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Quantum degenerate cold gases

The achievement of BEC (1995) and DFG (1999) led to 
studies of

• matter wave coherence � interference of two 
(independent) BECs, MIT 1997

• Long range phase coherence and superfludity �
quantized vortices in Bose (ENS, JILA 2000) and 
Fermi (MIT 2005) gases

• Basic excitations (Bogoliubov spectrum) of quasi pure 
Bose-Einstein condensates (Weizmann)

• …

Weakly interacting systems are good model 
systems for pure quantum gases and single 
particle description (with mean field) is a 
good description



Strong correlations

•tuning of interaction strength near 
Feshbach resonances

• introducing (strong) periodic potentials
•reducing the dimensionality of the 
system

Description based on non-interacting 
quasi-particles no longer applicable

Strongly correlated systems in dilute gases with much 
larger control and tuning than in dense quantum liquids



Dimensionality of many body systems
Fluctuations, disorder, interactions play a 
larger role in reduced dimensions

• quantum transport in 1d
• Tonks-Girardeau gas
• Kosterlitz-Thouless physics (2d)
• …

Dimensionality critically affects order
3d: spontaneous symmetry breaking can lead to the 

emergence of true long range order
Low d: altered density of states leads to the 

destruction of long range order, even in the 
presence of interactions (Mermin-Wagner-
Hohenberg)



Order and dimensionality

Exponential 
decay of 
correlations 
above TC,2d

Exponential 
decay of 
correlations 
above TC

Exponential 
decay of 
correlations at 
any finite T

Quasi long range 
order (algebraic 
decay of 
correlations) 
below TC,2d

True long range 
order below finite 
TC

Quasi long range 
order only at 
T=0

True long range 
order only at 
T=0

1d2d3d



Outline

• 1d Bose gases

• 2d Bose gases
• Phase transition? – Bose-Einstein 

condensation vs Berizinskii-Kosterlitz-
Thouless physics

• Critical atom number measurements
• Phase dislocations, vortices, and the 

microscopic basis of the BKT theory

• Expansion
• (quasi) condensed vs normal fraction
• Phase fluctuations



1d Bose gases



1d condition
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Transverse confinement strong enough, so that
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Experimental approach
Elongated (macroscopic) magnetic traps: 
MIT, Hanover, Orsay, …

Optical lattices (2d +): Mainz, Penn State, 
…

Microtraps, single realisation: Heidelberg, 
Orsay, Amsterdam, …



One dimensional gases on atom chips
100 μm Z 
wire

50 μm Z wire

10 μm RF 
antenna

I I 25 μm U wirestransverse
imaging

longitudinal
imaging

100�m

At ~50 microns from 
the wire very elongated 
(aspect ratios > 1000) 
smooth BECs can be 
formed

1d: � � ��



Momentum distribution: TOF

� � �� Momentum distribution 
of the ground state ?

Experiment: Measure density dependence 
of transverse cloud width after TOF 
expansion

Fragmented cloud 
gives (almost) 
single shot 
measurement of 
large density span



1d time of flight: widths
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Even in purely 1d, there is a mean field 
correction



Finite T: bimodal 1d clouds
If the expansion for both a quasi-BEC and  
a thermal cloud is gaussian, how can they 
be distinguished (kT ~ ��) ?

Discern the interferable fraction !

cold hot Fourier transform



1d gases at finite temperature
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Phase fluctuations

Dettmer et al., PRL 2001
Richard et al., PRL 2003



Time evolution

t=0ms t=4ms t=8ms

Schumm et al., Nature Physics 2005
Hofferberth et al., Nature 2008

coupled

uncoupled



2d Bose gases



BEC in 2d ? – The ideal Bose gas

3D: BEC occurs when the phase space density reaches

Homogeneous system:

2D: no BEC for any phase space density

In a harmonic trap:

3D: BEC occurs when 

2D: BEC occurs when 

Does the trapping potential obscure the 
dimensionality difference?

