frac{\Delta^2}{(\omega + i\Gamma_0)}$ where Δ is the gap, Γ_1 the single particle scattering rate and Γ_0 the inverse pair lifetime

Norman et al., PRB (1998)

Also explains arc collapse below $T_c (\Gamma_0 \rightarrow 0)$

SUMMARY of ARPES

- 1. Spectroscopic data can be scaled as a function of $T/T^*(x)$
- 2. Fermi arc length is linear in $T/T^*(x)$
- 3. No shadow bands are found associated with finite q vector
- 4. Pseudogap is tied to k_F and E_F implying a q=0 instability
- 5. The data are consistent with a "fluctuating pairs" model with an inverse lifetime proportional to T

Kaminski et al., Nature (2002)

Orbital moments above T_c in the pseudogap phase?

Evolution of the Fermi surface with doping

Doiron-Leyraud *et al.* Nature (2007)

Quantum oscillations measure the areas and masses of extremal orbits of the Fermi surface

bananas vs pockets

YBCO ortho-II folding

Julian & Norman, Nature N&V (2007)

Elfimov, Sawatzky, Damascelli, PRB (2008)

Chakravarty & Kee, PNAS (2008)

Magneto-oscillations in the Hall resistivity (note that $R_H < 0$)

Doiron-Leyraud *et al.* Nature (2007)

$R_{\rm H} < 0$ forms a dome around x=1/8

LeBoeuf et al., Nature (2007)

This was also known from earlier studies of the thermopower and Hall on LSCO & LBCO

Nakamura & Uchida, PRB (1992)

Adachi, Noji, Koike, PRB (2001)

Hole Density shows a "4a period bond centered electronic glass"

Kohsaka et al., Science (2007)

Antiphase Stripes (Tranquada *et al.* - Nature 1995) Charge peaks at $(2\delta,0)\pi$, Spin peaks at $(1+\delta,1)\pi$

4 period stripe, $q=(0.75,1)\pi$

V - spin potential, V_c - charge potential Millis & Norman, PRB (2007)

Electron pockets stable for a large range of potentials

Predicted ARPES intensities from the previous slide

5 period stripe, $q=(0.8,1)\pi$

Charge only case (V=0)

 $q=(1,1,1)\pi$

Field Induced SDW in LSCO

Lake et al., Science (2001)

Spiral Spin Density Wave?

Q=(0.8,1), x=0.081, V=0.3078, helical

Sebastian et al., Nature (2008)

SUMMARY of DHVA

- 1. A small pocket is observed in ortho-II YBCO and Y248
- 2. The pocket is electron like
- 3. It is probably due to a field induced SDW (a spiral?)
- 4. The relation of arcs to pockets is a subject of continuing debate