

1957-25

Miniworkshop on Strong Correlations in Materials and Atom Traps

4 - 15 August 2008

Spin/charge frustration of correlated electrons on triangular lattice.

KANODA Kazushi

Department of Applied Physics School of Engineering The University of Tokyo Hongo 7-3-1 Bunkyo-ku, Tokyo 113-8656 JAPAN "Miniworkshop on Strong Correlations in Materials and atom Traps", Trieste, August 4-15, 2008

Spin/charge frustration of correlated electrons in triangular-lattice organics

K. Kanoda, Applied Physics, University of Tokyo

Collaborators

Univ. Tokyo
Y. Shimizu (Nagoya Univ.), F. Kagawa (Tokura-ERATO),
Y. Kurosaki, H. Kasahara, H. Hashiba, H. Ohike, K. Miyagawa
Kyoto Univ.
M. Maesato, G. Saito

Outline

- 1. Three points for enjoying physics of organics
- Spin ¹/₂ on triangular lattice ---- spin liquid when pressurized; band width-varied when doped; band filling-varied

Structure: complicated in real space, but simple in k-space

Variation in lattice geometry Arch electronic phases

SDW

Spin-Peierls transition Wigner crystallization Tomonaga-Luttinger liquid Fermi liquid Triplet SC ?

Wigner crystal/glass/liquid Valence bond solid/glass Massless Fermion SC

Special Issue "Organic conductors" in J. Phys. Soc. Jpn. No.5, 75 (2006)

<u>Highly compressible</u>

Phase diagram

Interacting electrons on **Triangular** lattice are annoyed with frustration.

$$\mathcal{H} = \sum_{i,j,\sigma} t_{ij} C_{i\sigma}^{\dagger} C_{j\sigma} + \sum_{i} U n_{i\uparrow} n_{i\downarrow} + \sum_{\langle ij \rangle} V_{ij} n_{i} n_{j}$$

Q2D organics κ -(ET)₂X; spin-1/2 on triangular lattice

Kino & Fukuyama

dimer model

	X-	Ground state at ambient pressure	U/t	t'/t
	Cu ₂ (CN) ₃	Mott ins.	8.2	1.06
Mott	Cu[N(CN) ₂]Cl	Mott ins.	7.5	0.75
Trans.	Cu[N(CN) ₂]Br	Metal (SC)	7.2	0.68
	Cu(NCS) ₂	Metal (SC)	6.8	0.84
	Cu(CN)[N(CN) ₂] Metal (SC)	6.8	0.68
	$Ag(CN)_2 H_2O$	Metal (SC)	6.6	0.60
	I ₃	Metal (SC)	6.5	0.58

Triangular lattice Half-filled band

¹³C NMR line broadening is induced by magnetic field at low-T

No internal field at H=0 by μ SR (Ohira et al)

Spin anomaly around 5K and low-lying spin excitation in κ - $(ET)_2Cu_2(CN)_3$

Specific heat

Yamashita et al., Nature Phys. (2008)

¹³C NMR relaxation rate Shimizu et al., PRB 70 (2006) 060510

Wilson ratio $\sim 1-2$!!!

Degenerate Fermionic objects in Mott insulator

Spinon Fermi liq. ? P. A. Lee Its instability at 5K ? P.A.Lee & T.Senthil

 $\chi_{spin} = 3 \times 10^{-4} \text{ emu/mol}$

Charge-gapless non-metal just before Mott transition ?

Charge gap in antiferromagnet and spin liquid Charge gap is clearly opened on AF ordering, but remains undeveloped in spin liquid.

Pseudo-gapped nearby AFM

Not pseudo-gapped nearby spin liq.

Guess on

¹/₂-filled band correlated electrons on triangular lattice near Mott transition

Doped triangular lattice

ET layer

X layer

ET₄ \longrightarrow (ET)₂^{+1+ δ} Hg_{3- δ}X₈ (X=Br, Cl) Hole doping

 κ -(ET)₄Hg_{2.89}Br₈ ----- 11% hole doped / dimer κ -(ET)₄Hg_{2.78}Cl₈ ----- 22% hole doped / dimer

	U/t	<i>t'/t</i>	
κ -(ET) ₂ I ₃	6.48	0.58	
κ -(ET) ₂ Cu(NCS) ₂	6.98	0.86	Metal/SC
κ -(ET) ₂ Cu[N(CN) ₂]Br	7.20	0.68	
κ -(ET) ₂ Cu[N(CN) ₂]Cl	7.58	0.74	(U/U) _{critical}
κ -(ET) ₂ Cu ₂ (CN) ₃	8.20	1.06	Mott insulator
κ -(ET) ₄ Hg _{2.89} Br ₈	10.01	1.02	superconductor
κ -(ET) ₄ Hg _{2.78} Cl ₈	10.32	1.11	metal

Magnetic susceptibility of doped triangular lattice

 κ -(ET)₄Hg_{2.89}Br₈ (t'/t=1.02)

Experiment by Taniguchi Analysis by Shimizu

Doped triangular-lattice Mott insulator к-(ET)₄Hg_{2.89}Br₈ & к-(ET)₂Hg_{2.78}Cl₈

NMR spectra under pressure

Pressure drives non-Fermi liquid to Fermi liquid

κ -(ET)₄Hg_{2.89}Br₈ Hall coefficient 0.5 n=1-0.5 $\log_{10}[R \cdot R_{\theta}(\Omega)]$ $R_H(T, P)$ and $\rho(T, P)$ of κ-(BEDT-TTF)₄Hg_{2.89}Br₈ -1.5 M/M(a) #2 0.12 Mott insulator (cm³/C) 0,08 0.1 -2.5 0.08 (0,06 (0.06 $Hg_{2.89}Br_8$ -0.04 -3.5 100 200 10 T (K) $(U/W)_{\rm critical} \sim$ 0.6 0.8Ε 6.64 ž GPa (#3) 0.19 GPa 0.29 0.02 0.57 GPa 0.38 GPa 1/2 filled GPa 85 0 46 GPa (#3) 1.51 GPa -0.02 50 100 150 200 0 T (K) 2 0 ρ₀ (P) / ρ₀ (1.9 GPa) N A 9 Hole number / dimer

H. Taniguchi et. al., J.PSJ. 76 (2007) 113709

Resistivity

5.0kbar

13.3kbar

17.5kbar

 $\log_{10}[T(K)]$

10

P (GPa)

0,5

10.7kbar

1.2

15 20 0 5 10 15 20

2,5

1.4

3.5

Doping without disorder \rightarrow Mott insulator !! ??

Concluding remarks

Question

Inhomogenous spin states in

nondoped and doped triangular

lattice is intrinsic or extrinsic?

Spin liquid or AF order depending on t'/t Spin liquid appears near Mott transition

•Nature of Spin liquid

Low-lying excitations in NMR 1/T and finite γ 5K anomaly in NMR, C and κ -----hidden order or some crossover ?

•Spin frustration affects the charge near Mott transition

Charge-gapless non-metal just before Mott transition of spin liq. ----- Novel interplay of spin and charge?

•Doped triangular lattice

χ well reproduced by triangular lattice Heisenberg model spin fluctuations persistent down to low-T experiments from t-J to Hubbard by pressure

