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e interplay between unconventional superconductivity and magnetism in
CeRhlIn; — superconducting gap symmetry

e signatures for quantum criticality and implications — evidence for an
unconventional form of criticality and its role in superconductivity

e summary and issues
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the general problem

¢ zero-temperature transition between ordered (eg.
Quantum critical 1 . : . oy

matter p antiferromagnetic) and disordered states; driven by

’ quantum, not thermal, fluctuations

¢ a highly degenerate state susceptible to transformation
into new electronic configurations, such as
unconventional superconductivity, with critical
fluctuations possibly providing a ‘glue’ that forms

Cooper pairs (N. D. Mathur et al., Nature 394, 39 (1998); P.
Tuning parameter Monthoux et al., Nature 450, 1177 (2007) and references therein)

Temperature

¢ questions:

-- Can magn?tl,sm and . Antiferromagnet Quantum critical Heavy fermion metal
superconductivity coexist to the matter

left of the QCP? If so, what is the 55 55

. AR
nature of the superconductivity? §S A ‘P e
-~ Can the QCP (‘D) hidden by a W _ - N

dome of superconductivity be o-< (;5
revealed by suppressing E,f’ ((:5 §f;
superconductivity? (;5

-- What is the nature of the
quantum criticality? Does it
provide glue?

P. Coleman and A. Schofield Nature 433, 226 (2005)



CeRhlns as an example
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¢ phase diagram from ac specific
heat; below ~ 8K, electronic entropy
independent of ground state

K2)

Cel/T (mJ/mol

¢ CeRhln;: antiferromagnetic member of the
115s that include the unconventional heavy-
fermion superconductors CeColng and Celrln,
¢ exceptionally ‘clean’, with RRR ~ 500 and p,
< 100nQcm
¢ antiferromagnetic with T =3.8 K, above which
~ 450 mJ/molK?2, and below which is an ordered
moment M,=0.79 g, slightly reduced from 0.84
ug expected for a CEF doublet-local moment
¢ temperature-pressure phase diagram similar to
generic example: region of superconductivity and
magnetic order; no evidence for magnetism
above P1 where T =T ; maximum T_ where Ty
extrapolates to T=0
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coexistence to the left of the QCP
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¢ specific heat and 1/T; = clear evidence
that bulk SC and AFM coexist below P1

¢ T,: microscopic coexistence; below T,
1/Toc T3, as expected for a gap with nodes;
T-linear 1/T, at the lowest temperatures —
residual low-energy excitations reflected as
well in finite y(0)

¢ as P—>PI, y, increases = itinerant
charge carriers become more massive;
above P1, y(0) becomes small and T-linear
1/T, absent

P (GPa)



nature of AFM and SC in coexistence phase
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H-T phase diagram unchanged for 0 <P < P1;
combined with only small decrease in ordered
magnetic moment = 4f electrons remain

2
K) T. Park et

CIT (a.u.)

al., PNAS 105, 6825 (2008)
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T. Park et al., arXiv:0806.3308
¢ except for pressure-induced superconductivity, ¢ 2-fold modulation in polar sweep =
anisotropy reflected in H ,; 4-fold in-plane
modulation with minima along [100] = dXy
line nodes along c-axis; no evidence for exotic
dominantly ‘localized’ but also participate in SC nodal structure, eg. due to magnetic order



emergence of magnetic order above P1

¢ at 2.1 GPa, where only superconductivity
in H=0, magnetism ‘hidden’ by
superconductivity emerges in the
superconducting state when H > 55 kOe; Ty
weakly increasing with H, as at P<P1 and
S(Ty) o« H oc areal density of vortices;
similar results at P=1.8 and 1.9 GPa

¢ no evidence for field-induced magnetism
at 2.3 GPa; once superconductivity

C/T (arb. units) C /T (arb. units)

C /T (arb. units)
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suppressed, C/T diverges as T>0 1 p,i et al. Nature 440, 65 (2006):
G. Knebel ct al., PRB 74, 020501 (2006)



T-P-H phase diagram of CeRhin;

