

1957-3

Miniworkshop on Strong Correlations in Materials and Atom Traps

4 - 15 August 2008

Band structure of strongly correlated materials from the Dynamical Mean Field perspective.

HAULE Kristjan

Rutgers State University Dept.of Physics and Astronomy 136 Frelinghuysen Road NJ 08854-8019 Piscataway U.S.A.

Band structure of strongly correlated materials from the Dynamical Mean Field perspective RUTGERS

Kristjan Haule

Collaborators: J.H. Shim & G. Kotliar

Outline

Dynamical Mean Field Theory in combination with band structure

- LDA+DMFT results for 115 materials (CeIrIn₅)
- Local Ce 4f spectra and comparison to AIPES)
- Momentum resolved spectra and comparison to ARPES
- Optical conductivity
- Two hybridization gaps and its connection to optics

References:

•J.H. Shim, KH, and G. Kotliar, Science **318**, 1618 (2007).

•J.H. Shim, KH, and G. Kotliar, Nature 446, 513 (2007).

Standard theory of solids

Band Theory: electrons as waves: Rigid band picture: En(k) versus k Landau Fermi Liquid Theory applicable Very powerful quantitative tools: LDA,LSDA,GW

Predictions:

- total energies,
- stability of crystal phases
- optical transitions

Strong correlation -Standard theory fails

- Fermi Liquid Theory does NOT work. Need new concepts to replace rigid bands picture!
- Breakdown of the wave picture. Need to incorporate a real space perspective (Mott).
- Non perturbative problem.

Bright future!

Need new concepts, new techniques...

- Dynamical Mean Field Theory the simplest approach which can describe the physics of strong correlations
- ->the spectral weight transfer
- ->Mott transition
- ->local moments and itinerant bands, heavy quasiparticles

DMFT can describe Mott transition:

DMFT + electronic structure method

Basic idea of DMFT+electronic structure method (LDA or GW):

For less correlated bands (s,p): use LDA or GW For correlated bands (f or d): *add all local diagrams by solving QIM* (G. Kotliar S. Savrasov K.H., V. Oudovenko O. Parcollet and C. Marianetti, RMP 2006).

Basic questions to address

- How to compute spectroscopic quantities (single particle spectra, optical conductivity phonon dispersion...) from first principles?
- How to relate various experiments into a unifying picture.
- DMFT maybe simplest approach to meet this challenge for correlated materials

Phase diagram of 115's - heavy fermion systems

CeCoIn₅ CeRhIn₅ CeIrIn₅ CeCoIn₅

	CeCoIn ₅	CeRhIn ₅	CeIrIn ₅	PuCoG ₅
Tc[K]	SC 2.3K	N 3.8 K	SC 0.4K	18.3K
T _{crossover}	~50K	~50K	~50K	~370K
C _v /T[mJ/molK^2]	300	400	750	100

Crystal structure of 115's

Tetragonal crystal structure

RUTGERS

Coherence crossover in experiment

Temperature dependence of the local Ce-4f spectra

•At 300K, only Hubbard bands

•At low T, very narrow q.p. peak (width ~3meV)

•SO coupling splits q.p.: +-0.28eV

•Redistribution of weight up to very high frequency

J. H. Shim, KH, and G. Kotliar Science 318, 1618 (2007).

Buildup of coherence

Crossover around 50K

Consistency with the phenomenological approach of NPF

Angle integrated photoemission vs DMFT

Momentum resolved Ce-4f spectra $A_f(\omega, \mathbf{k})$

RUTGERS

Conclusions

- DMFT can describe crossover from local moment regime to heavy fermion state in heavy fermions. The crossover is very slow.
- Mid-IR peak of the optical conductivity in 115's is split due to pr esence of two type's of hybridization
- Ce moment is more coupled to out-of-plane In then in-plane In which explains the sensitivity of 115's to substitution of tr ansition metal ion

