

1957-19

Miniworkshop on Strong Correlations in Materials and Atom Traps

4 - 15 August 2008

First-principles study of the electronic structure of the Iron-based pnictides

ARITA Ryotaro

Department of Applied Physics School of Engineering University of Tokyo Hongo 7-3-1 Bunkyo-ku Tokyo 113-8656 JAPAN

First-principles study of the electronic structure of the iron-based pnictides

Ryotaro Arita Dept. Applied Phys., Univ. Tokyo

arXiv:0803.3325, to appear in Phys. Rev. Lett. arXiv:0806.3285, to appear in Phys. Rev. B arXiv:0806.3860, to appear in J. Phys. Soc. Jpn arXiv:0806.4750, to appear in J. Phys. Soc. Jpn

- K. Kuroki (Univ. Electro-Commun.)
- S. Onari (Nagoya Univ.)
- H. Usui (Univ. Electro-Commun.)
- H. Kontani (Nagoya Univ.)
- Y. Tanaka (Nagoya Univ.)
- H. Aoki (Dept. Phys., Univ. Tokyo)
- K. Nakamura (Dept. Appl. Phys., Univ. Tokyo)
- M. Imada (Dept. Appl. Phys., Univ. Tokyo)
- V. Vildosola (CPHT, Ecole Polytechnique)
- L. Pourovskii (CPHT, Ecole Polytechnique)
- S. Biermann (CPHT, Ecole Polytechnique)
- A. Georges (CPHT, Ecole Polytechnique)

- W. Malaeb (Univ. Tokyo)
- T. Yoshida (Univ. Tokyo)
- T. Kataoka (Univ. Tokyo)
- A. Fujimori (Univ. Tokyo)
- M. Kubota (IMSS, Tsukuba)
- K. Ono (IMSS, Tsukuba)
- Y. Kamihara (Tokyo Inst. Tech.)
- M. Hirano (Tokyo Inst. Tech.)
- H. Hosono (Tokyo Inst. Tech.)

Outline

Introduction

- Construction of an effective model from first-principles
 - Minimal model which describes low energy physics: Which d-orbitals are involved?
 - Estimation of interaction parameters:
 How large is *U*, *U*', *J* ?
- Multi-band RPA study on unconventional superconductivity
 - Symmetry of Δ

Kamihara et al, JACS 130 3296 (2008)

LaFeAs [O_{1-x}F_x] (x=0.05-0.12)

High T_c : raising up to ~55K

- RFeAsO_{1-x}F_x
 - Substitution of La with other rare-earths
 Tc=51K (R=Nd), 55K (R=Sm), etc.
- RFeAsO_{1-δ}
 - Oxygen vacancies instead of F doping
- "122", ThCr₂Si₂-type
 - AFe₂As₂, A=alkaline earth metal
- "111", PbFCI-type
 - LiFeAs (without chemical doping)
- "11", PbO-type
 - FeSe
- Under pressure
 - LaFeAsO_{1-x} F_x : Tc=26K → 43K
 - Undoped 122-type: $Tc=0K \rightarrow 30K$
 - Indoped 11-type: Tc=8K →27K

"122" (AFe₂As₂)

Problems in DFT calculations

- Magnetic moment overestimated
 - **1.5-2.0** μ_{B} , whether in doped or undoped cases
 - Experimentally, AF is observed only at very low doping levels and is weak (~0.3μ_B for LaFeAsO, ~0.9μ_B for NdFeAsO, ~0.9μ_B for BaFe₂As₂)

С

Fe-Pn bond length

Underestimated in structure optimization (up to 0.15Å)

Ba

LDA: a good starting point for theoretical studies? 😤 THE UNIVERSITY OF TOKYO

PES Yoshida et al, arXiv:0806.3860, to appear in J. Phys. Soc. Jpn

LDA DOS qualitatively agree with PES No Hubbard band observed

LDA: a good starting point for theoretical studies? 😤 THE UNIVERSITY OF TOKYO

ARPES

NdFeAsO_{1-x}F_x

Liu et al, arXiv:0806.3453

Ba_{1-x}K_xFe₂As₂

Liu et al, arXiv:0806.3453

LDA captures essential features of ARPES

LDA band structure & MaxLoc Wannier functions 😤 THE UNIVERSITY OF TOKYO

R. Aiitu

LDA band structure & MaxLoc Wannier functions 😤 THE UNIVERSITY OF TOKYO

LDA band structure & MaxLoc Wannier functions 😤 THE UNIVERSITY OF TOKYO

LDA band structure & MaxLoc Wannier functions 😚 THE UNIVERSITY OF TOKYO

R. Autu

Transfer hoppings

$$t_{\mu i \nu j} = \left\langle w_{\mu i} \left| H_{KS} \right| w_{\nu j} \right\rangle$$