H =0 kOe plane ¢ H=0 plane, as before; representative

H-P plane at T=0.5K

¢ line of field-induced, second-order
magnetic transitions connecting P1
and P2 inside the SC state; line
separates a phase of coexisting
magnetic order (MO) and
superconductivity (SC) from a purely
unconventional superconducting state

2.5
P
(GPa) 120 T=0.5K plane
100 - MO . NM -
T. Park ct al, Nature 440, 65 (2006) = °O[ /7T ‘9 1
9 o / P2 _
¢ if similar at T=0, have a line of field-induced T sc+mo 4
magnetic quantum criticality aor ST % s )
¢ anticipated theoretically by Demler et al. (E. ool AT P |
Demler et al., PRL 87, 067202 (2001)) 1n the context of N 21/
cuprates, where hole doping, instead of pressure, 14 16 18 20 22 24

1s the tuning parameter P (GPa)



relationship to deHaas-vanAlphen results

¢ divergence of cyclotron mass m* near
2.35 GPa =~ P2, where C/T oc m* also
diverges
&
~PL2 "o
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Pressure (GPa)
Pressure (GPa) H. Shishido et al., JPSJ 74, 1103 (2005)

¢ main dHvVA frequencies (Fermi surface volume) essentially unchanged for P < 2.3 GPa =
f-electron remains localized; but also new branches in interval ~ P1 <P <~ P2

¢ above 2.4 GPa, qualitative change in dHVA spectrum; frequencies of o branches for P >
P2 essentially identical to those of CeColn, at P=0 in which 4f electrons contribute to FS =
f-‘localized’ to f-‘delocalized’ (small-to-large Fermi volume) transition in a narrow P interval

¢ not a conventional quantum phase transition; what happens at P1?
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T. Park et al., PNAS 105, 6825 (2008)
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dHvA Frequency (x10 Oe)

Pressure (GPa)

¢ from slope of B, (T) near T, (1/B_,")!? oc vy,
oc I/m*

¢ m* (~y,) increasingly heavy as P approaches
P1 but jumps by ~ 2x upon crossing P1, not seen
in high field dHVA

¢ diverging high field m* at P2 from dHvA and
jump in zero-field m* at P1; consistent with T-
P-H phase diagram — line of field-induced
quantum criticality accompanied by Fermi-
surface reconstruction



¢ CeColns: upper
critical field boundary 1t
order in the low-T, high-
H limit = Pauli limited
and a phase inside the
vortex state that may be
FFLO now also shown to
be magnetic from NMR
and neutrons

¢ CeRhlns: H,
boundary also 15 order
near P2 and field-
induced magnetism in
low-T, high-H phase for

aside: relation to CeColn.

A. Bianchi et al., PRL 91, 187004 (2003) |
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L. Pham et al , PRL 97 056404 (2006)

- CeCo(In Cd Je

inferences from Cd-doped CeColn;

¢ magnetism explicitly present for H=0 with
small (~1%) Cd substitution for In; region of
microscopic coexistence (NMR: R. R. Urbano et al.,
Phys. Rev. Lett. 99, 146402 (2007)) of large-moment
AFM (neutrons: M. Nicklas et al., PRB 76, 052401(2007))
and SC; same conclusion from neutron
diffraction on x=0.75%

M. Nicklas et al., PRB 76, 052401(2007)

0.0 0.5 1.0 1.5 20 2.5 3.0

x% Cd

¢ abrupt halt to AFM order parameter
development at T, = coupling of SC and
AFM; what happens to magnetic degrees of
freedom? some evidence, though not
straightforward to separate from effects of
disorder, that y(0) increases in the coexistence
phase where 1/T, oc T also appears at T<<T,
¢ if similar in CeRhln;’s coexistence regime,

possible source of finite y(0) and T-linear 1/T,

Integrated Intensity (arb. units)
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no theory but a framework for non-phononic ‘glue’