Bagnato, Kleppner
1991



Interactions
Treat the interactions at the mean field level:

Does this mean there’s no 2d BEC, even in the trap?

where the mean field density is obtained from the self-consistent 
equation

Two remarkable results
• One can accommodate an arbitrarily large atom number. 

• The effective frequency deduced from
tends to zero when 

Similar to a 2D gas in a flat potential…

Holzmann et al

Badhuri et al



Superfluidity in 2d

A 2D film of helium becomes superfluid at sufficiently 
low temperature (Bishop and Reppy, 1978) 
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BKT theory
topological phase transition associated with the 
binding/unbinding of vortex pairs

T0 Tcsuperfluid normal

Bound vortex-
antivortex pairs

Proliferation of 
free vortices

(Un)binding of

vortex pairs

algebraic decay of g1 exponential decay of g1



Simplified picture
Probability of thermal excitation of a free vortex
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Entropy:

Energy:

Free energy:



Vortices and long range order
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Phase winding around a vortex

Increasing temperature
© V. Schweikhard, E. Cornell



The Paris experiment
• A regular 3d BEC is 

split into two by super-
imposing a blue 
detuned 1d optical 
lattice

• Ramping up the lattice 
compresses the cloud 
into 2d


 = 0.2

• 105 atoms/plane
• plane thickness: 0.1mm
• plane separation: 3 μm (lattice period @ small angle)
• barriers broad and high � no tunneling

Experiments also at MIT, Oxford, Innsbruck, Heidelberg, Florence, NIST, …



Measuring critical atom numbers

Produce 2d cloud, 
wait for atom number 
to reduce (~ 10s) 
RF knife on to keep T 
constant

Imaging beam



Interference
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TF radii of density (DC 
peak) and interfering 
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Comparing critical numbers

Within our accuracy, onset of bimodality and interference agree
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Temperature dependence of Nc
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Critical density: BKT

universal jump in superfluid density from 
�s�2=0 to �s�2=4, but total density at 
transition depends on interactions:

� �2 lntot
C
g
 � � �

for sufficiently weak interactions
1; 0.13g g� �� � in our case

Quantum Monte-Carlo calculations give 
C=380: 2 8.0tot
 � �

Svistunov et al.

Fisher and 
Hohenberg



Hatree-Fock analysis and QMC
Solve HF equations self-consistently in hybrid approach: 
semi-classical (continuous) treatment in xy, quantum in z

Result for ideal gas critical atom #, PSD < 8

Excellent 
agreement of 
mean field with 
QMC for non-
degenerate gas



Comparison to the experiment

P. Krüger, Z. Hadzibabic, J. Dalibard, PRL 2007
Z. Hadzibabic, P. Krüger, M. Cheneau, P.S. Rath, J. Dalibard, NJP 2008



BEC – BKT crossover

A mean field calculation yields that in general (low and 
high interactions)
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Local density approximation
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A closer look at interference
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Correlations and Vortices

Loss of quasi 
long range order

Proliferation 
of vortices

30�m

Hadzibabic, Krüger, Cheneau, 
Battelier, Dalibard, Nature 2006
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Fit the modulation along the z 
axis with

x

z

What is the statistical 
distribution of

Straight fringes with full contrast:

1
Pattern resulting from many uncorrelated elements along 
the line of sight

and are two

1

independent gaussian variables.

Exponential distribution for: 

Local analysis of interference



For each image we have             useful columns, each 
providing a local              and a local contrast

We use 300 images all at the same temperature

We sort all 9000 couples                    into groups of increasing 

x

z
Distribution of local contrast
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P. K., Hadzibabic, Dalibard, Demler et al., in prep. 2008



Conclusion

• Low dimensional systems can be formed, 
controlled, and studied with high versatility in 
cold atomic gases

• Beyond mean-field effects, i.e. ‘true’ many-
body physics become important in low d

• Example 1d: phase fluctuations
• Example 2d: Berizinskii-Kosterlitz-Thouless

physics and BEC-BKT crossover
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New group & experiments at Nottingham

Atom chips

Non-trivial potentials, topologies

Surface probes, atom-surface interaction/coupling

Hybrid atom-semiconductor chips
Chip based atom-light interfaces