Kuroki, RA et al, arXiv:0803.3325 to appear in PRL Nakamura-RA-Imada, arxiv:0806.4750 to appear in JPSJ

Nearest

	xy	<i>yz</i>	z^2	ZX	x^2-y^2					
cv	-0.315	-0.255	-0.299	-0.254	0.000					
)7.	-0.255	-0.211	-0.077	-0.134	0.176					
-2	-0.299	-0.077	0.076	-0.077	-0.000					
,	-0.254	-0.134	-0.077	-0.211	-0.176					
x -V ²	, 0.000	0.176	-0.000	-0.176	-0.185					
Next Nearest										
	-0.059	-0.141	-0.000	0.000	0.000					
	0.141	0.148	0.000	0.000	0.000					
	-0.000	0.000	-0.003	-0.145	-0.181					
	0.000	0.000	0.145	0.331	-0.011					
	0.000	0.000	-0.181	0.011	0.131					

in eV

2 band model $(d_{yz}+d_{xz})$

2 band model (d_{yz}+d_{xz})

Korshunov et al, arXiv:0804.1793

4 band model from 10 bands Bonding-antibonding split along X-M

2 band model $(d_{yz}+d_{xz})$

3 band model $(d_{yz}+d_{xz}+d_{x2-y2})$

3 band model $(d_{yz}+d_{xz}+d_{x2-y2})$

Lee & Wen, arXiv:0804.1739

To make α_1, α_2 around Γ and β around X, we have to consider d_{x2-y2}

 d_{yz} + d_{xz} makes FS around M

4 band model $(d_{yz}+d_{xz}+d_{x2-y2}+d_{xy})$

R.A.itu

Γ

Character of the Fermi surface

Character of the Fermi surface

cf) Tesanovic et al, cond-mat/0804.4678 *R. Auto*

Material dependence

Ab initio construction of an effective model

$$\mathcal{H} = \sum_{\sigma} \sum_{\boldsymbol{R}\boldsymbol{R}'} \sum_{nm} t_{m\boldsymbol{R}n\boldsymbol{R}'} a_{n\boldsymbol{R}}^{\sigma\dagger} a_{m\boldsymbol{R}'}^{\sigma}$$
$$+ \frac{1}{2} \sum_{\sigma\rho} \sum_{\boldsymbol{R}\boldsymbol{R}'} \sum_{nm} \left\{ U_{m\boldsymbol{R}n\boldsymbol{R}'} a_{n\boldsymbol{R}}^{\sigma\dagger} a_{m\boldsymbol{R}'}^{\rho\dagger} a_{m\boldsymbol{R}'}^{\rho} a_{m\boldsymbol{R}'}^{\sigma} a_{n\boldsymbol{R}}^{\sigma}$$
$$+ J_{m\boldsymbol{R}n\boldsymbol{R}'} \left(a_{n\boldsymbol{R}}^{\sigma\dagger} a_{m\boldsymbol{R}'}^{\rho\dagger} a_{n\boldsymbol{R}}^{\rho} a_{m\boldsymbol{R}'}^{\sigma} + a_{n\boldsymbol{R}}^{\sigma\dagger} a_{n\boldsymbol{R}}^{\rho\dagger} a_{m\boldsymbol{R}'}^{\rho} a_{m\boldsymbol{R}'}^{\sigma} \right) \right\}$$

Ab initio construction of an effective model

$$\mathcal{H} = \sum_{\sigma} \sum_{\mathbf{RR'}} \sum_{nm} t_{m\mathbf{R}n\mathbf{R'}} a_{n\mathbf{R}}^{\sigma\dagger} a_{m\mathbf{R'}}^{\sigma}$$
$$+ \frac{1}{2} \sum_{\sigma\rho} \sum_{\mathbf{RR'}} \sum_{nm} \left\{ U_{m\mathbf{R}n\mathbf{R'}} a_{n\mathbf{R}}^{\sigma\dagger} a_{m\mathbf{R'}}^{\rho\dagger} a_{m\mathbf{R'}}^{\rho\dagger} a_{m\mathbf{R'}}^{\sigma} a_{m\mathbf{R'}}^{\sigma\dagger} a_{m\mathbf{R'$$

Constrained RPA

Aryasetiawan et al, PRB 70, 195104 (2004) Solovyev-Imada, PRB 71, 045103 (2005)

$$W = \left(1 - v\chi\right)^{-1} v$$

Full RPA polarizability:

$$\chi = \sum_{i}^{occ} \sum_{j}^{unocc} \frac{\psi_{i}(r)\psi_{j}^{*}(r)\psi_{i}^{*}(r')\psi_{j}(r')}{\omega - \varepsilon_{j} + \varepsilon_{i} \pm i\delta}$$