¢ consider a quasiparticle with spin s coupled to an effective field proportional to some
spin density or magnetization m(r,t); then the interaction of the quasiparticle with the

field is —se[gm(r,t)]
¢ in linear response m(r,t)=gs’y(r,t), so the induced interaction V= -ses’ g2y (r,t)

¢ near an antiferromagnetic instability, y(r,t) a maximum at
r=0 but also oscillates in space with a period comparable to

lattice spacing; for opposite spins, 1.e. net S=0 (spin

Spin singlet

singlet), V repulsive at origin but attractive at r > 0, and by
Pauli, must have even L, eg. L=2 = d-wave
P. Monthoux et al., Nature 450, 1177 (2007) and references therein
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Border of antiferromagnetism

¢ as T —0, magnetic excitations
become quantum critical =
magnetic susceptibility singular at
Q, possibly favorable for
enhancing the induced attractive
interaction, and leads to power-law
forms of physical properties but no
jump in Fermi volume
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CeRhln; summary

¢ field-induced magnetism in the
SC state, with H-induced
criticality extending from P1 to P2

¢ unconventional SC coexisting with AFM

dHvA Frequency (x10 Oe)

Pressure (GPa)

¢ FS reconstruction at P1 and
P2, with apparent jump in FS

volume at P2

H = 0koe plane

3.0 -

¢ sublinear resistivity and
strong isotropic scattering
emerging from P2 where T 1s
a maximum, unexpected within
conventional models of SDW-
type of criticality



issues

(1) 1n coexistence phase below P1, f-electron basically localized (dHvA, M,,, H-T-P
diagram, very low impurity T ), yet AC at T, = bulk SC from heavy electrons — show
does the f-electron ‘partition’ itself between these two roles? k-dependent, eg orbitally
selective, hybridization? Is the development of the ordered moment arrested at T, as in
Cd-doped CeColn;, and what is the role of the non-ordered magnetic component?
transfer of spectral weight?

(2) Fermi surface topology change at P1, where AFM disappears, and at P2, where m*
diverges in high fields with apparent increase in Fermi volume = not obviously
anticipated in conventional models of magnetic quantum criticality — is Fermi surface
reconstruction a signature of quantum criticality? Perhaps, but counterexample in
CeRh,  Co,Ing (S. K. Goh et al., arXiv: 0803.4424) where reconstruction coincides with onset
of SC and not Ty, —=0; if a form of criticality, what is its nature?

(3) line of field-induced magnetic transitions at T—0, with P1 apparent zero-field limit and
P2 the high field limit — what is the nature of the induced magnetism? A continuation of
the ambient pressure local moment type or an instability of the Fermi surface? Don’t
know! Analogies to CeColns — maybe SDW-like or to Cd-doped CeColn,—maybe
local moment type, but nFL behavior dominated by P2

(4) Origin of the nFL state? Resistivity exponent not within any framework of 3D
criticality, though sublinear exponent above ~ 0.1K (~T-linear below) also found in
purest YthzSi2 (P. Gegenwart et al. Nature Phys. 4, 186 (2008)) that 1s believed to be locally
critical; maybe just not low enough T in CeRhln; to find T-linear?



issues (cont.)

(4) (cont.) large decrease in resistivity anisotropy in nFL regime, comparable to that
near room temp. = involvement of entire Fermi surface; together with FS
surface change at P2 = some form of unconventional criticality that involves
fermionic and well as bosonic degrees of freedom, possibly of the local or

Kondo-breakdown/selective Mott type? (T. Senthil et al; P. Coleman et al., J. Phys.
Condens. Mat. 13, R723 (2001); Q. Si et al., Nature 413, 804 (2001); C. Pepin, PRL 94, 066402 (2005);

I. Paul et al., PRL 98, 026402 (2007); C. Pepin, PRL 98, 206401 (2007)); need theoretical
predictions for comparison to experiment

(5) striking increase in scattering centered on P2 where T i1s a maximum =
Sfluctuations of the critical state a source of pairing glue? If unconventional
criticality = fluctuations in charge and spin channels, but which channels or
channel dominate(s) the pairing interaction is an open question



