

1957-22

Miniworkshop on Strong Correlations in Materials and Atom Traps

4 - 15 August 2008

Strongly correlated fermionic gases in optical lattices.

MORITZ Henning Eidgenossische Technische Hochschule Institute for Quantum Electronics Schafmattstr. 16, CH-8093 Zurich SWITZERLAND Strongly correlated fermionic gases in optical lattices

Henning Moritz Niels Strohmaier, Robert Jördens, Daniel Greif, Tilman Esslinger ETH Zürich

A quantum degenerate Fermi gas

ETH

T≈20nK < T_F

 $\lambda_{\text{db}} \!\! \sim d$

Ultracold fermions in a crystal structure

ETH

Strong correlations

With bosons

M. Greiner et al., Nature 415, 39 (2002).

Sir Nevill Mott

Fermi-Hubbard model

$$\int_{J} \int_{U} \int_{U}$$

Interaction U; U=const. • scattering length

Tunneling J

Dimensionality

D. Jaksch et al., PRL 81, 3108 (1998) . W. Hofstetter et al., PRL 89, 220407 (2002).

Ideal Fermi gas in a 3D lattice

Strong interactions

A Mott insulating state of fermions

Filling the lattice

(k= $2\pi/\lambda$)

Absorption Imaging

Observed Fermi surfaces

ETH

Ideal Fermi gas in a 3D lattice

Strong interactions

A Mott insulating state of fermions

Tuning interactions: Feshbach Resonance

Interactions in the lattice

ETH

deep lattice = array of harmonic oscillators

Tuning interactions: Feshbach Resonance

Measuring the binding energy

Fermionic atoms transform into bosonic molecules!

T Stöferle, H. M., K. Günter, M. Köhl, T. Esslinger, Phys. Rev. Lett. 96, 040301 (2006)

T=0 Phase diagram

Ideal Fermi gas in a 3D lattice

Strong interactions

A Mott insulating state of fermions

Simplified energy spectrum

Noninteracting vs. Mott insulating regime

R. Jördens, N. Strohmaier, K. Günter, H.M., T. Esslinger, arXiv/0804.4009 and Nature in press (2008).

Occupation of upper Hubbard band

Theory: Hubbard model with J:=0, including confinement $\Rightarrow T \cong 0.2 \pm 0.1 T_F \cong 0.1 U$ From entropy in dipole trap: T/T_F~0.28 $\cong 0.1U$

Compressibility with respect to D

ETH

Theory: Atomic limit (J=0) at $T/T_{F} \sim 0.28$

Modulation of the lattice amplitude with frequency U/h: Particle-hole excitation

- C. Kollath et.al, Phys.Rev.A., 74, 041604 (2006)
- T. Stöferle et.al., Phys.Rev.Lett. 92, 130403 (2004)

Modulation spectroscopy

ETH

The black line is a guide to the eye

Conclusion

Noninteracting Fermi gas

Evidence for Mott insulating state

Roadmap for simulation of the Hubbard model

Antiferromagnetic ordering

Test for RVB superfluidity in 2D •Trebst et al., PRL 96, 250402 (2006)

Thanks

- + Daniel Greif
- + Letitia Tarruell
- + Kenneth Günter (LKB Paris)
- + Yosuke Takasu (U. Kyoto)
- + Michael Köhl (U. Cambridge)