Aryasetiawan et al, PRB 70, 195104 (2004) Constrained RPA THE UNIVERSITY OF TOKYO Solovyev-Imada, PRB 71, 045103 (2005) Full RPA polarizability: $W = (1 - v\chi)^{-1} v$ $\chi = \sum_{i}^{occ} \sum_{j}^{unocc} \frac{\psi_{i}(r)\psi_{j}^{*}(r)\psi_{i}^{*}(r')\psi_{j}(r')}{\omega - \varepsilon_{i} + \varepsilon_{j} \pm i\delta}$ Virtual (V) $\chi = \sum + \sum + \sum + \sum$ V++>○ ↓ +>T ★+T $O \leftrightarrow T \quad T \leftrightarrow V \quad O \leftrightarrow V \quad T \leftrightarrow T$ $\chi_{\rm r} = \sum_{O \subseteq V} + \sum_{T \in V} + \sum_{O \subseteq V} \qquad \qquad \chi_{\rm d} = \sum_{T \leftrightarrow T}$ $O \leftrightarrow T \quad T \leftrightarrow V \quad O \overleftarrow{\leftrightarrow V}$ $T \leftrightarrow T$ Target (T) $W_{eff} = \left(1 - v\chi_{\rm r}\right)^{-1} v$ $W = \frac{v}{1 - v\chi} = \frac{W_{eff}}{1 - W_{eff}\chi_d}$ Occupied (O) $U_{\mathbf{R}} = \left\langle W_{\mu \mathbf{0}} W_{\mu \mathbf{0}} \middle| W_{eff} \middle| W_{v \mathbf{R}} W_{v \mathbf{R}} \right\rangle$

Nakamura-RA-Imada, arxiv:0806.4750 to appear in JPSJ

cf) Sawatzky et al, arXiv:0808.1390

cf) Sawatzky et al, arXiv:0808.1390

$$\begin{split} U &= U_0 - 2E_p \\ E_p &\sim \frac{1}{2}\sum_{i=1}^4 \alpha_i E_i^2 \qquad \quad \textbf{a} \text{ : polizability} \\ E_i &= e \,/\,R^2 \qquad \quad \text{R: Fe-Pn distance} \end{split}$$

Large atomic radius of Pn \rightarrow large $\alpha \rightarrow$ large screening α (P) < α (As), but R(Fe-P) < R(Fe-As) \rightarrow U(LaFePO) \sim U(LaFeAsO)

		Lä	aFeAsO			
	Onsite U					
$\left\langle W_{i}W_{i} W_{eff} W_{j}W_{j} \right\rangle$	xy	yz	z^2	zx	x^2 - y^2	
	<i>xy</i> 2.66	2.00	1.98	2.00	2.11	
	<i>yz</i> 2.00	2.27	2.22	1.84	1.71	
• • •	<i>z</i> ² 1.98	2.22	2.66	2.22	1.71	
Nearest	<i>zx</i> 2.00	1.84	2.22	2.27	1.71	
	x^2-y^2 2.10	1.71	1.71	1.71	1.83	
	Nearest neighbor V					
	0.713	0.684	0.678	0.684	0.703	
	0.684	0.665	0.662	0.669	0.672	
	0.677	0.662	0.654	0.662	0.672	
	0.684	0.669	0.662	0.665	0.672	
Fe	0.703	0.671	0.672	0.672	0.688	
					in eV	

Nakamura-RA-Imada, arxiv:0806.4750 to appear in JPSJ

and calculate the change in the 3d energy level \rightarrow U(3d).

 $U = \frac{\partial^2 E_{LDA}(n_d)}{\partial n_d^2}$

U'~0.5eV, J~0.5eV

$$\hat{H}_{0} = \sum_{ijmm'\sigma} t_{ijmm'} c^{\dagger}_{im\sigma} c_{jm'\sigma} + h.c$$

$$\hat{H}_U \equiv U \sum_{im} n_{im\uparrow} n_{im\downarrow} + \sum_{i,m < m',\sigma} [U' n_{im\sigma} n_{im'-\sigma} + (U'-J) n_{im\sigma} n_{im'\sigma}]$$

$$\hat{H}_J \equiv J \sum_{i,m \neq m'} (c^{\dagger}_{im\uparrow} c^{\dagger}_{im'\downarrow} c_{im\downarrow} c_{im'\uparrow} + c^{\dagger}_{im\uparrow} c^{\dagger}_{im\downarrow} c_{im'\downarrow} c_{im'\uparrow})$$

