

1957-15

Miniworkshop on Strong Correlations in Materials and Atom Traps

4 - 15 August 2008

Experiments with cold quantum gases in low dimensions.

KRÜEGER Peter

The University of Nottingham School of Physics and Astronomy University Park NG7 2RD Nottingham UNITED KINGDOM

Experiments with cold quantum gases in low dimensions

Peter Krüger

Quantum degenerate cold gases

- The achievement of BEC (1995) and DFG (1999) led to studies of
- matter wave coherence → interference of two (independent) BECs, MIT 1997
- Long range phase coherence and superfludity → quantized vortices in Bose (ENS, JILA 2000) and Fermi (MIT 2005) gases
- Basic excitations (Bogoliubov spectrum) of quasi pure Bose-Einstein condensates (Weizmann)
- ...

Weakly interacting systems are good model systems for pure quantum gases and single particle description (with mean field) is a good description

Strong correlations

tuning of interaction strength near Feshbach resonances
introducing (strong) periodic potentials
reducing the dimensionality of the system

Description based on non-interacting

quasi-particles no longer applicable

Strongly correlated systems in dilute gases with much larger control and tuning than in dense quantum liquids

Dimensionality of many body systems

Fluctuations, disorder, interactions play a larger role in reduced dimensions

- quantum transport in 1d
- Tonks-Girardeau gas
 Kosterlitz-Thouless physics (2d)

Dimensionality critically affects order

3d: spontaneous symmetry breaking can lead to the emergence of true long range order Low d: altered density of states leads to the destruction of long range order, even in the presence of interactions (Mermin-Wagner-Hohenberg)

Order and dimensionality

3d	2d	1d
	True long range order only at T=0	Quasi long range order only at T=0
True long range order below finite T _C	Quasi long range order (algebraic decay of correlations) below T _{C,2d}	Exponential decay of correlations at any finite T
Exponential decay of correlations above T _C	Exponential decay of correlations above T _{C,2d}	

Outline

- 1d Bose gases
 - Expansion
 - (quasi) condensed vs normal fraction
 - Phase fluctuations
- 2d Bose gases
 - Phase transition? Bose-Einstein condensation vs Berizinskii-Kosterlitz-Thouless physics
 - Critical atom number measurements
 - Phase dislocations, vortices, and the microscopic basis of the BKT theory

1d Bose gases

Transverse confinement strong enough, so that

$$\mu, T < \hbar \omega_{\perp} \longleftrightarrow n_{1d} a_s < 1$$

$$n_{1d} < 100 \,\mu m^{-1}$$
 for ⁸⁷Rb

Experimental approach

. . .

Elongated (macroscopic) magnetic traps: MIT, Hanover, Orsay, ...

Optical lattices (2d +): Mainz, Penn State,

Microtraps, single realisation: Heidelberg, Orsay, Amsterdam, ...

One dimensional gases on atom chips

At ~50 microns from the wire very elongated (aspect ratios > 1000) smooth BECs can be formed

1d: $\mu \ll \hbar \omega$

— 100µm

Momentum distribution: TOF

Momentum distribution of the ground state ?

Experiment: Measure density dependence of transverse cloud width after TOF expansion

Fragmented cloud gives (almost) single shot measurement of large density span

1d time of flight: widths

Even in purely 1d, there is a mean field correction

Finite T: bimodal 1d clouds

If the expansion for both a quasi-BEC and a thermal cloud is gaussian, how can they be distinguished (kT ~ $\hbar\omega$)?

Discern the interferable fraction !

1d gases at finite temperature

Phase fluctuations

Dettmer et al., PRL 2001 Richard et al., PRL 2003

Time evolution

Schumm et al., Nature Physics 2005 Hofferberth et al., Nature 2008

2d Bose gases

BEC in 2d ? – The ideal Bose gas

Homogeneous system:

3D: BEC occurs when the phase space density reaches $n\lambda^3 = 2.6$

2D: no BEC for any phase space density $n\lambda^2$

In a harmonic trap:

3D: BEC occurs when
$$N = 1.2 \left(\frac{k_B T}{\hbar \omega}\right)^3$$

2D: BEC occurs when $N = 1.6 \left(\frac{k_B T}{\hbar \omega}\right)^2$ Bagnato, Kleppner
1991
Does the trapping potential obscure the
dimensionality difference?

Interactions

Treat the interactions at the mean field level:

$$V_{\rm eff}(r) = \frac{m\omega^2 r^2}{2} + 2gn_{\rm mf}(r)$$

where the mean field density is obtained from the self-consistent equation

$$n_{\rm mf}(r) = \int \rho_{\rm mf}(r,p) \frac{d^2 p}{h^2} \qquad \rho_{\rm mf}(r,p) = \left[e^{\beta(\frac{p^2}{2m} + V_{\rm eff}(r))} - 1 \right]^{-1}$$

Two remarkable results

- One can accommodate an arbitrarily large atom number. Badhuri et al
- The effective frequency deduced from $V_{eff}(r) \simeq m \omega_{eff}^2 r^2/2$ tends to zero when $\mu \rightarrow 2gn_{mf}(0)$ Holzmann et al

Similar to a 2D gas in a flat potential...

Does this mean there's no 2d BEC, even in the trap?

Superfluidity in 2d

A 2D film of helium becomes superfluid at sufficiently low temperature (Bishop and Reppy, 1978)

"universal" jump to zero of superfluid density at $T = T_c$

BKT theory

topological phase transition associated with the binding/unbinding of vortex pairs

Simplified picture

Probability of thermal excitation of a free vortex

Energy:
$$E = \int n_s \frac{mv^2}{2} 2\pi r \, dr \sim \frac{\pi \hbar^2}{m} n_s \log(R/\xi)$$

Entropy: $S = k \log(W) \sim k \ln(R^2/\xi^2) = 2k \log(R/\xi)$

Free energy:
$$\frac{E-TS}{kT} \sim \frac{1}{2} \left(n_s \lambda^2 - 4 \right) \ln(R/\xi)$$

Vortices and long range order

Increasing temperature -

© V. Schweikhard, E. Cornell

The Paris experiment

- A regular 3d BEC is split into two by superimposing a blue detuned 1d optical lattice
- Ramping up the lattice compresses the cloud into 2d

- 10⁵ atoms/plane
- plane thickness: 0.1mm
- plane separation: 3 µm (lattice period @ small angle)
- barriers broad and high \rightarrow no tunneling

 $\mu \sim 2 \text{ kHz} < \hbar \omega \sim 4 \text{ kHz} \ll V_0 \sim 50 \text{ kHz}$

Experiments also at MIT, Oxford, Innsbruck, Heidelberg, Florence, NIST, ...

Measuring critical atom numbers

Produce 2d cloud, wait for atom number to reduce (~ 10s) RF knife on to keep T constant

Interference

Comparing critical numbers

Within our accuracy, onset of bimodality and interference agree

P. Krüger, Z. Hadzibabic, J. Dalibard, PRL 2007

Temperature dependence of N_c

ideal gas prediction (multiple planes taken into account)

universal jump in superfluid density from $\rho_s \lambda^2 = 0$ to $\rho_s \lambda^2 = 4$, but total density at transition depends on interactions:

$$\rho_{tot}\lambda^2 = \ln\left(\frac{C}{\tilde{g}}\right)$$

Fisher and Hohenberg

for sufficiently weak interactions $\tilde{g} < 1; \tilde{g} = 0.13$ in our case

Quantum Monte-Carlo calculations give C=380:

$$o_{tot}\lambda^2 = 8.0$$

Svistunov et al.

Hatree-Fock analysis and QMC

Solve HF equations self-consistently in hybrid approach: semi-classical (continuous) treatment in xy, quantum in z

Result for ideal gas critical atom #, PSD < 8

Comparison to the experiment

P. Krüger, Z. Hadzibabic, J. Dalibard, PRL 2007 Z. Hadzibabic, P. Krüger, M. Cheneau, P.S. Rath, J. Dalibard, NJP 2008 A mean field calculation yields that in general (low and high interactions)

$$\frac{N_c^{mf}}{N_c^{id}} = 1 + \frac{3\tilde{g}}{\pi^3} \rho_{tot,crit} \lambda^2$$
Holzmann et al.

Local density approximation

Determine (column) density at the edge of core for varied atom numbers

A closer look at interference

Correlations and Vortices

Loss of quasi long range order

Proliferation of vortices

Hadzibabic, Krüger, Cheneau, Battelier, Dalibard, Nature 2006

Local analysis of interference

Distribution of local contrast

For each image we have ~ 30 useful columns, each providing a local $\bar{\rho}_s(x)$ and a local contrast C_x

We use 300 images all at the same temperature *x*

We sort all 9000 couples ($\bar{\rho}_s(x), C_x$) into groups of increasing $\bar{\rho}_s(x)$

P. K., Hadzibabic, Dalibard, Demler et al., in prep. 2008

Conclusion

- Low dimensional systems can be formed, controlled, and studied with high versatility in cold atomic gases
- Beyond mean-field effects, i.e. 'true' manybody physics become important in low d
- Example 1d: phase fluctuations
- Example 2d: Berizinskii-Kosterlitz-Thouless physics and BEC-BKT crossover

Acknowledgements

Marc Cheneau Baptiste Battelier Zoran Hadzibabic Jean Dalibard

> Sebastian Hofferberth Thorsten Schumm Jörg Schmiedmayer

New group & experiments at Nottingham

Atom chips

Non-trivial potentials, topologies

Surface probes, atom-surface interaction/coupling

Hybrid atom-semiconductor chips Chip based atom-light interfaces