Green's function:dispersion:
$$G(k) = \frac{1}{i\omega_n + \mu - \epsilon^0(\mathbf{k})}$$
 $\epsilon^0_{\mu\nu}(\mathbf{k}) = \sum_{\mathbf{r}_i - \mathbf{r}_j} t^{\mu\nu}_{ij} e^{i(\mathbf{r}_i - \mathbf{r}_j) \cdot \mathbf{k}}$

irreducible susceptibility:
$$\hat{\chi}_{l_1 l_2, l_3 l_4}^0(q) = -\frac{T}{N} \sum_k G_{l_1 l_3}(k+q) G_{l_4 l_2}(k)$$

spin susceptibility:charge (orbital) susceptibility: $\hat{\chi}^s(q) = \frac{\hat{\chi}^0(q)}{1 - \hat{S}^0 \hat{\chi}^0(q)}$ $\hat{\chi}^c(q) = \frac{\hat{\chi}^0(q)}{1 + \hat{C}^0 \hat{\chi}^0(q)}$

RPA result: spin susceptibility

effective interaction for singlet:

$$\hat{V}^{s}(q) = rac{3}{2}\hat{S}^{0}\hat{\chi}^{s}(q)\hat{S}^{0} - rac{1}{2}\hat{C}^{0}\hat{\chi}^{c}(q)\hat{C}^{0} + rac{1}{2}(\hat{S}^{0} + \hat{C}^{0})$$

effective interaction for triplet:

$$\hat{V}^t(q) = -\frac{1}{2}\hat{S}^0\hat{\chi}^s(q)\hat{S}^0 - \frac{1}{2}\hat{C}^0\hat{\chi}^c(q)\hat{C}^0 + \frac{1}{2}(-\hat{S}^0 + \hat{C}^0)$$

linerized Eliashberg eq. :

$$\lambda \Delta_{l_1 l_4}(k) = -\frac{T}{N} \sum_{q} \sum_{l_2 l_3 l_5 l_6} \hat{V}_{l_1 l_2, l_3 l_4}^{s(t)}(q) G_{l_2 l_5}(k-q) \Delta_{l_5 l_6}(k-q) G_{l_3 l_6}(q-k)$$

 $T=T_{\rm c}$ when $\lambda=1$

RPA result: gap function

FS yz, xz $k_y 0$ $k_y 0$ $k_y -\pi$ $-\pi$ $-\pi$ 0 k_x

x² - y² yz, xz 0.004 0.003 0.002 0.001 0.015 π π 0.01 0.005 0 -0.001 -0.002 -0.003 -0.004 0 0 -0.005 0 -0.01 node node $-\pi$ $-\pi$ 0 $-\pi$ π $-\pi$ 0 π

Kuroki, RA et al, arXiv:0803.3325 to appear in PRL

LaFeAsO vs LaFePO

LaFeAsO

LaFePO

Possibility of unconventional superconductivity

- ARPES e.g. H. Ding et al, EPL 83 47001 (2008)
- Andreev reflection e.g. Y.Y. Chen et al, Nature 453, 1224 (2008)

Nodeless SC ?

Micro wave Penetration depth e.g. K. Hashimoto et al, arXiv:0806.3149

Possibility of extended-s: e.g. Mazin et al., arXiv:0803.2740, Kuroki et al., arXiv:0803.3325, Korshunov et al.,arXiv:0804.1793, Chubukov et al.,arXiv:0807.3735, Parker et al.,arXiv:0807.3729, Sknepnek et al., arXiv:0807.4566, Parish et al., arXiv:0807.4572 Possibility of s: Wang et al., arXiv:0807.0498

-<u>A</u> \

Nuclear Magnetic Resonance

LaFeAs(O, "F.)

1/T₁ (s⁻¹)

Absence of coherence peak

2-D line node

 $2\Delta/k_{\rm B}T_{\rm c}=4$

T (K)

1/T₁~T³

nodes intersect FS?

Nakai et al, JPSJ 77 073701(2008) Matano et al, arXiv:0806.0249 Grafe et al, PRL101 047003 (2008)

Chubukov et al.: arXiv:0807.3735 Parker et al.:arXiv:0807.3729 Parish et al.:arXiv:0807.4572

"sign change in Δ + unitary impurity scattering"

Weak Co-doping effect on T_c Kawabata et al, arXiv:0807.3480

- Model construction based on ab-initio downfolding
 - Effective model seems to involve all five 3d orbitals
 - moderately correlated (U/W~1/2)
- Possibility of extended-s SC
 - d_{x2-y2}, d_{yz} , d_{xz} orbital must be considered